THE JACOBSON RADICAL OF A GROUP ALGEBRA

Michael I. Rosen

Introduction. Let K be a field of characteristic zero, and G a group. It has
been conjectured that the group algebra K[G] is semisimple, in other words, that
the Jacobson radical of K[G] is zero. If K has elements that are transcendental
over the field Q of rational numbers, then K|[G] is indeed semisimple (see Amitsur
[1]). For the case where K is algebraic over Q, only partial results are known.
For example, if G is abelian or G/C is locally finite (C being the center of G),
then the conjecture is true (see [1], [4], [5]). We shall give new proofs of these re-
sults, and we shall verify the conjecture for a much larger class of groups.

By a linear representation p of a group G we shall mean a homomorphism from
G to a finite-dimensional linear group over some field. G is said to be 7esidually
linear if for every g € G (g # e) there exists a linear representation p such that
p(g) is not the identity. Our main result is the following.

THEOREM A. If every finitely generated subgroup of G is residually linear,
then K[G] is semisimple.

In particular, the result applies to any linear group. Clearly, the property of
being residually linear is inherited by subgroups. By the Peter-Weyl theorem, a
compact group is residually linear. This gives the following result.

COROLLARY. LetH be a subgroup of a compact group. Then K[H] is semi-
simple. )

The limitations of our methods will be shown in Section 3, where we prove the
following proposition.

THEOREM B. Let G be an infinite, finitely genevated, simple group. Then G
has no nontrivial linear representations over any field.

Graham Higman [2] has shown that there exist groups satisfying the hypotheses
of Theorem B.

1. LEMMA 1.1. Let S be a ving, and {Ii} _a collection of two-sided ideals.
Suppose S/1; is semisimple for all i, and that ,ani = (0). Then S is semisimple.

Proof, If S/I]-L is semisimple, I; is the intersection of the maximal left ideals

that contain it. Thus n!»Ii = (0) implies that the intersection of a certain collection
of maximal left ideals is (0). This proves the lemma.

LEMMA 1.2. Let @ ={ Ni} be a collection of normal subgroups of G. Suppose
that for every finite subset ¥ of G thatl does not contain e, there exists an N € Q
that does not meet F. Let R be a ving, and suppose R[G/N] is semisimple for all
N € Q. Then R[G] is semisimple.
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Proof. For N € Q consider the natural ring homomorphism 7 from R[G] to
R[G/N]. Let I(N) be the kernel of this homomorphism. By Lemma 1.1, we need

only prove that ﬂ I(N) = (0), the intersection being over all N € Q.

Let 2; i=1 a(g )g € ﬂ I(N). Consider the set F = {g g{(l} (1<j,k<s, and

j #k). By hypothems there exists an N € © such that no element of Fisin N. If 7

is the homomorphism associated with N, then 7(g;) # n(gy) for j #k. We apply 7 to
S

EJ 1 ale; )gJ and get the relation 0 = EJ 1 a(g )n(g ). Therefore
a(gl) = ees = a(gs) =

LEMMA 1.3. Let A = {H} be the set of finitely genevated subgroups of G.
Suppose R[H] is semisimple for all H € A. Then R[G] is semisimple.

Proof, Let H be a subgroup of G, and L. a maximal left ideal of R[H]. We
claim there is a maximal left ideal L* of R[G] such that L* N R[H] = L. This fol-
lows immediately from the fact that R[G] is a free right R[H] module.

E
Now suppose Z"i= 1 ag;)g; is in the radical of R[G]. Let H be the group gen-

erated by g;, ***, g;. Then a = Z) -1 a(g;)g;€ R[H]. Let L be a maximal left
ideal of R[H], and L* a maximal left ideal of R[G] such that L* N R[H] = L. Then
o€ L* and consequently @ € L. It follows that a is in the radical of R[H], and
thus a =0,

Using the three lemmas, we now prove that K[G] is semisimple for three types
of groups. Propositions 1.1 and 1.2 are not new (see [5]).

PROPOSITION 1.1. If G is abelian, then K|[G] is semisimple.

Proof. By Lemma 1.3, it suffices to prove the proposition for finitely generated
abelian groups.

If G is abelian and finitely generated, G is the direct product of a finite group
and a finitely generated free abelian group. Let £ be the set of subgroups of G of
finite index. § clearly satisfies the hypotheses of Lemma 1.2 for R = K. Thus K[G]
is semisimple.

PROPOSITION 1.2. Let C be a central subgroup of G, and suppose G/C is
locally finite, Then K[G] is semisimple.

Proof. Let H be a finitely generated subgroup of G. Then H/(H N C) maps
monomorphically into G/C and is finite. By Lemma 1.3, we have reduced the prob-
lem to the case where G is finitely generated and G/C is finite. Under these as-
sumptions, we first prove that C is finitely generated.

Let gy, ***, g5 be coset representatlves for G/C, and let hy, -+, h,; be gener-
ators of G such that h‘ =h;,, for i=1, .-, t. Then

hy = 8y and €585 = B¢(,5) 4y

where cj, c;; € C. Each element in G is a word in the h; and is thus equal to a co-
set representative times a product of the c¢; and c;;. It now follows easily that the
ci and cjj generate C.

Let 2 be the set of subgroups of finite index in C. Then Q is simultaneously a
set of normal subgroups of finite index in G, and therefore © satisfies the hypotheses
of Lemma 1.2, for R = K. Thus K[G] is semisimple.
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PROPOSITION 1.4. If G is a free group, then K|[G] is semisimple.
Proof. Let Q be the set of normal subgroups of G of finite index. It is known

that ﬂ N = (e), where the intersection is over all N € ©. Moreover, the set @ is
closed under finite intersection. We may once more invoke Lemma 1.2, and the
result follows.

2. PROPOSITION 2.1. Let L be a field, and let G = GL(L). If H C G, then
K[H] is semisimple.

Proof, By Lemma 1.3, we may confine our attention to finitely generated sub-
groups of G. Let H be such a subgroup, and suppose T, ***, T, generate H. Let
A De the algebra generated over the prime field by the coefficients of the matrices

T,, -, T, T;!, =+, T;1. Then H C GL_(A).

Consider the group GL,(A). Let P be a maximal ideal of A. We then have a
natural homomorphism from GL,(A) to GL_(A/P). Let U(P) be the kernel, and
consider the set © = {U(P)}, P ranging over all maximal ideals P of A. We
claim that @ satisfies the first hypothesis of Lemma 1.2, To show this, we note
that U(P) CI, + PM (A), where I is the identity matrix and M (A) is the algebra
of n X n matrices with coefficients in A. For i=1, -+, t, let S; be an element of
GL,(A), different from I,,. We must show that there exists a U(P) € © that contains
no S; or equivalently, such that no S; - I, belongs to PM(A). Let a; be a nonzero
coefficient of S; - I,,, and set a=aja, >+ a,. Since a # 0 and A is a Noetherian
domain, finitely generated over the prime field, the Hilbert Nullstellensatz implies
there exists a maximal ideal P such that a ¢ P. The kernel U(P) satisfies our
requirements.

Let N(P) = U(P) N H. The collection Q'= {N(P)} satisfies the first hypothesis
of Lemma 1.2, Moreover, H/N(P) is isomorphic to a finitely generated subgroup of
GL,(A/P). The problem is reduced to showing that if J is a finitely generated sub-
group of GL_(A/P), then K[J] is semisimple.

By the Hilbert Nullstellensatz, A/P is a finite-dimensional extension of the prime
field. If the characteristic of L is not 0, then the prime field is finite, and so is
A/P. In this case, GL_(A/P) is finite, and the result follows immediately. I the
characteristic of L is zero, then A/P is an algebraic number field.

Let J be a finitely generated subgroup of GL, (L), where L is an algebraic
number field. Suppose J is generated by T,, ---, T, , and consider the coefficients
of Ty, -, T, T} Fle) TI'I} . Since these coefficients are finite in number, there
exists a discrete va.luation ring 0 of L such that all the coefficients are in 0. Con-
sequently, J € GL_(0). Let P be the maximal ideal of 0. Then 0/P! is finite for
all positive integers i. Let U; be the kernel of the natural homomorphism from
GL,(0) to GL,(0/Pi). The set Q" = {U,} satisfies the hypotheses of Lemma 1.2,
for R =K, and thus K[J] is sem1s1mp1e as was to be proved.

PROPOSITION 2.2. Lef Ly, L,, -+, L_ be fields, and let

m

G = GLnl(Ll)X ><GLn (Lm).

m
If H C G, then K[H] is semisimple.

Proof. The arguments given above for the case m = 1 can easily be extended to
cover the cases where m > 1. We omit the details.
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We are now in a position to prove Theorem A. By Lemma 1.3, we may assume
that G is finitely generated. Let {p;} be the set of linear representations of G,
and N, the kernel of p;. Let © be the set of finite intersections of the N;. If
N € ©, then G/N is a group to which Proposition 2.2 applies, and thus K[G/N] is
semisimple. Suppose g; € G and g; #e for i =1, .-, s. By hypothesis, there
exists an N; such that g; ¢ N; . It follows that no g; is in

N=NNN,n-"nN; €Q.
Lemma 1.2 now gives the result.

3. To prove Theorem B, suppose that G satisfies the hypotheses of Theorem B
and that p is a nontrivial linear representation. The kernel of p is a normal sub-
group of G, not equal to G. Since G is simple, this implies that ker p = (e), and
thus that p is faithful. We may thus suppose from the beginning that G is a subgroup
of a linear group GL_(L). Using the notation of Proposition 2.1, we see that there
exists an integral domain A in L, finitely generated over the prime field, such that

G c GL_(A). Since ﬂ U(P) = (I,), there exists a maximal ideal P of A such that
GnN U(Prs = (I,). Consequently, G maps monomorphically into GL,(A/P). In the
case where the characteristic of L is not zero, this is a contradiction, since
GL,(A/P) is finite. If the characteristic is zero, A/P is an algebraic number field.

We may thus suppose G C GL_(L), where L is an algebraic number field.
Again, from the proof of Proposition 2.1 we see that there exists a discrete valuation

ring 0 in L such that G € GL_(0). Since ﬂ U; = (Ip), there exists an index i such
that G N U; = (I)). Thus G maps monomorphically into GL,(0/Pi). The latter group
is finite, so once again we arrive at a contradiction.
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