A CLASS OF WEIGHT FUNCTIONS THAT ADMIT
TCHEBYCHEFF QUADRATURE

J. L. Ullman

By a weight function W(x) we mean a real-valued nonnegative function on [-1, 1]
for which the proper or improper Riemann integral exists and has the value 1. If
the system of equations

n

(1) %Z} xK = Sl *W(x)ax (k=1 -, n)

n

i=1 J.1
has real solutions for all positive integers n, we say that W(x) admits Tchebycheff
quadvature,

Hermite proved that the function W(x) = 1/7V1 - x% admits Techbycheff quadra-
ture (see [1]). As far as the author knows, the literature lists no other examples.

THEOREM. If -1/4 < a < 1/4, then the function

1 14 2ax
m/l - x%21 +4a%+ 4ax

(2) W(x) =

is a weight function and admits Tchebycheff quadrature.

This theorem establishes the existence of an infinite one-parameter family of
what could properly be called Tchebycheff weight functions. It thus becomes reason-
able to pose the problem of characterizing all Tchebycheff weight functions.

Proof of the theorem., In Lemmas 1 and 2 we develop a method for investigating
the solutions of equations (1). We then apply this method to the weight function (2),
in Lemmas 3 and 4, to complete the proof.

LEMMA 1. Let W(x) be a weight function, and let

1
my = ‘S‘ X*Wx)dx (k=0, 1, ).
-1

The function

(3) f(z)=zexp(-—2—n-li{) (|z|>1)

k=1 ka

has a simple pole at infinity, and lim, _,  £(z)/z = 1. For each positive integer n,
the tevms with nonnegative powers of z in the Lauvent expansion of (£(z))" about
infinity form a monic polynomial F_(z) of degree n.

To prove this lemma, we observe that Imkl < 1 for all k, that the function
defined by
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0
> Hx

k=1 Zk

o

is zero at infinity, and that we can obtain the Laurent expansion about infinity of
(f(z))™ by formally raising the Laurent expansion of f(z) to the nth power.

LEMMA 2. Let W(z), {my} (k=0, 1, ---), £z), and F,(z) be defined as in
Lemma 1, and let

Fn(z) H (z—z ).
i=1

Then

(4) %.Z)z? =mg (k=1 -, n).

Proof. On the one hand,

n
1 Z) k
n n o Kk 0 Z-,
(5) Fa(z) 15 1 =12 » Zin _ 3 Limt P
nF (z) n._ zZ-3z; Ny y-0zktl =0 gktl

On the other hand, there exists a function G(z), analytic in |z| > 1 and vanishing at
infinity, such that

G(z)
£(z)

where H,(z) is analytic in some neighborhood of infinity and has a zero of multiplic-
ity at least n + 1 at infinity. It follows that

F_(z) = f(z) + G(z) = (z) ( 1+ ) = 0(z) (1 + H_(2)),

Fa@ _fz),  H@ p@), % S
nFn(z) f(z) n(1+Hn(z)) f(z) kentl gktl’

By (3),

and therefore

F!(z) S m m, +c
n\%)  _ > k k n,k

(6) nF (z) B

k=0 Zk+1 k=n+l

The lemma now follows if we compare the coefficients in (5) and (6).

We denote by E; the z-plane with the interval [—1, 1] deleted, and by vz2 -1
the branch of the function in E; that is positive on the ray z > 1.

LEMMA 3. For -1/2<a<1/2,
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(T) Ei—-zz—z——_-—1-+a=zexp< Ei)

-1 kzk

wheve the function (2) is used in the definition of my .

Proof. The function z - V22 - 1 is analytic in E; and tends to 1 in modulus, as
z tends to any point of [-1, 1] from E; . Since the funct1on is regular at mfmlty, the

maximum modulus principle yields the inequality Iz - Vz2 - 1| <1 for z € E,;.
Since

|+ V22 - 1)(z - V22 - 1)| =

it follows that |z + V22 - 1| > 1 for z € E;. For -1/2 <a < 1/2, the function
{8) f(z) =—+a

has no zero in E;, and therefore

f'(z) _ 1 z+Vz2 -1
Hz) 22 1z+V/z2-1+2a

(9)

is analytic in E; and has a simple zero at infinity. If C is a simple closed curve
containing [-1, 1] and if z is exterior to C, then by Cauchy’s formula

fr((z) _ 1 L££(¢) dg

(10) f(z) 2w J £(¢) € -2z’

because the integrand has residue zero at infinity. For x in the interval [-1, 1], we
define (Vv x?2 - )+ (£(x))*, and (£'(x))" as the limiting values of vz2 - 1, £(z), and
f'(z), respectively, as z approaches x through values with positive imaginary parts.
In an analogous manner, we define (v x2 - 1)7, (f(x))", (£'(x))".

We deform the path of integration and write (10) in the form

-+
fi(z) 1 -8 /i(x)y £1(¢) dat
f(zz)‘ﬁ[S (f(::)) x—xz+ § () ¢ - z

-1+€
11)

-1+e , - .
+S (ff((xx))) xd—xz+ § Ef%)—§—

1-2 le+1|=¢

N’
o
N
I

where 0 <e < 1. It is readily verified that as ¢ tends to zero, the second and
fourth integrals on the right-hand side of (11) tend to zero.

Since (Vx2- 1) =iV/1 - x2 and (Vx2-1)" =-iv1 - x2, we see from (9) that

f'(x) . . f1(x) \~ . 1
) is the complex conjugate of -f_(x_)— , and the first and third integrals

combine to yield in the limit
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1 | ' - 1 .
oo [ 68) - (68) |1 50 69)

- -1

Since

(g@)—‘_: 1 x+iv1l - x%
(x) iVi-x2 x+iv/1-%x2-2a

a computation shows that

S(f'(x))J“:_ 1 1+ 2ax
£(x) V1 - x2 1+4a2 + dax

Thus from (11) and (12) we finally arrive at the formula

f'z) _ (' W)

(13) f(z) ), Z-X

dx,
where W(x) is given by (2).
Recall that z was originally chosen in the exterior of the curve C. Since the
t
integral in (13) is analytic for all z in E,, it represents the analytic function ff(%

throughout E; .

1 © m
We find that for |z| > 1, %%= 0 —k—fi, where
z
1 k
(14) my = 5 X W(x)dx (k=0,1, ).
-1

If we let g(z) = £(z)/z for |z] > 1, then g(e) = 1 and g(z) does not vanish for
|z] > 1; therefore there is a branch of log g(z), defined in the domain |z| > 1,
such that log g(w) = 0. Both the function log g(z) and the function defined by the
series

[¢le]
> P
x=1kz¥

©o mk
have the same derivative, namely 27, _ ———, so that
’ k=1 ,k+1

o0
m
k
log g(z) = - 20 —=
g g(z) ik

for |z| > 1, the constant of integration being determined by comparing values at
infinity. Thus
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i(:_) - exp(- > mk) (Jz| > 1).

By the definition of f(z) and my (see (8), (14), and (2)), the relation (7) is now
established; this completes the proof of the lemma.
LEMMA 4. If -1/4 < a < 1/4, W(x) is defined by (2), and

1
my = S—l LEWx)dx  (k=0, 1, ),

then the system of equations

=]

1 k
D DX = m (k=12 -, )
1:

(15)

—

has veal solutions for all positive integers n.

Proof. We first note that for the range of a in the lemma, W(x) is nonnegative
and admits an improper Riemann integral. From (9), (13), and (14) it can be deduced
that mg = 1,-so that W(x) is a weight function. Thus the proof of this lemma will
complete the proof of the theorem.

To find solutions of (15) for a fixed value of n, we proceed according to Lemmas

1 and 2 and form the expression
2. m
Z exp(-— 27 —li),

which defines an analytic function f(z) for |z| > 1. Our next step is to find the

polynomial part of the Laurent expansion of (f(z))™ about infinity, and to investigate

ilts|zeros. In the particular case under investigation, we know by Lemma 3 that for
z| > 1,

[+ 0]
m 2 _
f(z)=zexp(—2 k)=z+ Z 1+a,

and we shall use this to show that the expression

(16) Tgla)(z):.(Z_i-___ szz‘l_l_a)nﬁl_(z- 72 - 1

is the polynomial we seek. To begin with, T l(f)(z) is analytic in E; . I we regard
each of the first two terms on the right-hand side of (16) as a sum of three terms
raised to the nth power, and expand it by the multinomial expansion, we observe that
whenever (vz2 - 1)< appears in a term in the first expansion, then (-1)X(/z2 - 1)k

appears at the corresponding place in the second expansion. Thus Tga) (z) is a
polynomial in E, , and since it is continuous in the plane, it is a polynomial.



422 J. L. ULLMAN

We are interested in the polynomial part of the Laurent expansion about infinity
of the first term in the right-hand side of (16). The Laurent expansion about infinity
of the second term begins with a™ and is followed by negative powers of z, since the
function is regular at infinity and has the value a® at infinity. The third term cancels
the a™. Thus the polynomial part of the Laurent expansion about infinity of the first
term and of the sum of the three terms is the same, and is equal to the left-hand side
of (16).

To complete the proof we shall use Lemma 2 and show that the zeros of T(a)(z)
are real for -1/4 < a < 1/4.

We first note that for a = 0, Tga) (z) is precisely the Tchebycheff polynomia] of
degree n, normalized to be monic. The zeros are known to be real. Thus the result
of Hermite mentioned in the introduction is proved.

In the general case our procedure will be to show that T(a) (cos 6) vanishes for
n distinct values of 6 in the interval [0, 7]. Since to each of these values there

corresponds a different value of cos 0, it will follow that T a) (z) has n distinct
zeros, and since the polynomial is of degree n, that all its zeros are real.

From (16) we see that
n 7 n
(17) T(2) (cos 6) = (%+a) +(—‘2l+a) - an,

where w = cos 0 +1isin 6. Thus

n
(18) Tﬁ;’") (cos ) = 2% (—2“1+a) -a" = 2a™( R (aw+ 1)" - 1/2),
where A = 1/2a.

The case a = 0 has already been considered. Thus we must deal with the cases
A 2> 2 and A < 2. Suppose first that A > 2. As 6 goes from 0 to 7, the point
Aw + 1 describes the upper half of the circle with center 1 and radius A. Since

Aaw+ 1] >a-1>1,

this semicircle lies entirely in the domain ]z] > 1, 3z > 0, except for its endpoints.
Let z(6) = Aw+ 1. Then the principal argument Arg z(6) is a continuous function of
6 on [0, 7], and Arg z(0) =0, Arg z(m) = 7. Thus there exist points {6;}
(i=1, -+, n) in [0, 7] suchthat 0= 6y < §; < --- < 6, =7 and such that

Arg z(6y) = ka/n  (k=0, 1, -, n).
Since |z(8)| > 1 for 6 in [0, ], it follows that

(28 )™ = yi-1  (k=0,1, ", n),

where vy, is real, positive, and not less than one. Since 9z(0) is a continuous func-
tion, there are values {Hk} (k =1, --, n) such that

0, < 0F <6, and RNz(6) =1/2 (k=1,--,n).

From (18) we see, on recalling the definition of z(6), that Tga) (cos 61’:) = 0. Thus
T{2)(z) has n real zeros {cos 6}} (k=1, ---, n), and by Lemma 2, these are
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solutions of equations (15). Entirely similar considerations hold for -1/4 <a <0,
which corresponds to the case XA < -2. Thus the proof of Lemma 4 is complete.
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