NONHOMOGENEOUS DIFFERENTIAL OPERATORS

Allan M. Krall

1. INTRODUCTION

Let P = (pij) be an n-by-n matrix whose elements are real-valued and continu-
ous on a finite interval [a, b]. Differential operators of the form LY =Y'+ PY,
where Y is an n-by-n matrix, were first seriously studied by Birkhoff and Langer
[1], who considered a system consisting of the differential operator LY = Y' + PY
and a boundary condition of the form U(Y) = AY(a)+ BY(b) = 0, where A and B are
nonsingular n-by-n maftrices.

W. M. Whyburn discussed systems of the form
b

LY = 0, AY(a) + BY(b) + S F(x) Y(x)dx = 0,
a

where F is an integrable matrix. He defined an adjoint system whose existence
depends on the existence of a solution to Z' - ZP = F that is nonsingular over [a, b]
(see [9, pages 53-54]).

R. H. Cole [3] succeeded in defining an adjoint system whose existence depends
only on A and B. This system is a slight generalization of the problem discussed
by Whyburn. The adjoint, however, is no longer a differential system.

The present paper generalizes the system discussed by Whyburn, but in a differ-
ent direction. We shall now show that if A, B, C, D are constant matrices and K;
and K, are integrable matrices, then the existence of our adjoint to the system

MY = LY + K,(x)[CY(a) + DY(b)] = O,
b
H(Y) = AY(a) + BY(b)+S K, (x)Y(x)dx = 0

depends only on A, B, C, and D; moreover, if the adjoint system exists, it has the
same form. We shall show that if the system is incompatible, then the nonhomo-
geneous system MY = F, H(Y) = 0 has a solution of the form

b .
Y(x) = S G(x, t)F(t) dt,

where G(x, t) is a formal solution of the system MY = 0, H(Y) = 0, for x #t.

If both the system MY = 0, H(Y) = 0 and its adjoint are incompatible, the Green’s
function for the adjoint system is - G(t, x). However, if MY = 0, H(Y) = 0 is incom-
patible, it is possible under certain conditions for the adjoint system to be compat-
ible, a situation that does not occur for ordinary differential systems.
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Nonhomogeneous operators such as M have recently been found to be the adjoints
in Hilbert space of differential operators under general boundary conditions (see [4],
[5], [6], and ['7]). Nersesjan [8] has discussed nonhomogeneous operators in the case
where n = 1.

2. GREEN’S FORMULA

The key in finding adjoint systems is Green’s formula. Since Green’s formula
for matrices does not seem to be in the literature in the form we need, we discuss it
briefly.

Let U;(Y) = AY(a) + BY(b) and U,(Y) = CY(a) + DY(b) be two boundary opera-
tors, where A, B, C, and D are constant matrices. We wish to find boundary condi-
tions V;(Z) and V,(Z) such that Green’s formula can be written

Sb [Z(LY) + (L*2)Y]dx = V (Z)U(Y) + V,(Z)U,(Y).

a

If welet V1(A)=Z(@)E+ Z(b) F, V,(Z) = Z(a) G + Z(b) H, then insertion in Green’s
formula yields the following four equations for E, F, G, H.

EA+GC = -I, FB+HD =1, EB+GD =0, FA+HC = 0.

When these can be solved for E, F, G, H, Green’s formula can be written in the de-
sired form. We state sufficient conditions for the existence of a solution, formulate
the result, and leave the proof to the reader.

THEOREM 2.1. Let U,(Y) = AY(a) + BY(b), U,(Y) = CY(a) + DY(b).
(1) If A-! and (CA-1B - D)-! exist, let

v(z)=2@) A" +A'B(caA'B-D)'ca ']+ zm) [(ca~'B-D)tca ],
v,(Z) = Z(@a) [-A"'B(cA™'B - D)"']+ Z(b) [-(CA™'B - D) '].
(ii) If B-! and (DB-'A - C)~! exist, let
v ,(2) = 2(a) [-(DB'A - ©)"'DB ']+ 2(b) [B~! - B~ A(DB A - c) ‘b1,
V,(Z) = Z() [(0B'A - ©) ]+ 2zm) [B-'A(B A - 0)7'].
(iii) If C-! and (AC-1D - B)-! exist, let
v,(A) = z@) [-c"'D(ac'D - B) ']+ z(v) [-(Ac"'D - B) 1],
v,(z) = z@ [-c"'+c'pac™'D - B) 'ac ] + zw)[(ac D - B) tACT].

(iv) If D! and (BD1C - A)~! exist, let
v.(Z) = Z(a) [(BD ! C - A)"1]+ z(m) [D-'c(BD 'C - A)"1],

V,(Z) = Z(a) [-(BD'C - A)'BD 1+ Z(b) [P - p-lc@mplc-a)'Bp .
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If the hypotheses of (i), (ii), (iii), or (iv) are satisfied, then
b
S [Z(LY) + (L* Z)Y]dx = V(Z)U(Y) + V,(Z)U,(Y).

It is easy to verify that if the hypotheses of any two of (i), (ii), (iii), and (iv) are
satisfied, the expressions for V(Z) and V,(Z) are equivalent. The usual adjoint
boundary conditions are thus well defined.

3. NONHOMOGENEOUS DIFFERENTIAL OPERATORS

Throughout the remainder of this paper we shall assume that the hypothesis of at
least one of (i), (ii), (iii), and (iv) of Theorem 2.1 is satisfied.

Definition. Let
b
MY = LY +K,(x)U(Y), H¥) = UM+ | K 0Y@ax,
a
where K,(x) and K,(x) denote n-by-n matrices whose elements are integrable over
[a, b]. We consider the system

S: MY = 0, H(Y) = 0.

Definition. If

M*Z = L*¥XZ + Vi(Z)K,(x) and J(Z) = V,(Z)+ Sb Z(x)K, (x) dx,

then
s*: M*z =0, J(Z) = 0

is said to be adjoint to S.

We see that Green’s formula now yields

b
§ [Z(MY) + (M* Z2)Y]dx = V(Z)H(Y) + J(Z) U,(Y)

a

for all differentiable Y and Z.

Let Yy (x) satisfy LY, =0, |Y,(x)| #0 on [a, b]; let Z,(x) satisfy
L*Z, =0, Z, (%)Y (x) =1 on [a, b]; and let

%Yh(x)Zh(t) for t < x,

Go(x, t) =

-%Yh(x) Z,(t) for t>x.
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It is easy to see that if C; and C, are constant matrices, then

Y(x)

]

b
Y, (x)C, - (Sa G, (%, t)KZ(t)dt) UL(Y),

Z(t)

b
C, Yi(x) - V(2) S K, (t) Gy(t, x)dt

formally satisfy MY = 0 and M* Z = 0, whatever the values C;, U,(Y), C,, V1(Z).
LEMMA 3.1.' If |U,(Yy)| # 0, then for arbitvary U,(Y)

1 b b
Y(x) = | Y, (x) U, (%) {I+UZ(S Go(x, t)KZ(t)dt)}— {7 aotx, R, at |U,0).

Proof. Apply U, to Y(x) and solve for C;. Note that U,(Y) can be chosen
arbitrary. By Y (x) we shall denote the solution of MY = 0 satisfying the condition
U, (Y,)=1.

2\ 1o

THEOREM 3.2. If 'UZ(Yh)| # 0, then S is compatible if and only if IH(YO)] = 0.

Proof. I S is compatible, we see from Lemma 3.1 that H(Y) = H(Yy) U,(Y) = 0.
1|& neceslsary and sufficient condition that this be true without U,(Y) = 0 is that
H(Y | = 0.

COROLLARY. If Ky(x) = 0, then S is compatible if and only if IH(Yh)| = 0.
It is easy to see that if K,(x) = 0, then U, can be chosen so that IUZ(Yh)l + 0.
LEMMA 3.3. If lVl(Zh)l # 0, then for arbitrary V,(Z),

b 1 b
7.(x) = VI(Z)[{I+V1(S K, (t) Gyt x)dt)} V(Z) 2, () - 5 K, (£) Gylt, x)dt] .

Proof. Apply V) to Z(x) and solve for C,. By Zg(x) we denote the solution
satisfying the condition V;(Z,) = 1.

THEOREM 3.4. If |V(Z,)] #0, then S* is compatible if and only if
|3(zy)| = o.

The proof is similar to that of Theorem 3.2.

COROLLARY. If K(x) = 0, then S* is compatible if and only if |J(Zy)| = 0.

Again it is easy to see that V; can be chosen so that |V1(Zh)| # 0.

THEOREM 3.5. If |U,(Yy,)| # 0 and |V (Z,)| # 0, then S is compatible if and
only if S* is compatible.

Proof. ¥ S is compatible, then Green’s formula applied to Yy(x) and Z (x)
gives H(Y,) +J(Z,) = 0. Thus 0= |H(Y,)| = - |3(Z,)|, and S* is compatible.
Symmetry completes the argument,
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4. THE NONHOMOGENEOUS GREEN’S MATRICES
In the event S, S* are incompatible, it is possible to find solutions for systems
NH: MY = F, H(Y) = 0,
NH*: M*Z =K, J(Z)=0.

THEOREM 4.1. If S is incompatible and |U,(Y,)| # 0, then NH is compatible.
If

G(x, t) = Yo(x)H(Y,) " H(Y,) U,(¥,) " U,(G(x, t)
- Yo H(Y) "t H(Gy(x, 1) - Y, (x) U,(¥,) 7  U,(Gy(x, 1) + Gy(x, 1),

whevre H(Go(x, t)) and U, (GO (%, t)) are computed with t fixed, then
b
Y(x) = S G(x, t) F(t) dt
a

satisfies NH.
Proof. As before, the function

b b
Y(x) = ¥, (x)Cy - ‘S‘ Gy(x, t)K, (t)dt U,(Y) + S Gy (x, t) F(t)dt
a a
formally satisfies MY = F. To find C; and U,(Y), we note that

U,(Y) = U,(¥,,)C; - U, (Sb Gy (x, t)KZ(t)dt> U,(Y) + UZ(SbGO(x, t) F(t)dt).

Thus, if |U,(Y;)| #0, then

b
c, = Uy(y)™" [1 +U, (S Go(x, t)K, (t) dt)] U,(Y)

-1 b
- U, (%) UZ(S Gy, t)F(t)dt)

and

-1 b b
Y(x) = Y, (x) U, (¥) - Y, (x)U,(Y,) UZ(S G, (x, t) F(t)dt) + ey F@at.

To find U, (Y), we use the boundary condition H(Y) = 0. It implies that
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1 b b
0 = H(Yy) U, (Y) - H(Y},) U,(Y,) " Uy (S Go(x, t) F(t)dt) + H(S Gy(x, t) F(t) dt).

Since S is incompatible. IH(YO)I #0,

-1 -1 b
U,(Y) = H(Y,) L H(Y,) U,(%,) ' U, (S Gy(x, 1) F(t)dt)

b
- H(y,) ! H<5 G,(x, t) F(t) dt) ,
and

b
Y(x) = YO(X)H(YO)'IH(Yh)UZ(Yh)‘IUZ(S Gy, t) F(t)dt)
-1 b
- Yo (x)H(Y,) H(S Gy (x, t) F(t) dt)

1 b b
- Y, (U, (Y,) ' U, ( § e, t)F(t)dt)+ § o F@at .

b
If we write Y(x) = S G(x, t) F(t)dt, then G(x, t) has the form written in the state-
a

ment of Theorem 4.1.

The Green’s function for NH* is found in a similar manner, provided S* is in-
compatible and |V;(Z;)| # 0. We find that the function Z(x) = Sb K(t) G*(x, t)dt
satisfies the system NH* when )

G¥(x, t) = V,(Gy(t, X))V (Z) "  T(Z) I(Zy) " Zy(x)

- J(Gy(t, x))J(ZO)"1 Zo(x) - V1(Goft, x))Vl(Zh)”1 Z1,(x) + Gyft, x).

Again, V1(Gy(t, x)) and J(Gg(t, x)) are computed with t fixed.
It is easy to show that G(x, t) has the following properties.

(i) Forall x,t (@a<x<b, a<t<b) except x=t, G(x, t) is continuous in
both x and t. Further, G(x, x - 0) - G(x, x+ 0) = L.

(ii) MG(x, t) = 0 for fixed T except when x =1t.
(iii) H(G(x, t)) = 0 for fixed t.
(iv) G(x, t) is unique and is completely determined by (i), (ii), and (iii).

THEOREM 4.2. If |Ux(Yn)| #0, |V1(Zn)] #0, and S and S* are incompatible,
then G(x, t) and G*(x, t), associated with NH and NH*, respectively, satisfy
G(x, t) + G*(, x) = 0.
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Proof. For any continuous functions F and K, write
b b
ve) = {6t OFHa  and 7 = | KOG Dt
a a

then MY = F, H(Y) = 0 and M*Z =K, J(Z) = 0. Inserting these in Green’s formula,
we have the relation

b ~b -
S j K(x) [G*(t, x) + G(x, t)]| F(t)dtdx = 0

for all K and F. Since K and F can be any continuous functions, the result follows.
For a more detailed argument of this last step, see Birkhoff and Langer [1, page 69].

When K2 =0, the choice of U,(Y) is more or less arbitrary. That is to say,
when |A| # 0; the choice C = 0, D = I gives a suitable adjoint system. When
IBI # 0; the choice C = -1, D = 0 gives a suitable adjoint system. In either case,
any adjoint system compatible with Section 2 is equivalent to these when they are
defined.

5. INDETERMINATE CASES

In the preceding two sections, the fundamental assumptions |U,(Yy)| # 0,

|V1(Zh)[ # 0 were usually made. We now show that frequently if one of these deter-
minants vanishes, the other does also.

THEOREM 5.1, If one of the conditions
G A™Y, ¢t ana (CA'B - D) ! exist,
(ii) B!, D!, and (DB 1A - C)-! exist,
(iii) c-1 R (AC"1 D - B)! exist,
(iv) D!, (BD ' C - A) ! exist
holds, then |Up(Yy)| # 0 if and only if |V(Z3)] # 0.

We note from Green’s formula (Section 2) that
in case (i), CY, (a)V,(z,)AC 1 (CA™!B - D)V, (b) = U,(Y,),
in case (ii), DY, (b)V,(Z,)BD ' (DB ' A - 0)Y,(a) = -U,(Y),

in case (iii), CY,(a)V,(Z,)(AC™'D - B)Y, (b) = -U,(Y,),

in case (iv), DY(b)V,(Z,)(BD ' C - A)Y,(a) = U,(Y,).

The trouble that arises when these determinants vanish is indeed fundamental in
the preceeding sections. It is impossible to find C; in Y(x) and C, in Z(x) by the
prescribed method. However, under various circumstances it is possible to proceed.
It

@ |H(Y)| #0,
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# 0, or

b
(i) | 1+ U, (S Gy (x, t)Kz(t)dt)

b
(iii) H(S Gy (x, t)Kz(t)dt)

it is possible to determine whether or not S is compatible, and (in the incompatible
case) to determine the Green’s function.

£ 0

’

Similarly, if
(iv) |3(Z,)] #0,

b
(v) |1+, (S K, () G, (t, x)dt>

b
(vi) J(§ K 1(t) Goft, x)dt)

it is possible to do the same for S*. These conditions seem to be independent, un-
like the previous situation.

#0, or

+ 0,

It IH(Yh)| # 0, we solve for C; by applying H to both sides of the equation
preceding Lemma 3.1 and then applying U, .

b

|I+0, (S Go(x, t)KZ(t) dt)
a

Then H is applied.

b
I H(S Gy (x, t)KZ(t)dt)

applied.

# 0, we apply U, and solve for U,(Y) first.

# 0, we apply H and solve for U,(Y). Then U, is

The cases (iv), (v), and (vi) can be handled similarly.

In each of these cases, if the systems are incompatible, then the corresponding
nonhomogeneous systems can be solved by the same procedure. In each case a
Green’s function can be found.

When it exists, the Green’s function for NH satisfies conditions (i), (ii), (iii), and
(iv) listed for G(x, t).

If both NH and NH* are compatible, then the corresponding Green’s functions
satisfy the property listed in Theorem 4.2,
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