AN EXTENSION OF LYAPUNOV’S DIRECT METHOD
Nam P. Bhatia and V. Lakshmikantham

1. INTRODUCTION

Corduneanu [ 3] and Antosiewicz [1] observed that the direct method of Lyapunov
depends basically on the fact that a function m(t) satisfying the inequality
m(t) < w(t, m(t)) (m(to) < rg) is majorized by the maximal solution of the scalar
differential equation t = w(t, r), r(tg) = rg. Lakshmikantham [4, 5] and others have
made consistent use of this remark to extend the direct method of Lyapunov to var-
ious stability and boundedness problems.

Stability and boundedness are almost exclusively defined in terms of a distance
from a given point. However, Ling [6] defined stability with respect to a manifold.
In this paper we define stability and boundedness with respect to a manifold in a way
more general than that of Ling, Then, by comparison with a scalar differential equa-
tion (as in previous papers of Lakshmikantham), we obtain theorems of boundedness
and stability with respect to a manifold.

2. NOTATION AND DEFINITIONS

Let I denote the half-line 0 <t <+, and let R® denote n-dimensional real
euclidean space. We consider the system

(2.1) X = (t, x), =x(tg) = xg (tg>0),

where x and f are n-vectors, where the function f(t, x) is defined and continuous
on the product space I X R™, and where (") = d/dt.

Let g be a k-dimensional vector (k < n), and suppose that the function g(t, x) is
defined and continuous on the product space I X R®. For each t € I let the set of
points x satisfying the relation

(2.2) g(t, x) = 0
define an (n - k)-manifold M(n - k).
Define | g(t, x)|* = El;l gZ(t, x). For each t € I denote the sets
{x: "g(t, x)|| <} and {x: ”g(t, x)" < n}

by Mn - k)(n) and Mn - k) (), respectively. Suppose that x(t) is any solution of
the system (2.1).

In order to unify our results on stability and boundedness of the system (2.1) with
respect to functions g satisfying (2.2), we list the following conditions:
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(2.3) There exists a positive function & = &(tgy, n) (tg > 0, n> 0), continuous in
to for each 7, such that

X9 € My(n -k)(8) implies x(t) € M(n - k) (n) for t > tq,
(2.4) the function & is (2.3) is independent of tg,

(2.5) for eache >0, @ >0, tg > 0, there exists a positive number T = T(tg, &, @)
such that

Xg € Mto(n - k) (@) implies x(t) € Myn - k)(g) for t > to+ T,
(2.6) the number T in (2.5) is independent of tg,

(2.7) for each a > 0 and tg > 0, there exists a positive function B8 = B(tg, @), con-
tinuous in ty for each «, such that

Xy € Mto(n -k)(o) implies x(t) € Myn - k)(B8) for t >ty ,

(2.8) the function 8 in (2.7) is independent of tg,

(2.9) for each a > 0 and t, > 0 there exist positive numbers T = T(t o) and
0 < 0>
N = N(ty) such that

Xqg € Mto(n - k) (@) implies x(t) € My(n - k) (N) for t >to+ T,

(2.10) the numbers N and T in (2.9) are independent of tg.

Remark 2.1. Clearly if condition (2.3) is satisfied, then x € Mto(n - k) implies

that x(t) € M(n - k) for t > tg. Thus the subset {(t, x): t >0, x € Myn - k)} of
I X R™ is a positively invariant set of the system (2.1).

Remark 2.2. I n=k and g(t, Xx) = X, our conditions are reduced to ordinary
stability of an equilibrium point (the origin).

Remark 2.3. The conditions introduced by Ling [6] correspond to our conditions
(2.4) and (2.6), when g(t, x) is independent of t.

Remark 2.4, Condition (2.3) can also be formulated as follows:

(2.3)' for each 5 > 0 and tg > 0, there exists a positive function 6(ty, ), con-
tinuous in ty for each 7, such that

letty, xg)| < 6  implies lett, xt)|| < n for t>ty.

One may similarly reformulate the remaining conditions (2.4) to (2.10).

3. THE BASIC LEMMAS

Our results on stability and boundedness depend on two lemmas proved else-
where [4], [5]. We shall state them here in a suitable form.
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Let the function V(t, x) > 0 be defined and continuous on the product space
Ix R™. Suppose that for each t € I, V(t, x) = 0 if x € M(n - k). Let V(t, x) satisfy
a local Lipschitz condition in x. Define the function

(3.1) V* = V*(t, x) = lim sup = [V(t + h, x + hi(t, %)) - V(t, %)].

h— 0+ h

Let RY denote the interval [0, + ).

LEMMA 3.1. Let the function w(t, r) be defined and continuous on I X R*,
Suppose further that the function V*(t, x) of (8.1) satisfies the condition

(3.2) V@, x) < wit, V(t, x)).
Let r(t) be the maximal solution of the scalay differential equation
(3.3) r = wl,r), rty) =rg,

existing to the vight of tog. If x(t) is any solution of (2.1) such that

(3.4) V(to, Xo) _<_ Tg,
then
(3.5) V(t, x(t)) < r(t) for t > t .

LEMMA 3.2. Suppose that the assumptions of Lemma 3.1 hold, except that con-
dition (3.2) is veplaced by

(3.6) A(t) VX(t, x) + AX(t) V(t, x) < w(t, A(t) V(t, %)),

wheve the function A(t) is defined, continuous, and positive on 1, and where

A*(t) = lim sup % [A(t + h) - A(D)].
h—0+
Then the condition
(3.7) Alty) Vity, x9) < rg
implies that
(3.8) Alt)V(t, x(t)) < r(t) fort > tg.

Henceforth we assume that the solutions r(t) of (3.3) are nonnegative for t > tg,
so as to ensure that w(t, r(t)) is defined. Such a requirement is clearly satisfied if
we assume that w(t, 0) = 0 for t > 0.

Remark 3.1. Corresponding to condition (2.3), we say that the differential equa-
tion (3.3) has the property (2.3s) provided the following condition is satisfied:

(2.3s) There exists a positive function & = 6(ty, n) (tg > 0, n > 0), continuous in
to for each 75, such that r(t) <7 for t > t; whenever ry < 6.
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Conditions (2.4) to (2.10) may similarly be reformulated into conditions (2.4s) to
(2.10s) for the differential equation (3.3).
4. THE V-FUNCTION
In order to formulate theorems on stability and boundedness defined by conditions
(2.3) to (2.10) for the system (2.1), we shall require the function V(t, x) of Section 3

to satisiy one or more of the following conditions:

(4.1) There exist two continuous strictly increasing functions a(r) and b(r) de-
fined for r > 0, and a positive continuous function y(t) > 1, defined for t > 0,

such that
a(flet, ) < v, x) < vt)b(|lgt, x)||), a(0) = b(0) = 0,
(4.2) y(t) =1 in (4.1),
(4.3) afr) = +o as r — o,

Remark 4.1. We recall that a continuous function V{t, x) with V(t, 0) = 0 for
t > 0 is positive definite if and only if a( ||x||) < V(t, x), where a(r) is a strictly in-
creasing continuous function and a(0) = 0. We see that in this case V(t, x) also
satisfies an inequality V(t, x) < p(t)b( ||x|| ), where y(t) and b(r) are as defined in
(4.1). This becomes clear if we set

y(t) = sup V({, x)+1 and b(r) = sup Yi%gz
Il <t tlslo Y
=<~

In the simple case g(t, x) = x, (4.1) is thus equivalent to the statement that V(t, x) is
positive definite. We remark further that in our general case the condition
a(||g(t, x)||) < V(t, x) does not necessarily imply (4.1).

5. STABILITY AND BOUNDEDNESS THEOREMS

We now state our main results.

THEOREM 5.1. Let the assumptions of Lemma 3.1 hold, together with (4.1), and
let the diffevential equation (3.3) satisfy (2.3s) or (2.58); then the system (2.1)
satisifes the covvesponding condition (2.3) or (2.5).

THEOREM 5.2. Let the assumptions of Lemma 3.1 hold, together with (4.2),
and let the diffevential equation (3.3) satisfy one of the conditions (2.3s), (2.4s),
(2.5s), and (2.6s); then the system (2.1) satisfies the corresponding one of the con-
ditions (2.3), (2.4), (2.5), and (2.6).

THEOREM 5.3. Let the assumptions of Lemma 3.1 hold, togethey with (4.1)
and (4.3), and let the diffevential equation (3.3) satisfy condition (2.78) or (2.9s);
then the system (2.1) satisfies the corvesponding condition (2.7) or (2.9).

THEOREM 5.4. Let the assumptions of Lemma 3.1 hold, together with (4.2)
and (4.3), and let the diffevential equation (3.3) satisfy one of the conditions (2.7s),
(2.8s), (2.9s), and (2.10s); then the system (2.1) satisfies the covvesponding one of
the conditions (2.7), (2.8), (2.9), and (2.10).
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THEOREM 5.5. Let the assumptions of Lemma 3.2 hold, together with (4.1);
Juvther let A(t) — + as t — +«, and let the diffevential equation (3.3) satisfy con-
dition (2.3s); then the system (2.1) salisfies conditions (2.3) and (2.5).

THEOREM 5.6. Let the assumptions of Lemma 3.2 hold, together with (4.1)
and (4.3), let A(t) — « as t — =, and let the diffevential equation (3.3) satisfy (2.7s);
then the system (2.1) satisfies conditions (2.7) and (2.9).

If a(r) and b(r) are defined as in (4.1), we shall denote their inverse functions by
a-l(r) and b-1(r). Note that they are continuous and strictly increasing, and that
a~1(0) =b-1(0) = 0.

Proof of Theovem 5.1. Suppose first that the scalar differential equation (3.3)
satisfies (2.3s). For any solution x(t), x(tg) = xq, of the system (2.1), (3.4) implies
(3.5) by Lemma 3.1. If V satisfies (4.1), then (3.4) holds if

Yt b([elty, xo) ) < zq.
Setting now ry = 6(ty, 1), we see that
vt b(llalty, xo)[|) < 6(ty, n)
implies
a(flet, x®)|) < v, x(t)) < rlt) <7y  for t > tg.

In other words

RYALTIE D,
(5.1) letty, x| < b7 (__7%?6)_)
implies
(5.2) lett, xen]| < a-n).

If for any n* > 0 and t; > 0 we set
n = a@m*) and  6¥(ty, n*) = b [8(ty, n)/v(ty)],

we can conclude that the system (2.1) satisfies (2.3).

Now suppose that the scalar differential equation (3.3) satisfies (2.5s). For any
solution x(t), x(ty) = xq, of the system (2.1) we notice that (3.4) implies (3.5). If V
satisfies (4.1), then (3.4) is indeed satisfied if

vtg) b(|glty, xo) ) < 1g.
Setting o = r(, we see that
vitg)b(|lelty , xp)|) < @  implies  a(]|glt, xt)]]) < V(t, x(t)) < rt) < e
for t >ty + T(ty, €, @). In other words,
(5.3) lett, , x) < b~ a/r(ty)]

implies
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(5.4) let, x®)|| < a-l(e) for t>ty+ Tlty, €, ).
We see now that for any ¢* > 0, a* > 0, and ty > 0, we can set
e = a(e*), a = y(tg)b(ax*), T*(tg, €%, a*) = T(ty, &, @)

to conclude that the system (2.1) satisfies (2.5). This completes the proof of the
theorem.,

Proof of Theovem 5.2. The proof of this theorem is entirely analogous to that
of Theorem 5.1. One needs to set y(tg) =1 and to observe that if the differential
equation (3.3) satisfies (2.4s) or (2.6s), the functions 6* and T*, are, respectively,
independent of tg.

Proof of Theorem 5.3. Suppose first that the scalar differential equation (3.3)
satisfies (2.7s). Condition (3.4) implies (3.5) by Lemma 3.1, and if V satisfies (4.1),
then (3.4) holds whenever

v(to)b(|lglto, x0)|) < ro.
Setting ry = a, we see that
y(te)b([lglty, X)) < @ implies a(]glt, x(t)[) < V(t, x(t)) < r(t) <B(ty, @)

for t > ty. In other words,

(5.5) letto, x)l < b7 [a/y(ty)]
implies
(5.6) let, xt)|| < a8y, @) for t>tg.

If now a* > 0 and t; > 0, we need only set
@ = y(tg)b(a*) and By, a¥) = a~l(Blty, @)

to see that the system (2.1) satisfies (2.7) if (4.3) holds. Note that we require the
condition (4.3) to ensure that a* — © as a — o, )

Suppose now that the differential equation (3.3) satisfies (2.9s). Again (3.4) im-
plies (3.5) by Lemma 3.1, and if V satisfies (4.1), then (3.4) holds if

ytg) b(|lelty, %)) < rg.
Setting r, = a, we then conclude that
y(tg)b(|lelty , %0)||) < @ implies a(|gt, xt)[) < V(t, x(t)) < rt) < N(tp)
for t >ty + T(ty,, @). In other words,
(5.7) lelty, %) < b1 La/v(ty)]
implies

(5.8) lett, x@)| < at(N(,) for t > t,+ T(ty, ).
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Given any ao* > 0 and ty > 0, we need only set
a = yltg)b(a*), N*(tg) = a~!(N(to)), T*(tg, a*) = T(tg, @)
to note that the system (2.1) satisfies (2.9) provided (4.3) holds. The last require-

ment is needed to ensure that @ — « as a* — «, This completes the proof of
Theorem 5.3.

Proof of Theorem 5.4. The proof of this theorem is analogous to that of Theo-
rem 5.3. One need only set y(tg) =1 and observe that g*, T* and N* are inde-
pendent of t; if (3.3) satisfies one of the conditions (2.8) and (2 10).

Proof of Theorem 5.5. Let m = 1nft> 0 A(t). Then m > 0, by our assumptions
on A(t). If V satisfies (4.1), then

(5.9)  ma(|et, 9[) < A®a(fe, »|) < AW VE, x) < AD)YE)b(]|gt, 2)).

Let now (3.3) satisfy (2.3s), and let Lemma 3.2 hold, so that (3.7) implies (3.8).
Condition (3.7) will be satisfied if we require that

Altg)y(to)b(lietty, xp)|) < rq.
Setting now ry = 6(ty, 1), we see that because of (5.9) the condition
Altg)v(ty) b(|letty, xp)l)) < 6(tg, 1)
implies
ma([g(t, ) [) < A®a(]et, xt)]) < AWM V(E, x@) < rt) < 7

for t > ty. In other words

(5.10) lety, x|l < b6, n)/Alty)¥(ty)]
implies

(5.11) lett, )| < a-l(n/m) for t > t,
and

(5.12) lett, xt)|| < alm/A®) for t > t,.

Given now any n* > 0 and ty > 0, we set

7 = ma(n*) and O*(ty, n*) = p~! [6(tgy, n)/Altg)v(ty)]

in (5.10) and (5.11), to see that the system (2.1) satisfies (2.3). Again, given o > 0
€ >0, and ty > 0, we see that n > 0 can be fixed so that

b

a = b Ha(ty, n)/Altg)r(ty)].
Since n/A(t) — 0 as t — =, one can choose T = T(n, €) so that

” g(t, x(t)) || <e for t > T(n, &).
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Setting T*(tp, €, @) = T(n, €) - tp and noting that n depends on « and ty, we con-
clude that the system (2.1) satisfies (2.5). The proof of Theorem 5.5 is now com-
plete.

The proof of Theorem 5.6 is similar to the proof of Theorem 5.5, except that one
needs condition (4.3). We leave it to the reader.

Remark 5.1. The functions a(r) and b(r) in conditions (4.1) and (4.2) need only
be assumed nondecreasing and positive for r > 0. Since, however, this implies the
existence of strictly increasing functions satisfying (4.1) and (4.2), the conditions are
not effectively weakened.

Remark 5.2. Theorem 4 in [4] is erroneous. Corrections can be made in the
light of our Theorems 5.1 and 5.2 above. We give a simple example to illustrate our
point:

Example 5.1. Let g(t, x) = %, and consider the scalar differential equation
(5.13) x = [sinlog t -+ cos log t - a]x,
whose general solution is
(5.14) x = xXq exp[t(sin log t - a) - ty(sin log ty - a)].

One can easily verify that if 1 <a <2, then (5.13) satisfies (2.3) but not (2.4).
Choose

V = x% exp[2(a - sin log t)t].

If 1 <a,then V satisfies (4.1) but not (4.2), and V* = 0. The scalar equation r = 0
satisfies (2.4s) and thus also (2.3s). We can conclude from Theorem 5.1 that (5.13)
satisfies (2.3). In fact, Theorem 5.5 is applicable and shows that (5.13) satisfies
(2.3) and (2.5). However, if Lakshmikantham’s Theorem 4 in [4] were applied to this
situation, one would conclude that (5.13) satisfies (2.4), which is not true if

1 < a < Y2, Further, the conditions of Theorems 5 and 6 in [4] are also fulfilled by
our example. If all were well, this would imply that (5.13) satisfies (2.4) and (2.6),
which is not true when 1 < a <2, since in this case (5.13) satisfies only (2.3) and
(2.5). Similar remarks apply to Theorem 3 in [4] and Theorems 4, 5, 6, and 7 in [5].
However, in the light of our present work the formulations and proofs of these
theorems can be corrected.

Remark 5.3. We notice also that the condition A(t) > 1 imposed by Lakshmi-
kantham in his Theorems 5 and 6 in [4] and Theorems 6 and 7 in [5] is not required,
as our theorems 5.5 and 5.6 show.

We now give two applications of our theorems.

Example 5.2. Consider the system
x = x(2+ y)sin t, y = (2ax+ y)sint.
Let g =y® - 4ax and V = g%. Then (4.2) and (4.3) are clearly satisfied, and
V* = 4(y* - 4ax)®sint = 4V sin t.

Taking w(t, r) = 4r sin t, we see that (3.3) satisfies (2.3s) and (2.7s). From Theo-
rems 5.2 and 5.4 we conclude therefore that the system satisfies (2.3) and (2.7).
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Example 5.3. Consider the system
x = -2x[y% - (2 + sin t)x]* - x cos t/(2 + sin t),
y = -yly? - (2 + sin t)x]2.

Let g =y% - (2+sint)x and V = gz, so that (4.2) and (4.3) are satisfied.

A simple calculation shows that V* = -4g% = -4v2, If we set w(t, r) = - 4r?,
we see that (3.3) satisfies (2.4s), (2.6s), (2.8s), and (2.10s). By Theorems 5.2 and
5.4, the system satisfies (2.4), (2.6), (2.8), and (2.10).
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