ASYMPTOTIC VALUES OF FUNCTIONS HOLOMORPHIC
IN THE UNIT DISC

J. E. McMillan

1. INTRODUCTION

This paper was written under the direction of G. R. MacLane, and it is the
author’s Ph.D. thesis at Rice University. Its main result is an extension of theo-
rems of Bagemihl and Seidel [3, Theorem 3] and MacLane [4, Theorem 11] on the
asymptotic values of a function f holomorphic in the unit disc. We say that f has
the asymptotic value a at ¢ ( | ¢ | = 1) if there exists a Jovdan arc that lies in
{Iz[ < 1}, except for the endpoint £, and on which £ has the limit a at €.

MacLane [4] considered the class .« of nonconstant holomorphic functions
having asymptotic values at a dense set of points on {|z| =1}. In particular, he
proved that if f € A and v is an arc of {I])zl = 1}, then eithev f has the asympto-
tic value ~© at a point of v ov f has point asymptotic values at points of a subset of
v of positive Lebesgue measuve. We shall prove a global version of this theorem
without the hypothesis f € . As corollaries we find that f either has the asympto-
tic value e or has point asymptotic values on a set of positive measure, and that an
f with only finitely many tracts for <« must either have only finitely many tracts or
have asymptotic values at points of a set of positive measure (for the definition of
the concept of a tract, see Section 2). Several related results are also obtained.

2. DEFINITIONS

The following notation will be used throughout this paper. Let D= {|z| <1}
and C = {|z| =1}. Let f be a function holomorphic in D. For any subset S of the
sphere, let

A(S) = {t € C: there exists a € S such that f has

the asymptotic value a at ¢ }
In particular, we let
A = A (the sphere), Aeo = A({=}), A* = A -A.

The Lebesgue measure and exterior Lebesgue measure (in [O, 27]) of a subset B of
C will be denoted by m(B) and m.(B). The interior of an arc ¥y C C will be denoted
by ¥°. ¥ A is a plane domain, dA will denote the boundary of A. The closure of a

set S in the plane will be denoted by S. Also, we write
{1£] > 2} = {z: |&=)| > r}.

Let a be a complex number, and suppose that for each € > 0, D(g) is a compo-
nent of {z: |f(z) - a| < £}; suppose further that D(g; ) C D(g;) (g; < &,) and
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ﬂa>0 D(e) = 0. Then the family {D(e)} is a tract (or asymptotic tract) of f for
the value a. We have the analogous definition of tract of f for the value «. The set

K = ﬂ e>0 D(€) is called the end of the tract {D(g)}. The tract is called a point
tract or an arc tract depending on whether K is a point or an arc of C. We say that
the curve described by z(t) (0 <t < 1) belongs to the tract {D(e)} if to each £ > 0
there corresponds a t(g) < 1 such that z(t) € D(¢) whenever t > t(¢). For a discus-
sion of tracts, see MacLane [4].

If T is the curve in D described by z(t) (0 <t <1) and Iz(t)l —1last—1,
then we write T — S ifandonly if S=T N C. ¥ T'U {{} is a Jordan arc (|¢| = 1),
then we say that T' is an arc in D tending to {. If {'yn} is a sequence of curves in
D and y isthearc {elf: 6, <0< 6,} (0<6; <6, < 2r) of C, then we write
¥Yn — ¥ if and only if to each £ > 0 there corresponds an n(e) such that

raC{zi1-e<|z|<1, 0, -e<argz<6, +e}
and
ynﬂ{z:1-8<|z|<1,9i—8<argz<91+a}¢|:| i=1, 2)

whenever n > n(e). For the special case where 6; = 8, this defines the meaning

of the statement y, — eif1 .

3. A PRELIMINARY THEOREM

In this section we extend (by generalizing MacLane’s proof) the theorem of Mac-
Lane [4, Theorem 10] for f € . The measurability of A* is needed in the proof of
Theorem 2.

THEOREM 1. If S is a Bovrel set on the spheve, then A(S) is a Borel set.

Proof. As in the proof of MacLane [4, Theorem 10], it suffices to consider the
two cases where S is closed and bounded and where S = {«}. Suppose first that S
is closed and bounded. For each n> 1, let A(n, 1), ---, A(n, v,) be a finite set of
open discs of radius 4-% that covers S and is not redundant, in the sense that

(3.1) An, k) NS 20 (1 <k<uwy).

Let A*(n, k) be the open disc with radius 2.4~ and the same center as A(n, k).
We suppose that the discs A and A* have been chosen so that their circumferences
contain no projections of the branch points of the Riemann surface & onto which {
maps D. Let D(n, k, p) (p > 1) be the domains in D that correspond to the com-
ponents of & over A(n, k). Then each D(n, k, p) is bounded by level curves, with-
out multiple points, of f - a(n, k), where a(n, k) is the center of A(n, k), and pos-
sibly also by a subset of C. Let E(n, k, p) = C N aD(n, k, p).

Now the set

U = {¢ € C: there exist numbers a, A, and arcs y; C {|f -a| =2}

(3.2) and vy C C such that y; »y and € € 9}

is open. Let P; denote the countable set of endpoints of the components of U. Let
P, denote the countable set of points ¢ € C such that for some (n, k, p) there is a
level curve on the boundary of D(n, k, p) that tends to the point {. Let
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(3.3) E'(n, k, p) = E(n, k, p) - U
and
(3-4-) H(ny k; p) = El(na k; p) - (P]_ U PZ) = E(Il, k: p) - (U U Pl U PZ)-

Then all the sets

Em = U Bk p), #H)= U HN X D),

(k,p) (k,p)
(> o] [~ o]
(3.5) = (1 Bm), #=/[)H
n=1 n=1
are Borel sets. Also,
(3.6) E' = H U {countable set}.

LEMMA 1. The set U N A(S) is countable.

Proof. Since U is covered by the arcs 90 in (3.2), it is covered by a countable
subcollection of these arcs. Thus it suffices to show that if  is one such arc, then
y9 N A(S) contains at most one point. Suppose this were not the case. Choose
£, 8 € 40 and arcs T'; — ¢; such that f — a;on I'; (i=1, 2). We may suppose
that each y, (see (3.2)) crosses both '} and T',. Now choose N > 0 sufficiently

large, and let A be the component of { |f| <N} containing ( U'Yi) Uur,ur,.
Since A is simply connected, it must contain a neighborhood of some interior point
of v. This contradicts a lemma of MacLane [4, Lemma 1] to the effect that level
sets of bounded functions end at points (see [4, p. 8]). Thus Lemma 1 is proved.

Finally, let

(3.7) A'(S) = A(S) - U.
We shall prove that
(3.8) H C AY{S) C E'.

It will then follow from (3.6), (3.7), (3.8), and Lemma 1 that
(3.9) A(S) = H U {countable set } .

Thus, since H is a Borel set, Theorem 1 will have been proved in the first case.

We show first that A(S)C E'. If £ € A'(S), then f - a € S onacurve I' — &,
and £ ¢ U. For each n, a € A(n, k,,) for some k,, the curve T lies eventually in
some D(n, k,, p,), and therefore ¢ € E(n, k,, p,). But £ ¢ U, so that
¢ € E'(n, k,, p,) and ¢ € E'(n) for each n. Thus { € E'.

Now choose { € H. For each n there is a pair (k,, p,) such that

¢ € H(n, k,, py,).

We shall prove that any two of the corresponding sets D(n, k, p) must intersect. Let
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D, = D(n,, knl’ pnl), D, = D(n,, knz’ pnz),

and suppose D; N D, =0. It is easy to see that we may let I'; be a curve (not
necessarily simple) in D; tending to ¢, or an arc y; contammg ¢ (i=1,2). Let T
be a Jordan arc in D joining the loose ends of the I';. Then, since only finitely many
components of 3dD; can meet I, it is clear that one of these components must sepa-
rate I'y and I'; and tend either to an arc y containing ¢ or else to ¢. In the first
case, { € U U P,, and in the second case, { € P,. In either case we have a contra-
diction from (3.4). Thus D; N D, # O and

Alny, knl) N Aln,, knz) # 0.
Thus, from the choice of the radii of the discs A(n, k) and A*(n, k), we see that
(3.10) A*n+ 1,k ) C A*n, k) (0> 1).

Since the diameters of A*(n, k,,) tend to zero, it follows from (3.1) that

(3.11) ﬂmn, k,) = {a} (ae89).

Now let D¥ be the component of {z: f(z) € A*(n, k,)} containing D(n, k,, Pn). Then
from (3.10) we have the relation

(3.12) D¥ ,CcDx (n>1).

Let T™ be a curve that lies eventually in each D} and tends to an arc y* con-
taining ¢, or to {. If T'* — ¢, the relation £ € A'(S) follows from (3.4) and (3.11).
Suppose then that T* — p*, We shall prove that »* C U U P, and contradict the
relation { € H. It suffices to show that at most one interior point of * is not con-
tained in U (we suppose y* # C; modifications for the case y* = C are obvious).

Let §; and £, be two distinct interior points of y*. Choose €3 in the open sub-
arc of y* determined by £; and {,. For each ¢ > 0, let

Ne =DNn{|z-¢&| <e}.

We suppose that ¢ is such that §, £, ¢ {Iz - C3| < g}. Now suppose that
Ng N (dD]) = O for some £. Then N, C D}, and f is bounded in N;. But we can

choose a sequence of arcs y), C IT'* ﬂ Ng such that

v, — (@Ng) N C and max ]f(z) - a| — 0 (n — )
ZEY]

(see (3.11)). This contradicts Koebe’s lemma. Thus, for sufficiently small ¢,
(3.13) N, N (@D}) # O .

Now let K be the (open) sector bounded by the radii R; and R, and the (closed)
arc ' contained in the interior of y* and contamlng £, and ¢, in its interior. We
may choose Jordan arcs y, € I'’* such that y C K, v,4; separates y, from v,
and ¥y n 7v'. Let K, be the subdomain of K lying between ¥, and y,,;. Choose
£, { 0. Using (3.13), we choose



ASYMPTOTIC VALUES OF HOLOMORPHIC FUNCTION 145
z, € Ng_ 0 (2D}).

By extracting subsequences of {zn} and {yn} if necessary, we may suppose

z, € K, (n>1). Now z, is in some component, say C,, of oD}, and since a € A},
for sufficiently large n (n > no), C, cannot intersect y, or y,;;. Thus, since D"f
is simply connected,

C,N(Ry URy)#0O (n>ny).

It follows clearly that some subsequence of {Cn} tends to an arc containing {; or
¢, . Therefore either ¢; or ¢, is in U, hence H C A'(S), and (3.8) is proved. Thus
Theorem 1 has been proved in the case where S is closed and bounded.

Suppose now that S = {~}. Let A, = {|w| > n}, and suppose that the level sets
{|f| =n} bhave no double points. Let D(n, p) (p > 1) be the components of
{z: £(z) € A,}. Let E(n, p) = C N (aD(n, p)), and set

E'(ny p) = E(n: p) - U:
H(n, p) = E(n, p) - (UU P; U P,).

Then, as before, the sets

E'(n) = U E'(n, p) and H(n)= U H(n, p),
p=1 p=1

together with the sets E' and H defined by (3.5), are Borel sets. We shall prove
that

(3.14) HCA(S)CE'.

Then (3.9) and the conclusion of the theorem will follow as before.

The inclusion A(S) C E!' follows easily, as before. We now prove that H C A(S).
Choose ¢ € H. For each n there is a p, such that £ € H(n, p,). Let D, = D(n, pn).
Then with only minor modifications in the previous argument we see that D,+; C D,
(n> 1). Now let T be a curve that is eventually in each D, and tends to an arc y*
containing ¢, or to £. ¥ I'* — {, then ¢ € A(S). Suppose then that I'™* — 3*, Using
an argument of MacLane [4, Theorem 3], we construct a curve tending to ¢ on which
f tends to «. Let {'yn} be a sequence of pairwise disjoint Jordan arcs contained
in T'™* such that Yn —7* (we suppose for simplicity that ¢* # C). Then

inf |f(z)] — © asn — w,
ze'yn

We suppose first that £ € y*0, Let R= {z € D: arg z = arg £} be the radius at ¢.
Since § ¢ U U P, it follows that to each positive integer n there corresponds an
£(n) > 0 such that each component of {|f| =n} meeting RN {|z - ¢| <em)} is
compact. Thus, again since { ¢ U U P;, there exists a curve I',, tending to ¢ such
that T < { |f‘ > n}. We can choose the curves I', so that any two of them inter-
sect arbitrarily near {. It follows that there exists a curve tending to { on which f
tends to . Suppose now that { is an endpoint of y*. Since { ¢ U U P, there
exists a sequence
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{ent cy*0n[c - (Uu Py
such that {, — {. Then there are curves I', — £, on which f — *«, Since each T',
meets all but finitely many of the arcs v,,, it follows that there exists a curve tend-
ing to € on which f — <, Thus the proof of Theorem 1 is complete.

4, THE MAIN THEOREM

We now state the main theorem of this paper.
THEOREM 2. If

(4.1) f has only finitely many tracts for «
and
(4.2) the ends of the arc tracts of £ for « do not cover C,

then m(A*) > 0.

Note that (4.1) and (4.2) imply the existence of an arc of C that meets the end of
no tract of £ for the value .,

Remavrks. The modular function, which maps D onto the universal covering sur-
face of the sphere punctured at the three points 0, 1, and « satisfies (4.2), but not
(4.1), and it has point asymptotic values at only countably many points of C. Exam-
ple 1 [see Section 5 for examples], which has only one asymptotic tract, satisfies
(4.1), but not (4.2), and does not satisfy the conclusion of the theorem. Example 4
shows that a local version of Theorem 2 cannot be true. That is, if ¢ is any closed
arc of C not containing the point 1, then the end of each asymptotic tract of f for
the value « has void intersection with 7, and yet AN y = OO. Example 5 shows that
to each & > 0 there corresponds an f satisfying (4.1) and (4.2) for which A* is
contained in an arc of length €.

. Theorem 2 will follow simply from the following lemma.,

LEMMA 2. If {f has only finitely many distinct point tvacts for <« ending at any
one point of C and if there exists a A > 0 such that £ is bounded in some component
of 1|f] > A}, then m(A*) > 0.

Proof. It suffices to consider the case

(4.3) lim s‘up |f(z)| = (each € € C).

z—C

Let D* be a component of {|f| > A} in which f is bounded. We may suppose that
the level set {|f| = A} has no double points. Now add to D* the interiors of all
Jordan curves in D¥*, and let Dy be the resulting simply connected domain. Let

I' = (@Dg) N D and F = (@Dg) NC.

Then |f(z)| =X on I and f is bounded in Dy. We suppose 0 € Dy .

Let w(z) be a one-to-one conformal map of Dg onto { |w| < 1} with w(0) =0,
and let z(w) be the inverse map. Then z(w) and f(z(w)) are both bounded in
{ le < 1}, and by Fatou’s theorem they have radial limits almost everywhere. Let
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(4.4) &; = {¢: z(e!?) and £(z(e'?)) both exist}.
Then m(®;) = 27. Since f(z(w)) has a Poisson integral representation in terms of
£(z(ei?)) and |f(z)| > A in D¥*, we know that |f(z(e1¢))| > X for ¢ in a set &, of
positive measure. Let

(4.5) d =3 N &,.

Then m(®) > 0.
Define the curve L(¢) in Dy by

L(¢) = {z(pe!?: 0<p <1} (g€ @).

Then since z(el?) exists (¢ € &), L(¢) ends at a point £(¢); and since
|f(z(e1¢))| > A, €(¢) € F. That is,

(4.6) L(¢) — &(¢p) e F (¢ €).
Now let E = {¢(¢): ¢ € &} and E* = {ei®: ¢ € & }. Then
(4.7) m(E*) > 0.

Now (4.4), (4.5), and (4.6) imply that

(4.8) E C A*,

We shall prove that

(4.9) m(E) > 0.

Then, since the measurability of A* follows from Theorem 1, the conclusion of the
lemma will follow from (4.8).

The set

= {¢ € C: there exist arcs vy, € Dg and y C C

(4.10) such that y, — v and € € ,},O}

is open. Let S denote the countable set of endpoints of the components of U, and let
H=UUS. We now prove that

(4.11) E N H is countable.

It suffices to prove that E N U is countable. Since U is covered by the arcs 'yO
(4.10), it is covered by a countable subcollection of these arcs. Thus it suffices to
show that if y is one of the arcs in (4.10), then E N 9 contains at most one point.
But this follows from the simple connectivity of Dg and (4.3). Thus we have (4.11).

We note next that

(4.12) the correspondence el® — ¢(¢) (p € ®) is finite-to-one.
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Suppose L{(¢;) and L(¢,) (¢;, ¢, € &, ¢; # ¢,) end at . Let A be the interior of
the Jordan curve L(¢;) U L(¢p) U {¢}. A theorem of Lindeldf states that if f is
holomorphic and bounded in A, continuous on L(¢;) U L(¢,) U A, and has limits as

z — £ on L(¢;) and L(¢;), then f is continuous on L(¢;) U L(é,) U A U {¢}. It fol-
lows that ANT # . Since I N (L(¢;) U L(¢)) = O and Dy is simply connected,
some component of I" must be contained in A and tend to £. Thus, since

If(ei¢)| > X (¢ € &), we see that if infinitely many L(¢) ended at the same point ¢,

f would have infinitely many distinct tracts ending at ¢, which implies that f would
have infinitely many distinct tracts for « ending at ¢ (see [4, (2.6)]), contrary to
assumption.

Thus from (4.11) and (4.12) we have the proposition
(4.13) the set {ei?: t(¢) € H} is countable.

Let ET = E* - {e'®: £(¢) € H}. Then (4.7) and (4.13) imply that
(4.14) m(E’i‘) > 0.

Now {|z| =r} - T (0 <r <1) is a finite union of open arcs of {|z| =r} some
of which, say T', ; (i=1, -, n(r)), lie in Dy. Let

wil, ) =v,; (0<r<t i=1 =, n{).

Then v, ; is a Jordan curve or a crosscut in {|w| <1}. Let D_; denote the com-
ponent of Dy N {r < |z| < 1} that has T',,; on its boundary. Note that several of
the I'. may be on the boundary of the same D Let

r,i-
WD, ;) = A,; (0<r<1, i=1, -, n(r).

In order to formulate definition (4.17), we let {y,} be a sequence of the cross-
cuts Yr_ i, such that

(4.15) r, 11
and
the origin and y,;; are contained in different

(4.16) components of { |WI < 1} - %n (n_>_ 1).

Then {y,} tends to a point or an arc of {|w|=1}. Let

(4.17) H* = U {7y (closed arc): there exists {y,} such that y, —y}.
We now prove that

(4.18) E] NH* =0O.

Let e!® ¢ E* N H*. Let y be a (closed) arc containing el® with the property that
there exists a sequence {'yn} of the crosscuts v, ; satisfying (4.15), (4.16), and
n’ n

the relation y, —vy. Let T', = z(y,). It follows from Koebe’s lemma that the lengths
of the I',, are bounded away from zero. Thus some subsequence of {I‘n} tends to
an arc of C. Applying the theorem of Lindeldf, one easily shows that for each n
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neither end of v, is an endpoint of . Thus the radius at el? meets each Yn s 'and
L(¢) meets each I" . Therefore {(¢) € H, and (4.18) is proved.

Let € > 0, and let E% be a closed subset of E¥ such that
(4.19) m(E%) > m(E’{) - €.

Let Q(w) be the harmonic measure in {lwl <1} of E’E, and let w(z) = Q(w(z))
(z € Dy). Then

(4.20) 27w (0) = 272(0) = m(Eg).

Let G be an open subset of C containing E such that

(4.21) m(G) < m.(E)+¢,

and let wl(z) be the harmonic measure in D of G. Let
u(z) = w,(z) - w(z).

It is easy to see that

(4.22) lim inf u(z) > 0 ({ € T U[FnG]).
z—
z€ Dg

Suppose now that £ € F N (C - G). In order to prove that

(4.23) liminfu(z) > 0 (e Fn[C-G]),
z—E .
zEDO

it suffices to show that

(4.24) lim w(z) =0 (e FN[C-G]).
z—C
ZEDO

Now let { zn} be any sequence of points in Dy such that z, — §, and choose
0<r,T1. To prove (4.24), it is sufficient to construct a subsequence of {zn} on
which w tends to zero. Now, for any 0 < r < 1, there are only finitely many com-
ponents of {r < |z| <1}t n Dg. Thus we may let D; be a component of
{r; < |z| <1} N D, that contains infinitely many z,, and we may let D, ; be a
component of {rn 1. < z| <1}n Dg contained in D, and containing infinitely many

z,. The sequence {Dn thus defined has the properties

(4.25) D,..; <D, n>1)

and

(4.26) D, contains infinitely many of the z,, (n>1).

Suppose also that T" N {|z| = rl} # 0. Let

w(D,) = A,.
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Then A, is bounded by certain of the crosscuts y, ; and a subset of {|w| =1}.
n’
Let v, be the y_ , that separates A, from the origin. That is, let the origin and
n’

A, be in different components of { |w| < 1} - ¥4 It follows from (4.25) that {7n}
satisfies (4.16). Let I', = z(y,). Using (4.25) and (4.26), we let L. be a curve with
initial point at the origin that is eventually in each D,, passes through infinitely
many of the z,, and has nonvoid intersection with each I",;. Let

w(L) = L*,

The curve L* tends to a point ¢* on an arc * of {|W| = 1}. Suppose first that
L* — ¢*, Then {y,} tends to an arc y** containing y*. From (4.17) and (4.18) we
see that the closed arc y* is contained in one of the components of {|w| =1} - E¥.

Thus  tends to zero on L¥*,

Suppose now that
L* — ¢* = 9,

The curve L tends to a point ' or an arc v of C. -Suppose first that L — . We
wish to prove that £* ¢ Ef. Suppose ¢* € E}. As before, we see that neither end

of ¥, (n>1) can be ¢*. Thus the radius at {* must cross each y,,, and L(¢) must
cross each I',,. Since the connected set

o0
LU(U T,
n=1

tends to an arc y; containing y and {(¢) € v;, and since ¥y C H, we see that the
relation £* € EY has been contradicted. Thus ¢* ¢ E] and © tends to zero on L*.

Suppose finally that L — {'. Since z, — {, we have the relation
(4.27) ¢ =¢e FN(C-G).

Suppose ¢* € E*, If L* crosses the radius at {* in every neighborhood of ¢*, then
¢(¢) = ¢, which contradicts (4.27). Suppose then that in some neighborhood of ¢*,

L* does not meet the radius at £*. Let L** be a simple curve in L* that tends to
¢*. Applying the theorem of Lindelsf again, we see that z(L**) and L(¢) must end
at the same point. Thus £' = £(¢), and (4.27) has been contradicted. Therefore

¢* ¢ E*, and Q tends to zero on L¥*,

Thus in any case Q tends to zero on L*, and w tends to zero on L. Since L
passes through infinitely many of the z,, we see that (4.24) is proved. Now (4.22)
and (4.23) imply
(4.28) w(0) < w,(0).

From (4.19), (4.20), (4.21), and (4.28) we have the inequality
(4.29) m(E]) < m.(E) + 2¢.

Thus, since € is arbitrary, (4.14) and (4.29) imply (4.9) and, as we have seen, the
proof of Lemma 2 is complete.



ASYMPTOTIC VALUES OF HOLOMORPHIC FUNCTION 151
Proof of Theovem 2. Suppose that there exists an f satisfying (4.1), (4.2), and
(4.30) m(A*) = 0.

It follows from (4.1), (4.30), and Lemma 2 that for each A > 0, f is unbounded in
each component of If | > A}. Thus in each such component we can build a tract for
 (see MacLane [4, p. 26]). It follows from (4.1) that for each A > O, theve ave only
finitely many components of {|f| > x}.

Now let ¥ be an arc in C that does not meet the end of any arc tract of f for the
value «. Choose ¢ € 0. Using (4.30), we choose a sequence {z,} (z, — ¢) such
that

If(zn)l — oo,

Let D; be a component of {|f| > 1} containing infinitely many z,. Let D, ,; be a
component of {|f| > n+ 1} that is contained in D,, and contains infinitely many z,,.
The sequence {Dn} thus defined determines a tract for « whose end contains &.
Thus we have a contradiction, and Theorem 2 is proved.

COROLLARY 1. Iff has only finitely many asymptotic tracts, then the ends of
the avc tracts of f for the value «~ covevr C. In particular, if £ has only one tract,
then it is for the value ~, and its end is C.

Rewmavrks. It is well known that every f has at least one asymptotic tract.
Example 1 is an f with only one tract. Example 2 is an f with exactly two tracts,
one of which is a point tract for the value zero.

COROLLARY 2. If f has only finitely many trvacts for «, then eithevr m(A*) > 0
ov f has only finitely many tracts.

Proof. Suppose f has only finitely many tracts for «, m(A*) = 0, and f has in-
finitely many distinct tracts. Applying Theorem 2, we see that the ends of the arc
tracts of £ for « cover C. Let §,;, *--, £, be the finite set of endpoints of the ends
of the arc tracts of f for «. Then the end of each tract of f for a finite value must
contain some ¢; (1 <i< n). Thus, since f has infinitely many tracts for finite
values, infinitely many of the ends of these tracts must contain some fixed {;, say
€; . But this implies that f has infinitely many distinct tracts for « with end con-
taining &;, contrary to the assumption.

COROLLARY 3. If f has no arc tracts and m(A*) = 0, then { has infinitely many
distinct tvacts for .

Remavrks. This behavior is illustrated by the modular function, which has only
countably many tracts (all point tracts), and for which A, is countable and dense.
Indeed, the theorem of MacLane stated in Section 1 implies that if f satisfies the
hypothesis of Corollary 3 and f € ., then A, is dense. Example 4 shows that the
conclusion of Corollary 3 cannot be “A., is dense.” Corollary 3 implies in particu-
lar that if all of the asymptotic tracts of f end at the same point (as in the case in
Example 4), then f has infinitely many distinct tracts for .

The following two theorems are simple consequences of what has already been
proved.

THEOREM 3. If w = {(z) is unbounded and does not have the asymptotic value
o, then for each N> 0

(4.31) m[A({|w] > N})] > o.
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Remark. Example 3 shows that (4.31) does not follow from the assumptions that
f is unbounded and satisfies (4.1) and (4.2).

Proof. Suppose that f satisfies the hypothesis of the theorem. If for any X > N,
f were unbounded in each component of {|f| > 1}, we could build a tract for .
Thus there exists a A > N such that f is bounded in some component of {Ifl > At
It is clear that (4.31) follows from the proof of Lemma 2.

Now let V denote the set of point asymptotic values of f.

THEOREM 4. If f satisfies (4.1)and (4.2), then V contains a closed set of posi-
tive havwmonic measure.

Remark. For a local version of Theorem 4 for f € .« see [4, p. 28].

Proof. A theorem of Priwalow [5, p. 210] states that if a function meromorphic
in D has angular limits on a set F of positive measure, then the set of angular limit
values of f at points of F contains a closed set of positive harmonic measure. Now,
if for some A > 0 f is bounded in some component of {!f | > A}, then the function
f(z(w)) in the proof of Lemma 2 has angular limits on E* and it follows from the
theorem of Priwalow that V contains a closed set of positive harmonic measure.
Suppose now that f satisfies (4.1) and (4.2), and that V contains no closed set of
positive harmonic measure. Then for each A, f is unbounded in each component of
{ If | > A}. It follows that for each A, there are only finitely many components of
{]f | > A}. Now let v and ¢ be as in the proof of Theorem 2. Applying again the
theorem of Priwalow, we choose a sequence {z,} (z, — ) such that Tf(zn)l — oo,
Thus we get a contradiction, as in the proof of Theorem 2, and the proof of Theorem
4 is complete.

Now let
T* = {¢ € C: ¢ is the end of a point tract of f for a finite value}.
Then T* C A*, We shall prove that
(4.32) A* = T* U { countable set }.

It will follow that Theorem 2 vemains valid with A* yveplaced by T*. We say that
an avc tract of f yields a point asymptotic value at € € C if theve is a curve belong-
ing to the tract (see [4, p. 6]) that tends to the point €. It follows from Koebe’s
lemma that an arc tract for a finite value cannot yield point asymptotic values at two
distinct points of C. Thus (4.32) follows from the following simple theorem.

THEOREM 5. Eachf can have only countably many arc tracts that yield point
asymptotic values.

Proof. Let
(4.33) U = {¢ € C: vy is the end of an arc tract of f and ¢ € v0}.

Let S denote the countable set of endpoints of the components of the open set U. It
is clear that not more than two distinct arc tracts of £ can yield point asymptotic
values at the same point of C. Thus only countably many arc tracts of f yield point
asymptotic values at points of S, and it suffices to show that only countably many arc
tracts yield point asymptotic values at points of U. Now, since U is covered by a
countable number of the arcs 0 in (4.33), we need only observe that for a particular
v, all curves ending at interior points of ¥ on which f has a limit belong to the same
tract of f. Thus Theorem 5 is proved.
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5. EXAMPLES
Example 1. MacLane [4, Example 3] has constructed an f €  such that

(5.1) min |f(z)| — oo (n — ),
z€J,

where {Jn} is an expanding sequence of Jordan curves tending to C such that
(5.2) Mr) < 2= (0<r<1),

where M(r) is the maximum modulus of f on {|z| =r}. It follows from (5.1) and a
theorem of MacLane [4, Theorem 3| that f kas exactly one asymptotic tract and
A, =C.

Example 2. Let f be the function of Example 1, and let
F(z) = (1 - z)%1(z).

Then from (5.2) we see that F has the angular limit zevo at 1. Also, f € «, and F
has an arc tract for « with end C. It follows from (5.2) and a theorem of MacLane
[4, Theorem 22] that F has exactly two tracts.

Example 3. Let F(z) be the function of Example 2. Let w(z) map
A=D-—{z=x+iy:x_>_0, y = 0}

onto {{W| <1} one-to-one and conformally, and let z(w) be the inverse map. Let
&(w) = F(z(w)). Then & has onrly one tract for «; its end is not C. Moveover, the
set of finite asymptotic values of ® is bounded.

Example 4. We now construct an f hkaving asymptotic values only for point
tracts that end at the point 1. Choose

1

§<rl<---<rnT1,

and let C,, be the circle with radius r, contained in D U C and tangent to C at 1.
Let

T=Dn[{z:-1<x§0,y=o}u(U C, ]
n=1

Let ¢ be a continuous function on T such that, for each n,

Mz) = 0 (z € C,,) and Mz) =1 (ze Cy, 7).

It follows from the tress argument of Bagemihl and Seidel [2, Theorem 1] applied to
the “modified tress” T that there exists an f such that

|£(z) - ¢(z)] - 0 as |z| -1 (z€T).

It is clear that f has the desired property.
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Example 5, Consider the function f of Example 4 in the half-disc
A=Dn{z:x < 0}.

Given € > 0, let w(z) be a one-to-one conformal map of A onto {IWI <1} so that
{z:x=0, -1 <y <1} corresponds to an arc y of length ¢, and let z(w) be the in-
verse map. Let F(w) = F(z(w)). Then F does not have the asymptotic value ~, and
the ends of all asymptotic tracts of f arve contained in .
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