ON ANALYTIC CONTINUATION OF LAURENT SERIES

Louis Brickman

1. INTRODUCTION

There are various theorems, dating back to 1900, concerning analytic continua-
tion of power series T3 a,z" in which aj, = g(n) for a holomorphic function g of
some sort. Here we shall discuss certain extensions and analogs of the theorems of
Wigert, Hardy, and Kronecker, which can be stated as follows.

THEOREM OF WIGERT [8, p. 288]. ZBO anz" defines a holomorphic function
which has 1 as its only possible singularvity and which vanishes at « if and only if
there is an entive function g of exponential type 0 such that g(n) = an
(n=0, 1, 2, <),

THEOREM OF HARDY [5, p. 338]. Let 0< p < 7, and let S be the circle
|z| = p. In ovder that a servies ZB° a, z™ define a function holomovphic in the exterior
of the curve e=S , having a singulavilty on e 'S, and vanishing at o, it is necessary
and sufficient that theve exists an entive function g of exponential type p such that
gm)=a, (n=0, 1, 2, ),

THEOREM OF KRONECKER [4, p. 321]. ZBO a,z" defines a vational function if
and only if the infinite matvix (ajyj) has finite vank.

We begin by obtaining—Theorem 1 below—a complete generalization of the theo-
rem of Hardy, in the sense that we are able to consider functions f that are holo-
morphic in the complement of an arbitrary compact set. The “coefficient functions”
g- that then occur are entire functions of arbitrary exponential type. However, the
L’aplace transform & of g can be continued holomo&phically to a region whose com-

plement B is bounded and has the property that U _OO(B + 2n7i) does not separate

the plane. The function f is then holomorphic in the complement of e B . It is clear

from Pélya’s theory of the indicator diagram (see [7] or [3, pp. 66-77]) that the above
property of & is weaker than Hardy’s type-restriction on g. Another feature of
Theorem 1, important for the subsequent discussion of Laurent series, is that the
expansions of f about 0 and « are treated symmetrically.

Our results on Laurent series—Theorems 2 and 3—are concerned with a pair of
series Z .. a,z™ and >% b,z that converge in two disjoint annuli. Theorem 2
gives a necessary and sufficient condition on the sequence {an - bn} in order that
the given series be Laurent expansions of the same holomorphic function. Theorem
3 gives the condition that this be the case and that there be only poles and essential
singularities betweeén the two annuli. It is also mentioned here how the location of
the singularities and the construction of the principal parts depend upon the sequence
{a, - bn}. Finally, to illustrate Theorem 3, we derive a formula from the theory of
elliptic functions.

Notation and terminology. € will denote the complex plane. 2E will denote the
topological boundary of E (E C €). A region is a nonempty, open, connected subset
of C. Holomorphic means analytic and single-valued in a region that may or may
not be specified. If g is an entire function of exponential type, g denotes its Laplace
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transform or any holomorphic extension thereof. N will denote the set of integers,
Nt the set of nonnegative integers, and N~ the set of negative integers. For
Cauchy’s theorem, cycle, winding number, and so forth, we refer to [1]. We shall
frequently use sets in numerical expressions with the obvious meanings. For exam-
ple, if v is a cycle, n(y, E}) = 1 means n(y, z) =1 for all z € E, This notation, in-
cidentally, implies ¥ € G ~ E, (We shall use the same symbol for a cycle and the
associated point set.) Finally, ext v denotes the (unique, open) unbounded component
of € ~q.

2. PRELIMINARY LEMMAS

In establishing Theorem 1, we shall make repeated use of three topological
lemmas. Lemmas 1 and 2 may be of general interest.

LEMMA 1. Let h be holomovphic in a simply connected rvegion D, let vy be a
cycle in D, and let ¢ € D. Then

h(c) € ext h(y) = c € exty.

Proof. Let us suppose to the contrary that ¢ belongs to one of the bounded com-
ponents U of € ~ y. Then, by the maximality of U, 9U C v, and by the simple con-
nectivity of D, U C D. Thus U C D, and therefore h(U) is compact. Let E be any
connected set in ext h(y) containing both h(c) and a point of G ~ h(U). Then
E N h(U) is closed in E. But since 93U C ¢, E N h(U) = E N h(U), which is open in
E. Thus we have contradicted the connectedness of E.

LEMMA 2. Let h be holomorphic in a simply connected vegion D, and let E be
a compact subset of D. Then

U exth()=c ~ hE)
yCD

n(')/, E)= 1

if and only if G ~ h(E) is connected.

Proof. First we observe that the “only if” statement is trivially correct. Next
we assert that

Uext hiy) c & ~ h(E)
Y

whether G ~ h(E) is connected or not. Indeed, by Lemma 1,
ceE => c ¢dexty = h(e) ¢ ext h(y)

for any y as described. Finally, let us assume € ~ h(E) is connected and
c € ¢ ~ h(E). Let K be any closed, connected, unbounded set such that

ce Kc C~ h(E).
Let V=h!(c ~K). Then V is openand E C V c D. Let y be a cycle in V with

n(y, E) = 1. (To see how such a cycle can be constructed we refer to [1, p. 113].)
Then h(y) € ¢ ~ K. Therefore c € ext h(y).
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LEMMA 3. Let B be compact. Then G ~ e B is connected if and only if
¢ ~ (B+ 2N7i) is connected.

Proof. Suppose G ~ e~B is connected, and let sy € ¢ ~ (B + 2N7i). Let ¢ bea
real number such that ¢ < 9% B. We shall show that sy can be joined to the line
{s: % s = 0} by an arc contained in ¢ ~ (B + 2N7i). Let K be a Jordan arc joining
-s
e 0 tothe circle {z: |z| =e %} suchthat Kc ¢ ~ (e"B U {0}). Let log be con-

-S
tinuous on X, with log e 0= -sg. Then -log K is the required arc. The proof of

the converse can be omltted Indeed, for any entire function h and any closed set A,
connectedness of G ~ h~! (A) 1mp11es connectedness of G ~ A.

3. A GENERALIZATION OF HARDY’S THEOREM
THEOREM 1. Let g be an entire function of exponential type. Suppose g is
holomovrphic in a region G ~ B, where B is a compact set such that ¢ ~ (B + 2Nwi)
is connected. Let

(1) A=e B,

Then theve exists a function f, holomovphic in C© ~ A, such that (=)= 0,

(2) f(z)= 22 gmz" (|z| < |A],
n€ N

(3) f(z) = 2 -g(n)z" (|z|>]A|).
né€ N™

Conversely, suppose £ is holomovrphic in a region € ~ A, wheve A is compact,
0e G~ A, and {(») = 0. Then there exist an entive function g of exponential type
and a compact set B such that g is holomovphic in G ~ B, G ~ (B + 2N7i) is con-
nected, and (1), (2), (3) hold.

Proof. Let g, g, and B be as described. Let

f,y(z) = S T g(s) sds (n{y,B)=1, z € exte™).
Then f, is holomorphic in ext e””, We assert that if f,, is another such function
element, then
f,y(z) = f,y.(z) (z e exte™ Nexte™').
By Cauchy’s theorem this assertion is implied by the equation
n(y, sq) = ny', sg) (s € BU {s: e ®=2z}).

For s, € B, this equation holds by construction. For e = z, Lemma 1 gives

e?0 cexte = 5, € exty = nly, s,) =0,

and the same for ¢'. Thus all the f,y have a common extension f, holomorphic in
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U ext e”?

n(')/,B)=l
and with f(~) = 0. By Lemma 3, ¢ ~ e B is connected. Therefore Lemma 2 gives
U exte?=c~eB,

n(y,B)=1

Thus f is holomorphic in € ~ A, A being defined by (1). To prove (2), let us
choose a cycle y such that n(y, B) =1 and 0 € ext e™. Then, for |z| < |e™|, we
have the relations

Il

i(z) = £,(z) = E%S 8(s)ds 2 zhens
Y

neNT

2 {-2—71-55 ensé(s)ds}zn= 2 g(n) z™.

n € Nt v ne€ Nt

(Here we have used Pélya’s inversion formula [3, p. 84, Theorem 5.3.5], slightly
modified according to Cauchy’s theorem.) Since f is holomorphic in ¢ ~ A, (2)
follows, and a similar computation establishes (3).

Conversely, let £ and A be given as described. Let K bea curvein € ~ A
joining 0 and « and such that D= ¢ ~ K is a simply connected region and D ~ A
is a region. Let log be holomorphic in D, and let

g(t) = - E}H Sﬁ f(z)e~(tr11og 2 g, (5 =D, n(5, A) = 1).

Then g is an entire function of exponential type which, by an application of Cauchy’s
theorem, is independent of the choice of §. To prove (2) and (3), let us write

f(z) = 27 cnz™  (|z] < |A],
n € N

fz) = 2o da .z (|z] > |A],
n€N

where ¢, =0 for n € N” and d, =0 for n € Nt By the integral formula for
Laurent coefficients and another application of Cauchy’s theorem, we obtain the
formula

dy - Cp = gt 56 fz)z"ldz = -g(n) (neN).

Choosing n € N’", we obtain (2), and choosing n € N~, we obtain (3). Now

g(s) = S e Sto(t)dt = - 27171 Sﬁ (s _’f_(fgg 2) dz (s> -%Rlog 6).

0
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The last integral provides a holomorphic extension of g to ext(-log 6). By an argu-
ment similar to that used before, based on Cauchy’s theorem and Lemma 1, we may
show that all choices of 6 subject to the conditions stated provide mutually consist-
ent extensions. Therefore § is holomorphic in U 5 ext(-log 6). Since D~ A is a

region, the same is true of
-log (D ~ A) = (-log D) ~ (-log A).
It follows easily that ¢ ~ (-log A) is connected. Therefore, by Lemma 2,

Uext (-1og 8) = 6 ~ (-log A).
5

Let B = -log A. Then (1) holds and g is holomorphic in ¢ ~ B, _Finally,
G ~ (B + 2Nwi) is connected, by Lemma 3.

Remark, It can happen that ¢ ~ B is a maximal domain of holomorphy for g,
but G ~ e P is not maximal for the corresponding function f. (For example, let
g(t) = sinwt, B= {ri, -mi}.) It appears, however, that this cannot happen if the map
from B onto e~" is one-to-one, as is the case for B = -log A above.

4. A COROLLARY CONCERNING LAURENT SERIES

THEOREM 2. Lel the sevies Z, o anz and T Nb,2" converge for
r; < |z| <r, and ry < |z| <71y, 'respectwely, where 0 <r; <r,<rz3<ryg< >
Then these series ave Lauvent expansions of the same holomorphic function if and
only if there exist an entive function g of exponential type and a compact set B such
that g is holomovphic in G ~ B, G ~ (B+ 2N7i) is connected,

4) r, < le-B| <r,,
and
(5) gln) =a,-b, (neN).

Proof. Suppose h is holomorphic in a region {z: r; < [z[ < r4} ~ A with
r, < |A <r, and

(6) h(z) = 27 a z" (r;<|z|<r),),
ne€N
() h(z) = 27 b z"  (r3< |z| <1y).
n€N
Let
(8) k(z) = 27 a.z-l— 2 b, z" (r1<|z|<r4)
n€ N~ ne Nt
and

(9) f(z) = h(z) - k(z) (r1 < |z| <r,,z d A).



6 LOUIS BRICKMAN
Then

f(z) = 22 (a,-b )z (r; <|z| <r,),
n € Nt

f(z) = 2o -(a, - b )z" (r3< |z ] <ry).

n €N~

But these series converge for |z| <r, and |z| > r3, respectively, and therefore f
has a holomorphic extension to the region ¢ ~ A with f(«) = 0. Hence, by Theorem
1, there exist a function g and a set B as described above such that (4) and (5) are
satisfied.

Conversely let g and B be as described, and let (4) and (5) hold. Let f and A
correspond to g and B, as in Theorem 1. Since ¢ ~ A is connected, so is

{z: r, < |z| <r4} ~ A,
and we can define the holomorphic function h by equations (8) and (9). Finally, (6)
and (7) follow directly from (1), (2), (3), (4), (5), (8), and (9).

Remark. In the second half of Theorem 2, the convergence assumptions regard-
ing 2, N2, z" and Z,.nb,z" were not entirely necessary. Only that part occur-
ring in (8) was needed, the rest following from (4) and the other assumptions.

5. A SPECIAL CASE OF THEOREM 2

THEOREM 3, Let the series Z_qa,2z" and T, NbPn2" converge for
r) < lz| <r, and r3< |z| <r4, respectively, where 0 <1} <1, <ry3<Ty< 0,
Suppose there are entive functions py, ***, Pg of zevo type, none identically zevo,
and distinct, nonzevo complex numbers z,, ***, Zg Such that

K

(10) a, -b = 27 p, )z (ne N).
k=1

Then

(11) r<l|z|<r k=1, -, K),

and theve exists a function h, holomovphic in {z: r 1 < |zl <r 4} except fov singu-
larities at the Z s having the given series as Lauvent expansions. Moveover, if

(12) h(z) = 27 ch(z - zk)q (z near z_ ),
q€N
then
-g-1
(13) cqe = -zt 2 (1) (DT pla+rm)  @eN).
m=0

In particular, if py, is a polynomial, then 2, is a pole of h of order 1+ degree p,.
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Conversely, suppose the given sevies ave Lauvent expansions of a function h tkat
is holomorphic in { z: r; < Izl < r4} except for isolated singularities zy, +-,
satisfying (11). Then theve exist entive functions p, , «--, py of zevo type such ﬂzat
(10) kolds.

Proof. For each Kk, let

t
7, g(t) = p.E)e’ ",

e %k =

Then gk is holomorphic in ¢ ~ {sk} By Theorem 1 there exists a function f
holomorphic in ¢ ~ {z,} such that

f(z) = 2 p@z2 (2] <lz])

nEN
and
f,(z) = 27 -pmzz™ (2] > |z ).
ne€ N~
Let
£, (z) = 2 ch(z -z )% (237,
q € N~

Then if n(y,, zk) =1 and q € N™, we have the formulas

= - a-1 4,
Car = T S fk(z)(z 2,)"
-q-l 1
= 2 (U ) cm) gy | f@27 M
m=0 ')/k
_q..l

ST (95) e man

-q._]_
= -z T (1) (0Ppla+m).

m=0

Now, for |z| < min|z_|,

K K
2 f (z) = 20zt 2 pk(n)zlzn = 2o N (an~ - bn)zn.

k=1 n € Nt k=1 neN

By assumption, the last series converges if Iz] <r,. Butthe z, are distinct, non-

removable singularities of lele f,(z). We conclude that r, < min |zk| , and a simi-
lar argument yields the other half of (11). Then the required function h is given by
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K
h(z) = 2 f,(z) + 2 a z"+ 27 b z".
k=1 n€ N~ ne Nt

The converse can be proved more directly without Theorem 1. Indeed, suppose
there exists a function h as described. Then, with the help of (12), a calculation
shows that

K K
ne - f-n -1
b, -a = 27 Res[h(z)z ™!, z,] = 27 z " 27 i ch(_g_ 1) zy.
k=1 k=1 qeN

Finally, since lim Ichl 1/1al = o, the function py. defined by
q—-co

q

-n -1
Zx

pi(n) = - 27 Cak (-q -1

q€ N~

is entire of zero type. (We refer to [4, p. 339] for the required estimates.)

Remarks. a, - b, can be written as in (10), with the p, all polynomials, if and
only if the doubly infinite matrix (a;,; - b;,;) has finite rank. Thus we have a cri-
terion, analogous to that in Kronecker’s theorem, that there be only poles between
the two annuli. It would be interesting to have a condition on the sequence {a, - b}
in order that (10) hold in general, and then to have a means of recovering the zy
and py(n). On the other hand, there are situations (see for example Section 6) in
which we have formulas for a, and b,, so that (10) is explicitly known. Finally, we
observe that the first few lines of the above proof essentially form a proof of
Wigert’s theorem.

6. AN APPLICATION OF THEOREM 3

We shall now illustrate the use of Theorem 3 in a case where there is only one
pole between the two annuli of holomorphy. L.et R > 1, and let
nz"

- 1< <R).
nENN{O}R -1 'Zl

ho(z) =

This series (familiar in the theory of elliptic functions) appears, for example, in the
orthogonal expansion of the Bergman kernel of an annulus [2, pp. 2, 9, 10]. We shall
show that

hy(z) = p(log z) + ¢ 1< |z| <R),

where p is Weierstrass’s elliptic function with primitive periods log R and 27i, and
where

a+2mi
Co = -5 S p(w)dw

for any path of integration avoiding the poles of p. More generally, let
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h(z) = 2 nz R* < |z] <RF'! ke N).
1(2) nenv{o} R(+1)n _ gkn ( |z] )

Then it follows immediately from Theorem 3 that all the h, are function elements
of the same holomorphic function, for

n n -kn

kn _ R(k-l)n - R(k+l)n _ Rkn = nR (neN-~ {0}):

R

as required for (10). Hence there exists a function h, holomorphlc in the comple-
ment of {RX k € N} U {0}, such that

h(z) = h(z) (R¥<|z] <R*", ke N).
Also, by (13),

Zk(

h(z) = R**(z - R 2+ R"(z - R '+ .- (z near R¥).

To complete the analysis, let us define g(w) = h(e%). Then g is holomorphic in the

complement of {k log R+ 2qui: k, q € N}, the indicated lattice points being second-

order poles. Further, g has permds log R and 27i, for if Rk-1 < |er < Rk then
g(w+log R) = hy(Re™) = hy _;(e¥) = g(w).

Thus g is an elliptic function, and from the location of its poles we know that the
periods found are primitive. Also g is even:

g(-w) = hy(e™) = h_,_;(e™) = g(w).
Hence we can write
g(w) = c_, W-2+CO+CZWZ+"' (w near 0).

Comparing this with the Laurent expansion of h about 1, we obtain c¢_,; = 1. There-
fore [6, p. 81] g(w) = p(w) + cg. Hence

(klog R<%iw<(k+ 1)log R).
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