CONDITIONS FOR THE ANALYTICITY OF CERTAIN SETS
Errett Bishop

1. INTRODUCTION

In complex analysis it is not always easy to recognize an analytic function or an
analytic set. The problem of recognizing an analytic function is a special case of
the problem of recognizing an analytic set, since a function is analytic if and only if
its graph is an analytic set.

In the first part of this paper it will be shown that a limit of a sequence {A;} of
analytic sets of pure dimension k is an analytic set, provided that the 2k-dimension-
al volumes of the sets A; are uniformly bounded. This generalizes a result of Stoll

[9].

In the second part of this paper we discuss sets that are analytic except for pos-
sible singularities. The question is then whether the singularities are genuine or
removable. Conditions guaranteeing the removability of singularities have been
given by many authors, including Hartogs, Rad6, Thullen, Remmert and Stein, Roth-
stein, and Stoll. Our results extend theorems of Stoll [8], [9]. We show that an
analytic set A of pure dimension k defined in the complement of an analytic set B
can always be continued through B, in case the 2k-dimensional volume of A is finite
or A N B has 2k-dimensional Hausdorff outer measure 0. The first of these results
was conjectured by Stoll, and it can be applied to give a simple proof of Stoll’s theo-
rem that an analytic subset of G™ is algebraic if its volume of appropriate dimen-
sion doesn’t grow too fast near infinity. Along the way we give simple proofs of the
theorems of Radd and of Remmert and Stein, and derive some interesting properties
for representing measures in certain algebras of analytic functions.

In the last section we introduce a general notion of capacity and use it to prove a
very general extension of the theorem of Remmert and Stein.

2. CONVERGENCE OF ANALYTIC SETS

Rutishauser [7] gives a remarkable lower bound on the length of the curve in
which an analytic subset of G2 that passes through the origin intersects the unit
sphere. The following result, communicated with its proof to the author by G.
Stolzenberg, generalizes Rutishauser’s. Rather than the precise lower bound 27r,
we give here only the more easily proved lower bound r, since the precise result
will be a consequence of Theorem 2.

LEMMA 1. Let B be an open ball of vadius r centgred at 0 in C™, and A a
one-dimensional analytic set in some neighbovhood of B, with 0 € A. Let S be the
boundary of B. Then the curve A NS has length at least r.

Proof. Let p be any measure on A N S that represents 0. By this we mean
that o is a nonnegative Baire measure on A N S for which

(*) £(0) = S fdu

Received February 3, 1964,

289



290 ERRETT BISHOP

for all polynomials f in the coordinate functions z;, -+, z,,. Take a point z® in the
support of ¢ and choose coordinates so that z? =r, z; =0 for i> 2, Let 7 be the
projection of ¢™ onto the complex plane 1 defined by m(z) =2z . Then w(y) = v is
a measure on 7(A N S) that represents 0, and r € support p. Let L, be the verti-
cal line in &1 passing through the point a, where 0 <a <r. Now if La does not
intersect m(A N S), then by Runge’s theorem there exists a sequence of polynomials
f converging uniformly to 1 on the part R of 7(A N S) to the right of L,, and to 0
on 7(A N S) - R. Thus in equation (*) we pass to the limit and get 0 = »(R). This
contradicts the fact that r € support v. Hence each L, intersects w(A N 8), so that
length m(A N S) > r. Hence, length (A N S) > r.

LEMMA 2. Let B be an open sphere of radius r and center 0 in 6™ . Let A
be a pure k-dimensional analytic set containing 0 in some neighborhood of B. Then
theve exists a constant ¢, depending only on n, such that the (2k - 1)-dimensional
volume of AN S is at least cr2k-1,

Proof. There is no loss of generality in taking r =1, Let P beany (n - k+ 1)-
dimensional complex linear space through 0. Then, by the previous lemma,
length (A NS N P) > 1, By the techniques of integral geometry we see that the vol-
ume in question is greater than some constant ¢ times the average of

length (A NS N P),

taken over all P, This gives the result.

LEMMA 3. Under the hypothesis of Lemma 2, the 2k-dimensional volume of
A N B is at least chk, where the constant ¢ depends only on n.

Proof. The result follows from Lemma 2 and Fubini’s theorem.,

We now establish some useful classes of sets and measures on an open set
Uc e,

Definition 1. Let U be an open set in ™. A positive Baire measure p on U
will be sa1d to have property M(b, c, k), (written p € M(b, c, k)) if £(U) <b and
p(B) > cr® for any open ball B C U of radius r whose center is in support u. A
closed subset A of U will be said to have property S(b, ¢, k), or A € S(b, c, k), if it
supports some measure on U having property M(b, c, k). A closed subset A of U
will be said to have property N(c, k) (A € N(c, k)) if whenever G is covered by
disjoint square polycylinders of the form

{z: Izi—z?ISr, 1<i<n},

-k

of common radius r, then at most cr of them lie in U and intersect A.

The next three lemmas are simple, and we state them without proof.

LEMMA 4. Let U be a bounded open set in C™. Letf be an analytic homeo-
movphism of some neighbovhood of U with some open set in GC. There exists a
constant K > 0 such that if a subset A of U has property N(c, k), then f(A) has
property N(Ke, k).

LEMMA 5. For each n theve exists a constant K > 0 such that if U is an open
set in 6™ and A has property S(b, c, k), then A has property N(Kbc"l, k).

LEMMA 6. Fov each value of n there exists a constant 6 such that if A has
property N(c, k) in some open set U, then the k-dimensional Hausdovff measure of
A is at most dc.
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If u is a Baire measure on an open set U C G™ and if {un} is a sequence of
Baire measures on U, we say that y, — ¢ as n— o if p,/X — /X as n— «© in
the weak star topology, for each compact subset X of U. Similarly, if {A,} isa
sequence of closed subsets of U and if A is a closed subset of U, we say that

—Aasn—xif AANX—ANX as n— « in the Hausdorff metric for com-
pact subsets of X, for every compact subset X of U.

LEMMA 7. Let U be an open setin C™. Let {un} be a sequence of nonnega-
tive Baire measures on U, each having property M(b, c, k). Let A, = support [i,.
Assume that p, — p and A, — A, as n — o, where |y is a positive Baive measure
on U and A is a closed subset of U, Then support p = A.

Proof. If x € support . and V is any neighborhood of x, then (V) # 0. There-
fore pL,(V) # 0 for all sufficiently large n, so that A, NV # (0. Therefore x € A,

If x € A and V is a closed neighborhood of x, let W be a neighborhood of x with
dist (W, ¢™- V) =d > 0. For all sufficiently large n, we have A, " W # 3. Take y
in A, N W, so that the closed sphere B of radius d about y is a subset of V. Since
L, has property M(b, c, k) it follows that

L (V) > po(B) > cd®.

In the limit this gives (V) > c¢d® # 0, Therefore x € support L.

COROLLARY. If {An} is a sequence of closed subsets of an oper set U C (S:n,
and A, — A as n — «, then A has property S(bg, c, k) for some by if A, has
property S(b, c, k) for each n.

Proof. Let p, be a measure in M(b, ¢, k) supported by A,. By passing to a
subsequence, if necessary, we may assume that p, converges to a measure p on U
as n — ., By'the lemma, p = support A. Since p has property M(b,, ¢, k) for
some b it follows that A has property S(bg, c, k).

LEMMA 8. Let A C G" be a locally compact set of (2k + 1)-dimensional Haus-
dovff measuve 0, for some k (0 <k <n - 1). Then the set F of all complex
(n - k)-dimensional linear subspaces P of C™ passing through 0 and intevsecting
A in a set that is not tolally disconnected is of fivst category.

Pyroof. Without loss of generality we take A to be compact.

Let @ be any real-valued real-linear function on 6" that is a linear combina-
tion with rational coefficients of the real and imaginary parts x;, y1, ***, Xn, ¥n Of
the coordinate functions zi, ***, z,,. Let ¢ and d be rational numbers (0 < c¢ < d).
Let ¥(o, ¢, d) consist of all P for which [c, d] € @(A N P). Clearly F(e, c, d) is

closed and F C UF(oz, ¢, d). Thus it is sufficient to show that each F(¢, ¢, d) is no-
where dense. Assume there exists an interior point P, of F(a, c, d). Choose new
coordinates Z on G™ so that « is the real part of 2, ,; and the equation of Py is
Zy =&y = «-» =2 = 0. Then for all a = (a;, ---, a;) sufficiently near to 0 (say for
lail <eg, 1<1i<k), the subspace P, whose equations are

Zy+tay By = =8 ta 2, =0
belongs to F(a, c, d), so that @ assumes all values between ¢ and d on A N P,.
Let 7 be the map of {z € ¢°: a(z) > %} into ¥ x 9t defined by

w(z) = (-2, Eppy) ™", v, 2kCrr1),, 2(2)).
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£ ¢
2'2
terior. Hence the (2k + 1)-dimensional Hausdorff measure of 7(A) is not zero, con-
trary to the vanishing of the (2k + 1)-dimensional Hausdorff measure of A. This
proves that F(a, c, d) has void interior, as desired.

THEOREM 1. Let {An} be a sequence of pure 2k-dimensional analytic sets in
an open subset U of CT, converging to a set A C U. Let the 2k-dimensional vol-
umes of the Ay be finite and bounded by some constant b. Then A is an analylic
subset of U,

Proof. Define a measure (., supported on A, by taking p,(S) to be the 2k-
dimensional Hausdorff measure of A, N S. Since u,h(U) < b, we may assume, by
passing to a subsequence if necessary, that y, converges to some measure 1 on U.
By Lemma 3, p, €M(b, ¢, 2k), so that A, € S(b, ¢, 2k). By Lemma 7,

Then we see that 7(A) contains the set [-— :l X [c, d], and so has a nonvoid in-

A € S(bg, ¢, 2K).

By Lemmas 5 and 6, the 2k-dimensional Hausdorff measure of A is finite. By
Lemma 8, we may assume that the intersection of A with the set

P = {Z: Z]. = z2= cos = Zk= 0}
is totally disconnected. Thus there exists an open neighborhood T of 0 in Gn"k
such that

CX¥Xbdry T N (A N P) =0

and (¢ ¥ X T) N P Cc U. We may thus choose an open neighborhood S of 0 in ck
such that

Sxbdry TYNA=0 and SXTcCU.

Let 7 be the projection of " onto (‘Zk, obtained by suppression of the last n - k
coordinates. Since Ag= A N (S X T) is a closed subset of S X T whose closure is
disjoint from S X bdry T, the map w/Ag = mg of Ag into S is proper. Also,

A, N (SXbdry T) =0 for all large enough n, so that the map 7, = 7/(A, N (S X T))
of A n(SX T) into S is also proper. From the standard theory of proper mappings
of analytlc varieties, as expounded for instance in [1 pp. 228-231], we see that with
T, is associated a mu1t1p1101ty A, such that each p in S is the image under 7, of
points p’ll, ee p;:n inA, N (SXx T), and these points are distinct, except when p be-

longs to a proper analytic subset of S.

Now the 2k-dimensional volume of A, N (S X T) is at least Apn times the 2k-
dimensional volume of S. Hence the )\, are uniformly bounded, so that by passing to
a subsequence if necessary, we may take them to be a fixed constant A. For each z
in S X T we write p = n(z). Let z0 be a fixed point in (S X T) - A, and set
pY = 7(z 0), By passing to another subsequence if necessary, we may assume that for
each i (1 < i <) the points pln of S X T converge to points p? of SXT as n — oo,
Clearly p? € A, so that in fact p1 € SXT (1<i<A). Now let g be any analytic
function on 6™ with g(zo) + glp l) (1 <i< ). For each n define the analytic func-
tion f, on S X T by
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A
£,(z) = .l'I (g(z) - g(@)).

i=1

Since the f, are uniformly bounded on S X T, we may assume that as n — « they
converge to an analytic function £ on S X T, uniformly on compact subsets of S X T.
Then f vanishes on A because A, — A and f, vanishes on A,. Also,

A
£(z°) = II (g(z9 - g®}) # 0.

i=1

Thus A is an analytic set.

3. CONDITIONS FOR REMOVABLE SINGULARITIES

The following proof of Radé’s theorem is an improvement of a proof of Wermer,
given by Glicksberg [4].

RADO’S THEOREM. Let f be continuous on D= {z: |z| < 1} and analytic at
all those points of int D at which it does not vanish. Then f is analytic on int D.

Proof. Let E = {z: f(z) = 0}, F=bdry E, B =bdry D. Let . be the closed
sub-algebra of C(D) generated by the two functions f and z, and ¢ its Silov bound-
ary. Since all functions in .« are analyticon D- F - B, ¢ C F U B,

Consider a point z; of D - E. By [1], there exists a Jensen measure p, for
zg on 0. Hence

- < log lf(zo)l SS log lf(z)l duy(z).

From this it follows that pg(E) = 0, so that [t¢ is a measure on B. Thus

Ig(zo)l < "g"B for each g in . Since the points of D - E are dense in D - int E,
we see that |g(zg)| < llg|lg for all z; in F. Thus |g| < ||lg|g, or ¢ € B. The
same argument shows that if G is any closed subdisk of D and H is its boundary,
then ||lgllg = |lglly; for all g in . Thus by the maximality theorem of Rudin [6] or
of Wermer [10], + consists of functions analytic on int D, as desired.

For later use we remark that Radé’s theorem can be extended to several vari-
ables. In other words, it remains true when D is replaced by its n-fold product D",
The proof is a trivial reduction to the case n = 1.

At this point we can’t resist giving a simple proof of part of the Remmert-Stein
theorem, which will serve as a prototype for the proof of the stronger theorems to
follow. The essential idea is that of [2].

REMMERT-STEIN THEOREM. Let U be an open subset of C™, B an analytic
subset of U, and A an analytic subset of U - B. If B is of dimension at most k - 1
and A is of purve dimension k,then A N U is an analytic subset of U.

Proof. Let z0 be any point of A N U, say z0 = 0. There exists a complex linear
(n - 1)-dimensional subvariety P; of G" that contains no analytic component of
either A or B. Thus B N P, is an analytic subset of U N P; of dimension at most
k -2, and A N P; is a pure (k - 1)-dimensional analytic subset of (U - B) N P;.
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Working now inside P;, we can find an (n - 2)-dimensional complex linear subspace
P, of P; such that B N P, is an analytic subset of dimension at most k - 3 of

U N Py,and AN P, is a pure (k - 2)-dimensional analytic subset of (U - B) N P,.
Continuing by induction, we finally obtain an (n - k)-dimensional linear subspace
P, of G suchthat BN P and A N P,_; are countable, so that (A U B) N P, i
is totally disconnected. We may take P, _; to have the equations z] = <. =z, = 0.
As in the proof of Theorem 1 above, there exist open neighborhoods S of 0 in sk
and T of 0 in G™-K guch that the projection 7 of G™ into X, obtained by discard-
ing the last n - k coordinates, gives a proper map of (A U B) N (S X T) into S.
Since B is an analytic set, this implies that 7r'1(p) N B N (S X T) is finite for all p
in S. Hence 7~1(p) N A N (S X T) is countable. Write Sqg=8 - #(B N (S X T)).
Then S is a connected dense open subset of S. Now 7 maps A N (Sg X T) properly
into Sy, and A N (Sy X T) is an analytic subset of Sy X T. With this map is asso-
ciated a multiplicity A such that for each p in Sy there exist points pj, **+, p) in
A N (Sg X T) with #n(p;) = p.

Let h be an analytic function on U that vanishes on B but does not vanish on any
irreducible analytic component of A. Define the analytic function h on So by

A
fi(p) = IT h(p,).
i=1

Then h(p) — 0 whenever p — S - S, since then one of the p; goes to B. Thus, if
we set fi(p) = 0 for p in S - Sy, then K is continuous on S and analytic where it
does not vanish. It is therefore analytic on S, so that S - Sy is contained in a proper
analytic subset F of S. Now let 29 be any point of SX T - A. Let {pn} be a se-
quence of points of Sy converging to p? = n(z0), such that, for 1 <i< 1, {p?} con-
verges to a point p? in A. Take a function f analytic on ¢™ with £(z°) # £(p0)

(1 <i < n). Define the bounded analytic function g on (Sy X T) by

A
g(z) = I (£z) - (p;)),

i=1

where p = 7(z). Since g is a polynomial in f,

A
g(z) = 27 a;(p)i(z)},

i=0

~

with coefficients a; that are bounded analytic functions on Sp, it can be continued
analytically on S X T. By construction, g vanishes on A. Also,
A
g(z°) = IT (#(z°) - £(p})) # 0.

i=1

Thus A N (S X T) is an analytic set, as was to be proved.

LEMMA 9. Let U be an open subset of G, and B a proper analytic subset of
U. Let A be an analytic subset of U - B, of purve dimension Kk, and such that A N B
has 2k-dimensional Hausdorvff measure 0. Then A 1 U is analytic.



CONDITIONS FOR THE ANALYTICITY OF CERTAIN SETS 295

Proof. Assume that 0 € A N U, and that there exists an analytic function h on U
vanishing on B but not vanishing on any component of U. Since the (2k + 1)-dimen-
sional Hausdorff measure of A is zero, Lemma 8 implies that there exist coordi-
nates such that A N {z: z; =+ =z, = 0} is totally disconnected and the functions
z), ***, Zx have rank k at at least one point of every irreducible analytic component
of A As we saw in the proof of Theorem 1 above, this implies that there exist open
neighborhoods S C ck and T c ™~k of 0 such that the projection m of S X T onto
S is proper on A N (S X T). The closed subset F = 7#((S X T) N (A N B)) of S has
2k-dimensional Hausdorff measure 0, and so is nowhere dense in S.

Let K be any component of S - F. Then 7 maps A N 7~1(K) N (S X T) properly
onto K. We have thus an associated multiplicity A, such that to each p in K corre-
spond points pj, *=+, p) in A N (8 X T) with 7(p;) = p. Define an analytic function f
on S Dby the rule

(p € S -K),

0
fp)= ¢ 2
II h(p;) (p € X).
i=1

To show that f is analytic on S, it suffices, by Rad4’s theorem, to show it is con-
tinuous, in other words, to show that if a sequence {p } of pomts in X converges
toa pomt p° in S - K, then {pn} converges to the set B for some i. By passing
toa subsequence if necessary, we may assume that for each i, {p } converges to a
point p1 of SX T, Assume none of the p is in B, so that po € A (15 i <A). Then
there ex1st a neighborhood U of p in S and neighborhoods U 1, **=, Up of

pl, see, ph in A such that 7 projects each U; properly onto U.

Write X=A N (SXT) - (U; U+ UU,). Then X is compact and the set
W =X - (B U ((bdry S) X T) U bdry U; U -+ U bdry U,)

is analyt1c Let Sy be the intersection of a 1-dimensional complex linear subspace
P of GX with S, chosen to contain a point q; of #(W) and a point q, of KN U with

dist(a,, q,) <dist(q,, bdry U)
and with h(z®) # 0 for all z% in A N7-Y(q,). Let
Xe=ANEyxT)-(U,V - UT,).
Then X, is compact, and the set
Wp =X - (B U((bdry Sp) X T) Ubdry U; U -+ U bdry U,)

is analytic. Let 7, be the projection of X, into S,.
Let A be a complex-linear functional on ¥ with A(q ) = 0, and such that

|xMa,)| <inf {A(p): p € (bdry S U bary U) N P}.

Let «/( consist of all functions in C(Xj) that are analytic on Wq. Then
(xompy)- -l e o4, and this function is larger at every point z® of n'l(q P DX NA)
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than it is anywhere on ﬂol(bdry S¢ U bdry U). Thus z% does not have a Jensen
measure on ﬂol(bdry S, U bdry U). On the other hand, since all functions in A, are
analytic on Wy, z0 has a Jensen measure g on

Xy - W = (B U bdry Uy U+ Ubdry U, U 75 (bdry Sg)) N X,.

Since h vanishes on B and h(zg) # 0, it follows that u(B N Xy) = 0. Hence u is a
measure on '

(bdry U; U - U bdry Uy, U m5l(bdry Sy)) N X, = 75 (bdry Sp U bdry U).

This contradiction shows that some p? is in B. Therefore f is continuous on S.
Therefore it is analytic. Therefore the set S - K = F is contained in an analytic
subset of S. Now 7 does not map any irreducible analytic component of A N (S X T)
into F, for if it did, the functions z;, .-, z; would not have rank k at any point of
that component. Hence A N (K X T) is dense in A N (S X T). It now follows as in
the proof of the Remmert-Stein theorem above that A N (S X T) is an analytic subset
of S X T, as desired.

The following theorem is the last step before the proof of our result on remov-
ability of singularities for analytic sets with finite volume (Theorem 3). It is also of
interest in itself, because of the strong information it gives for representing meas-
ures on the intersection of 1-dimensional analytic sets with spheres.

THEOREM 2. Let B C 6" be an open ball of radius R about 0, U a neighbor-
hood of _ﬁ, P a complex subvarviety of U, and A an analytic subset of pure dimen-
sion 1 in U - P, with 0 € A. Let S =bdry B, so that S N\ A has the structure of an
analytic arc, except perhaps at a countable set H of points. Fov each 20 in
SN A -H let Y be the angle between SN A and the intervsection of S with the 1-
dimensional complex linear vaviety L. thvough 0 and z0. Then some positive Baive
measure P on A NS rvepresents 0, in othev wovds, satisfies the condition

SFd,u. = F(0) for each analytic function F on G . If ds denotes the arc-length

measure on S N A, then U is absolutely continuous with vespect to ds, and for the

Radon- Nikodym devivative gg we have the inequality
_E'_ < |COS wl
ds — 27R °

Proof. Let A N B=X, Let .« be the closed subalgebra of C(X) consisting of
all uniform limits on X of analytic functions on U. The Silov boundary o of .« is a
subset of (B N P) U (A NS). Let u be any Jensen measure on ¢ for 0. If X is an
analytic function on U vanishing on P and not at 0, then

- < log |M0)] < Slog |A] dpe,

sothat pu(c N BN P)=0. Thus p is a measure on A N S, as desired.

Consider now any measure 0 on A N S representing 0. Consider apomt z in
AN S H. Choose orthonormal complex coordinates z;, ***, z,, on c™ with z1 =R
and z =0 (2<i<n). Then zy = *+» =z, = 0 are the equations of L, so that if we
let z = z(s) be a function of the arc length s on S N A measured from the point z0
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the projection of z{s) on L has coordinates (z;(s), 0, ---, 0). Thus

dz;(s)
ds

|cos w(z°)| =

Now since z? = R and this is the maximum of ]zl | on S, an appropriate choice of
signs actually gives

le (S)
ds

=i cos z,b(zo).

Let 7 be the projection of " onto c! defined by u(z) = Rz 1 - The measure
V= ﬂ(y.) on G  represents Od and it is a measure on v = 7(A N S). Assume that
cos z,!/(z ) # 0, so that 1 = 7n(z”) € y and y is an analytic arc tangent to ‘

E={z: |z| =
at the point 1. Then 6(1 - r)"1 — o ag € = relf

choose X = A(8) so that (6 - A)(1 - r)'1 =h(¢) —« and %——» 1 as £ — 1 along y.

— 1 along y. We may therefore

Now the Poisson kernel for the unit disk is

1-r2

277 1-2rcos(0 -¢)+r?

D(E, ¢) =

where ¢ = rew. For all sufficiently small € > 0 we have the estimate
108 (-r®de >1-r2 58 do
27 e 1-2rcosp+r2— T 0 (1 - r)%+ r¢?
_ 22 nE
=1 r S d¢ =1+rarctan Eﬁ.
g ¢ +r-l(l-r)2  wr l-r

If we transfer the measure V to the unit circle E by use of the kernel D, the trans-
ferred measure will be (211)" d¢, the only measure on E representing 0. Therefore

emtag= | (pee, 9ane) | as.

Let now y, be the set of all § = re'? in vy with -t < 6 <t. Integrating the last

equation from ¢ = -t to ¢ =t, we get

Tt = S_tt { pee, pansras > Sy [Stt D(E, ¢)d¢] du¢)
|-

t-| o] 1-r?

-1
—>—(27T) S [S-t+|9| 1-2rcosgb+r2‘d¢:|dV(§)

£
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S %—j—?rarct l I)‘/__dv(C) > S arctan(—l—h—w—_ dv(¢),

Yt

>

where A = A(t). From this it follows that

lim sup V(’y)t)ﬁt-l <1,

t—0
Hence
lim sup v(y,) At <1,
t—0
or simply

, -1
lim sup v('yt)nt < 1.
t—0

If we let As be the part of A N S extending for length s on both sides of zo then
da I | cos ¥(z0)|

since |- |’ at z0 , it follows that
e s n(Ag) < | cos y(z0)] e sup |cos z,b(zo)]
im sup
50 S -— R 5—0 6 — TR

Therefore p is absolutely continuous with respect to arc length, and

| cos w(zo) i
— 27R

ds

as desired.
It remains to consider the case where z® € A NS - H and cos Y(z°) = 0. Here
let vg = v({¢: | ¢- 1| < 6 }), for each 6 > 0. The function

e 1 B x-(1+0)
h(%’)—ﬂtg_(1+6) T (x - (1+ 6))% +y?

is harmonic for ¢ # 1 + 6, and negative for |§‘| < 1., Thus

1< 7 = h0) = (@ av)

)

< vg max {n(e): |¢-1] <5, |¢] <

or

V5§46.

Combined with the above expression for

| this gives %‘ =0 at z° , as

E
desired.
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COROLLARY 1. Under the hypothesis of Theorem 2, length (A N S) > 27R.

COROLLARY 2. Theve exists a constant ¢ > 0, depending only on n, such that if
B is an open ball of radius R about 0 in C™, and if P is an analytic subsel of B,
and A a pure k-dimensional analytic subset of B - P, with 0 € A, then the 2k-
dimensional Hausdovff measure of A is at least cR2K,

Proof. This follows from Corollary 1 just as Lemma 3 followed from Lemma 1.

THEOREM 3. Let U be an open subset of C", and P an analytic subset of U.
Let A be an analytic subset of U - P of pure dimension k and finite 2k-dimensional
volume. Then A N U is an analytic subset of U.

Proof. Let V be any open subset of U containing P. Define a measure [y by
taking py (S) to be the 2k-dimensional volume of ANV N S. By Corollary 2 to
Theorem 2, iy € M("uvn, c, 2k) on V. Thus support puy € S( nuv ||, ¢, 2k). By
Lemma 5,

support vy € N(K||pyle?, 2x).

Now A N P C support py for all V. Also, ““‘V" can be made arbitrarily small.
Thus A N P has 2k-dimensional Hausdorff measure 0. By Lemma 9, AN U is an
analytic set, as desired.

Stoll [9] has shown that Theorem 3 implies that if A is a pure k-dimensional
analytic set in ¢™, such that v, 2k is pounded as r — «, where v, is the 2k-
dimensional volume of A N {z: (z| < r}, then A is algebraic. Stoll [9] was not
able to demonstrate Theorem 3 for general n and k, but got this condition for the
algebraic character of A by other methods.

4, CAPACITY

For an optimal generalization of the Remmert-Stein theorem, some notion of
capacity in " seems necessary. See Rothstein [5] for a Remmert-Stein theorem
based on capacity in cl. After introducing the appropriate notions, we shall prove
a Remmert-Stein type theorem (Theorem 4 below) which contains Rothstein’s result
and Lemma 9 above as special cases.

Definition 2. Let X be a compact Hausdorff space and « a subalgebra of C(X).
A Baire subset B of X will be said to have capacity 0 for .« if the set of all points
z in X - B that admit no Jensen measure u with p(B) # 0 is dense in X - B.

Definition 3. Let U be a bounded open set in C™, and B a Baire subset of
bdry U. Let . be the algebra of all bounded analytic functions on U, and ¢ the
spectrum of «Z, Let 0y be the closure of U as a subset of 0, sothat oy C ¢ and
oy contains the Silov boundary of . Let B consist of all points x in o that lie
over some point p of B, so that f(x) = f(p) for all functions f analytic in a neighbor-
hood of U. We say that B has capacity 0 relative to U if the set Q consisting of
all points in U that have no Jensen measure p on 0y with p(B) # 0 is dense in U.

LEMMA 10. Let U be a bounded open set in C", and let V be an open subset
of U such that B = (bdry V) N U has capacity 0 rvelative to V. Then V is dense in
U, and every bounded analytic function on V extends lo U.

Proof. Without loss of generality we take V to be connected. Consider first the
case n= 1, I B is not totally disconnected, there exists a disk
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D={z: |z -2z9| <r}

about some point zg of V such that the component C of V N int D containing zg
does not contain all of the set E = bdry D in its boundary. We may assume that

zg € 2. Let F=bdry C, and let pg be a Jensen measure for_zg on F. Since g
vanishes on B, we see that pg is actually a measure on E N F, Thus the projection
of g onto the complex plane is a Jensen measure v, for zg on E N F. Since

E N F is a proper closed subset of E, this is impossible. Therefore B is totally
disconnected. Hence V is dense in U.

Since B is totally disconnected, 1f z0 is any point in V there exists a simple
closed curve ¢ in V surrounding z0. Let 4 be the subalgebra of C(y) obtained
by restricting the functions in .« to 'y, and let 1 be its closure in C(y). Now 20
ha.s a Jensen measure for .,d on €, where e =y U (B N int y), and therefore on
v =+v. Thus evaluation at 29 is a pomt of the spectrum of ;. By Wermer’s
maximality theorem [10], it follows that all functions in ¢ are boundary values of
analytic functions on int y. Hence all functions in .« can be extended analytically to
int ¢, as desired.

Consider now the general case n > 1. Let Q be the dense Gg -subset of V con-
sisting of the points having no Jensen measure p. on 0y with ©(B) > 0. Let P be
any l-dimensional linear variety in ¢, intersecting £ in a dense subset of VN P,
and let Uy be any component of U N P containing a point of V. Let VN Uy =V
and By = (bdry Vg) N Ug. Now if B, were not of capacity zero relative to VO _
(where Vo is considered as an éJen subset of P and P is identified with (5: ), there
would exist a Jensen measure pu, for each z belonging to an open subset I‘ of V,,
relative to the algebra Z; of all bounded analytic functions on V,,, with uz (BO) > 0.
Let w: & — g be the restrlctlon map that takes bounded analytic functions on V
into bounded analytic functions on V. The adjoint map w* takes TV, into oy .

Thus w*(ug) = L, is a Jensen measure for z relative to the algebra ., and

1, (B) > ug(ﬁ 0).> 0. Hence I' C V - @, contrary to the fact that & N P is dense in
V 0 P, Thus By is of capacity 0 relative to Vy. By the case n =1 already con-
sidered, By is totally disconnected, Vg is dense in U, and every bounded analytic
function on V extends to Up.

Assume now that V is not dense in U. Then there exists a variety P as above,
with the additional property that Uy contains a point of int (U - V). This contradicts
the fact that V is dense in Uy. Hence V is dense in U.

Consider a bounded analytic function f on V. Let z© be any point of B. Choose
P as above, and so that in addition it passes through z 0 and intersects V ina point
of the component Uy of U N P containing z0, Since B N Uy is totally disconnected,
there exists a simple closed curve y in Vg surrounding z9. Take P to have equa-
tions z, = -+ =z = 0. There exists a neighborhood S of 0 in 6™~ such that

{Z: (ZI’ 0; °tty O) €y, (ZZn *ty Zn) € S}
is a subset of V. Thus f extends from V to
W={z:(z,,0,-,0) einty, (z,, =+, 7)) € S}

to be an analytic function of the variable z; in W and analytic in all variables in
V N'W. Thus f is analytic in W, as was to be proved.
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THEOREM 4. Let U be a bounded open setin C", B a closed subset of U, A
an analytic subset of U - B of pure dimension kK such that B C A. Let B be of
capacity 0 velative to the algebra A of all continuous functions on A that are ana-
Iytic on A. Let there exist an analytic map w of U onto a connected open subset S
of X that is proper on B, with n(B) #S. Then A NU is an analytic subsel of U.

Proof. We first reduce the problem to the case in which 7 is proper on A and
has countable level sets on A, To this end, replace B by the set of those points in
A at which A is not analytic. Then we may assume that A is analytic at no point of
B. If B is v01d there is nothing to prove; we therefore assume B is not void, and
consider z0 € B with

7(z%) € S N bdry 7(B).

Since ﬂ'l(ﬂ(zo)) N B is compact, there exist a relatively compact open subset U,; of
U and a relatively compact open subset S; of S such that

m(U;) =8, and 7(B N bdry U;) C bdry S, .

By [1, Theorem 1], we can find a mapping 7; of U into (Sk, uniformly near to 7 on
any compact subset of U, whose level sets on A are all countable. If S, is any con-
nected relatively compact subset of S; that contains 7(z0), we may take 7] SO near
to 7 that

7 (BNbdry U;) NS, =0
and

'nl(B) ns, #S,

Let U, =U; N ﬂil(Sz). Then 7; maps U, onto S, and

71(B Nbdry U,) NS, =0,
so that 7, maps B N U, properly into S,. Take

p € SZ N bdry WI(B N Uz).

Now I = ’iTll(p) N (BN U,) is compact, and ﬂll(p) N (A N U,) is countable. There
therefore exists a relatively compact open subset U3 of U, such that I' € U5 and

(bdry U3) Na7l(p) N (AU B) =
There thus exists a connected open neighborhood S; of p in ¢¥ such that
771(S3) N (bdry U3) N (A U B) =
Write
Uy =777 (S3) N Us.

Then 7] maps Uy onto S; and maps (A U B) N Uy properly into S3. Also,
BNU, #0, 7;(BN Uy) #S3. Therefore, if we can prove our theorem for the case
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where the map 7 is proper on A N U =A U B and has countable level sets on A, it
will follow in the general case.

Assume therefore that 7 is proper on A N U and has countable level sets on A.
Let K be any component of S - 7(B), and let L =S N bdry K. Then 7 maps
ANg (K) properly onto K. Associated with this map there is a multiplicity A,
such that for each p in K there exist points P, "5 P in A, counted with mu1t1-
plicities, such that 71(p =p (1 <i<A). As in the proof of Lemma 9 above, we see
that if a sequence }1» of points of K converges to a point p in L, then at least one
of the points p} converges to B.

Since the set 2 of points in A - B not having Jensen measures [ on A with
®w(B) > 0 is a dense Gg -set in A - B, there ex1sts a dense set of points p in K

such that p9, -+, p} are distinct and such that p € (1<i<N). For 0< 0 <1,

for every compact subset D of B, and for 1 < i < A there exists, by Lemma 3 of
[1], £ in & with

1= 00 > 5] I505° .
Choose D so that D= B N 7~ }(a(D)). Let g; be any analytic function on €™ with
g;,pd) =1, gl(pJ) =0 for j #i.
There exist constants r < 1, ¢;, -, ¢, with
e <o I I50 <xep?

Let £ be any positive number. There exist a constant ¢ and positive integers
N,, «-, N, , all depending on &, such that

N. N.
I 0 <e, g L0 < ec?
for 1 < i<, Define
A N.
g=2sgf 7
i=1

and let y = max{[g[|: 1 <i<A}. Then

1 1

lel <xme?,  lelp <rre™' 0.

Also, g(pg) =1 (1 < i< ). Define the analytic function f on K by
A
f(p) = II &(ps).
i=1

Then f is bounded, f(p°) = 1,

(*) l£ll < Nel™,
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and, since at least one of the points p; converges to B, as p — L,

A-1
) It < lel® lellp,  where M=L na(D).
Write a =1 -2(1 - ). Then @ <1, and by taking 6 near enough to 1 we can
make « arbitrarily near to 1. We compute, from (*) and (¥):

lel® 2] 5 < g) @M g loe

1 \a+A-1 1 l-o
] -1.1-
< Aye’ ry(ec ) 6) = 7eh,

where 7 is a constant. Thus, for £ small enough,
a 1-a _ .0
121 lellg, ™ < 1=10").

This shows that p® has no Jensen measure § on ok with p.(l\?i) >1-o0. Since M
can be an arbitrarily large compact subset of L, and since « can n be arbitrary, p0
does not have a Jensen measure on L. with [J.(L) > 0. Since p can belong to a dense
subset of K, it follows that L is of capacity 0 relative to K. By Lemma 10, K is
dense in S and every bounded analytic function in K extends to S. It follows as in
the proof of the Remmert-Stein theorem that A N U is an analytic subset of U, as
was to be proved.

Actually, the hypothesis that B is of capacity 0 relative to «« could be replaced
by the following slightly weaker assumption, as the proof of Theorem 4 shows. Let
«Z, be the algebra of all bounded analytic functions on A, and o, the closure of A
as a subset of the spectrum ¢ of . Let By consist of all points p in o, that
lie over a point x in B, in the sense that some net (or filter) in A converges to x in
the topology of A U B and converges to p in the topology of 05 . The weaker as-
sumption is then that the set of points of A having no Jensen measure p. for the
algebra £, with p.(BO) > 0 is dense in A.

Here is a justification of the definition of capacity given in Definitions 2 and 3
above. The proof is simple but tedious, and we omit it,

Justification. Let T' be a compact subset of the complex plane, and y a Jordan
curve surrounding T, so I' C int y. Let «Z be the algebra on X =9 U int ¥ obtained
by taking the closure of all polynomials. Let p be any point of int » - I". Then the
following statements are equivalent.

(a) T" has capacity 0 in the usual sense,

(b) if p is any Jensen measure for p on X, relative to the algebra ¢, then
p(r)=o0

(c) T has capacity O relative to ¢, in the sense of Definition 2,

(d) T has capacity 0 relative to the open set int y - I", in the sense of Defini-
tion 3.
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