A NEW TREATMENT OF THE HAAR INTEGRAL
Glen E. Bredon

We shall present a new proof of the existence and uniqueness of a right invariant
integral on a locally compact topological group. We believe that the present ap-
proach has at least an intuitive advantage over the classical one (see [1]). The pos-
sibility of constructing the Haar integral by the present method was suggested to us
by Professor A. M. Gleason.

The reader need know no more than the definition and some simple properties of
locally compact topological groups, but a previous acquaintance with the Haar inte-
gral would ease the task of reading this note.

Let G be a locally compact group. If f is a real valued function on G, then the
closure of the set of points x € G such that f(x) # 0 is called the support of £ and
is denoted by spt(f). Let L be the set of continuous real valued functions on G with
compact support, and let L* be the subset of L. consisting of non-negative functions.
For any function f on G and any element y € G we let Ry(f) denote the function
with Ry(f)(x) = f(xy). Note that RY(RZ(f)) = Ryz(f).

DEFINITION 1. A right invariant integral on G is a veal valued function 1 de-
fined on L. such that:

(1) If + g) = I(f) + I(g);

(2) I(af) = al(f), wheve a is a veal numbeyr;
(3) f e LY and f# 0 imply that I1(f) > 0;
(4) I(Ry(f)) =I(f) for all y € G and f € L.

We note that if I is defined only on L* satisfying these conditions (with a posi-
tive in (2)),then I can be extended to a right invariant integral in one and only one
way. In the remainder of this note we shall restrict our attention to functions in Lt.
All summations in this note are finite.

We shall briefly describe the ideas of our construction of the integral before
entering into the details of the exposition. Let g € L'*, g # 0 be fixed. For a func-
tion f € Lt (f # 0) we say that g dominates f (written g > f) if g can be cut up and
the pieces right translated and added together in such a way that the new function
dominates f pointwise. (That is, g dominates f if we can write g = Zg; in L¥ and
find points x; in G so that ERXi(gi) > f pointwise. The definition we actually adopt

is slightly different but equivalent. See Definitions 2 and 3 and statement (2) below
Definition 3.) We then consider the sets {s|sg < f} and {s|sg> f} of positive
real numbers, the first of which is seen to contain all sufficiently small numbers;
the second, all sufficiently large numbers. It is shown that these sets do not inter-
sect in more than one point (essentially Theorem A) and that there is no gap between
them, except for possibly one point (essentially Theorem B). These facts, although
intuitively plausible, are by no means easy to show, and it might come as a surprise
to those who are unacquainted with such matters that the first mentioned fact would
not necessarily be true if both right and left translation were allowed (see the
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remark below Theorem A). In fact, if both right and left translation are allowed and
if G does not possess an integral which is both right and left invariant, then each of
the sets {s|sg < f} and {s|sg> 1} consists of all positive real numbers. The
reader is invited to inspect the multiplicative group of all matrices of the form

(5 wo

with regard to this effect.

Once the above facts are established, it follows that the closures of the sets
{s]| sg < £} and {s|sg> f} intersect in exactly one point. This point is defined
to be the integral of f. The integral, of course, depends on the choice of g, since
the integral of g is clearly unity. The facts that this actually defines an integral
and that this integral is essentially unique (up to a multiplicative constant) are then
easily established.

It might be of interest to note that our treatment makes no use of the axiom of
choice, nor would the use of the axiom of choice seem to aid matters at all. Also,
as a byproduct of our proof, we obtain an interesting, though not unknown, approxi-
mation theorem (Corollary 2 of Lemma 5). This result can be obtained more easily
once the existence of an integral is established, and, in fact, it is used implicitly in
at least one of the uniqueness proofs in the literature.

We shall now proceed with the details of our constructions.

DEFINITION 2. Iff and g ave in LT, we wyite £ ~ g provided therve exist
Junctions £y, ---, £, in Lt and elements x,, +++, X, in G such that £ = Zf, and

g = ERXi(fi).

LEMMA 1. Iff, ge L* and g=3g; (in L*), then £ ~ g iff theve ave functions
f; e LY with £=21; and 1, ~ g;.

Proof. Suppose that f ~ g, so that there are functions g3 with g =2 g"i and

n

f= ERX_(gJ'.) for some points x; € G. The function g; ; defined by
J 2
g;(x) gi(x)
g; ;) =
0 , ifgx)=0

is continuous, since gi’j(x) < g(x); and, moreover, it follows that g; = = j8i,;j and
g"i =Z; 8;,j° Define f, = Zj ij(gi,j) ~ g;- Then we see that
J

i i,j

The converse is easy and is left to the reader to prove.
COROLLARY. ~ is an equivalence velation. »
Proof. Symmetry and reflexivity are trivial. For transitivity suppose that f ~ g'
and g ~ h. Then there exist functions g; and points y; with g = 2 g; and
h= ZRYi(gi). By the Lemma, f= Z{;, where f; ~ g; and hence f; ~ Ryi(gi). Then,

again by the Lemma, f=Z f; ~ ERy_(gi) = h.
1
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LEMMA 2. Let f € L*, and let U be any open subset of G. Then theve exists a
function ¢ € Lt with spt(p) c U such that f ~ ¢.

Proof. It suffices to write £ = Z f; where f; is such that spt(f;) is contained in
some right translate of U. Let V be open with V compact and V C U. Let

Ui Vx; be a finite covering of spt(f). Let h; € Lt be such that hy(x) = 1 for

x € Vx; and such that spt(h;) C Ux;, and let h = Zh;. Then h(x) > 1 for x € spt(f).
Let f; = fh;/h (zero outside spt(f)). Then X f; = fh/h = f and spt(f;) c spt(h) c Ux,,
as was to be shown.

DEFINITION 3. Let f, g € LY. We write £ > g if theve exist functions f' ~ 1
and g' ~ g such that £'(x) > g'(x) for all x.

Some easily verified properties of this relation are listed below. The parentheti-
cal remarks are intended to aid the reader with some of the less obvious portions of
the proofs.

(1) £> g iff £=1; + £, (in LY) with £; ~ g.

(With the notation of the definition, if £ > g, then f ~ f'= g' + h for some h € L™,
By Lemma 1, f = f; + f,, where f; ~g' ~ g and f, ~ h.)

(2) £f> g iff there exists an f' ~ f with £'(x) > g(x) for all x.
(Let ' =g+ f,, where f, is as in (1).)

2 2
(3) £> g and g > h imply that £> h.

(g > h implies g=g; + g, with gy ~h. By (2), f> g, so that f=1; + f, with
£,~g, ~h. Thus £> h by (1).)

(4) For any £, g € L™ with g # 0 there exists a number s such that sg > f.
(Apply Lemma 2 to the set U= {x| g(x) > 0}.)

(5) £; > g; (i=1, 2) imply that £, + £, > g, + g,.

(6) £> g and s> 0 imply that sf > sg.

THEOREM A. If f € L*, £#2 0, then £> sf implies that s < 1.

The proof will be given later.

Remavrk. If one allows both left and right translation in all our definitions, then
Cheorem A would be false in general. In fact it is easily seen that Theorem A would
10ld if and only if there is an integral on G which is both left and right invariant.

The following corollary is of interest, but will not be used.
COROLLARY. f> g and g > imply that £ ~ g.
Proof. If f ~g is false, then g > f implies that g =g; + g, with g; ~f and
> #0. Then g, > ef for some € > 0 by (4), and then
f>g=g;+g,>f+ef=(1+¢e),

ontrary to Theorem A.

Theorem A implies immediately that if £, g € L* with g # 0, then

sup{sl sg < f} < inf{s[ sg > f}.
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We claim that these quantities are, in fact, equal, and we will define the integral of {
to be their common value (with g fixed).

THEOREM B. If f,ge LY, g #0, and € > 0, then there exists a number t such
that £ < tg < (1 +¢e)f.

The proof of this theorem will be given later.
COROLLARY. sup{s|sg< f} = inf{s]| sg > f}.
Pyroof. If t is as in Theorem B, then

inf{s| sg > f} <t< sup{s|sg< (1 + &)t} = (1 +¢)sup{s|sg< 1},

and this, together with the inequality resulting from Theorem A, yields the equality.
DEFINITION 4. Let ge Lt, g# 0. For fe L* let

I = supis|sg < f} = inf{s| sg > £}.

THEOREM (Existence). Iy is a vight invariant integral.

Proof. We need only show additivity. Using the definition I (f) = 1nf{s| sg > f},
we see that if sg > f; and tg > f,, then (s + t)g > £, + f,, and hence

S + tZIg(fl + fz).
It follows that I (fl) + I,(f,) > ILy(f; + £5). The opposite inequality is proved in a

similar manner us1ng tge def1n1t10n Ig(f) = sup{ s, sg < f}.

THEOREM (Uniqueness). If I is any vight invarviant integral and if g € LY with
g#0, then 1=1(g) Ip.

Proof. We may assume for convenience that I(g) = 1. Then we must show that
I(f) = Ig(f) for all f € L*, Clearly, f ~ h implies that I(f) = I(h). Also, f(x) < h(x) for
all x implies that I(f) < I(h). Thus we see that f < h implies that I(f) < I(h). Now,
if sg > £, then s = sI(g) > I(f). Thus

L) = inf{ s| sg > £} > 1(f) .
But, also, tg < f implies that t = tI{g) < I(f), and thus
I (f) = sup{t|tg < £} < 1(8).

Thus 1 (f) = I(f), as was to be shown.

The remainder of this note will be devoted to the proofs of Theorems A and B.
To motivate the procedure we note that Theorem A is trivial if a right invariant inte
gral exists. Thus we shall replace the argument in which we use an integral by one
in which we use the operation of adding the values of a function at “almost right
equally spaced points.” To prove Theorem B, it will be seen to be sufficient to ap~ ;
proximate the function f uniformly by a linear combination Z ¢;R_ (¢) where ¢ ~ g,

since Zc; R, (cj)) ~(Z¢c;)¢ ~ (Z c,)g. Again we try to “approximate” the argument tha

if there were to exist a left invariant integral, then, if spt(¢p) were contamed in a
sufficiently small neighborhood of e, £f(x) would be close to
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j‘ f(y ~1) ¢(xy) dy
S 6(y) dy -

On the other hand, the latter is approximately equal to

2 iy olxy;)
27 $(y3)

where the y; are “almost left equally spaced points” sufficiently close together. Al-
ternatively one could prove these theorems using the approximation to an integral
employed in the usual treatment of the Haar integral. Such an approximation is in-
variant and almost additive, whereas ours is additive and almost invariant. We now
begin the details of the proof. The intuitive notion of “almost left equally spaced
points” is made precise by the next lemma.

LEMMA 3. Let C be a compact subset of G and N be a compact neighborhood
of the identity element e € G. Let UcC N be a symmetvic open neighborhood of e,
and let {in} se1 be a covering of CN by left translates of U with a minimal num-
ber of elements. For any x € G let J= J(x) = {j € I| xxj € C}. Then there exists
a one to one mapping c: J — 1 (into) such that Xg(5) € XX U2 for all j € J.

’

Proof. Let j;, +*+, j,, be distinct elements of J, and assume that
xijUU ---Uxxjn U

meets the sets x; U, x; U, ---, x; U and no others. Then

1 2 m
n m
UXX- Uc l,x 18]
J 1
k=1 'k k=1 Kk

since xx;Uc CUcC CN for j € J. Thus n < m, for otherwise one could replace the
sets xij (k =1, ---, n) by the sets x‘lxikU (k =1, -+, m) and obtain a smaller

covering of CN.

By the “marriage problem?” lemma below, we can find a one to one mappirig
0:d — I such that xx: U N x G U # B. Thus, since U is symmetric 5 € xx.U%
j o(j) » ¥o(j) ivo
as was to be shown.

LEMMA 4 (The marriage problem). For a certain finite collection of boys and
givls say that every subset of k boys (k= 1, 2, ...) know among them at least k
givls. Then it is possible to marry each boy to a girl that he knows (not violating
the law against bigamy and assuming that everyone is willing).

The precise mathematical formulation and the proof of this well-known lemma
are left to the reader.

LEMMA 5. Let K. be a compact subset of G, let € > 0, and let g € L+ with
g # 0. Theve exist points x; € G such that
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2o e(xx;) )
22 g(x;)

Jor all x € K. Moveover the x; carn be chosen so that the above inequality is simul-
taneously true for any finite number of given functions g.

11 <¢

Proof. Since the last statement follows easily from the proof, we shall restrict
attention to the case of one function g.

For any two sets U, V with non-empty interior and compact closure we let
[U, V] be the least number of left translates of U needed to cover V. Clearly,
[u, wl<[u, V][V, W]

Let C = spt(g) U K ! (spt(g)). Let a = sup{g(x)| x € G}, and put
V = {x]|gx > 2a/3}

and W = {xI g(x) > a/3}. Let N be a compact neighborhood of e in G such that
VN c W. Choose 6> 0 such that 6 < (ag)/(3[V, CN]). We can find a symmetric
neighborhood U of e with U c N such that x-ly € U2 implies that |g(x) - g(y)l < 6.

With these choices let {x; U};er be a minimal covering of CN.

First, using only the fact that C O spt(g), we see that if g(xx;) # 0, then xx; € C,
and hence i € J = J(x) (x fixed, but arbitrary). Thus xXg(;) € xx; U* which implies
that [g(Xo-(j_)) - g(xxi)l < 8. Thus it follows that

22 glxx;) < 27 (g(xg(:)) + 0) < 27 (g(x;) + 0) = 27 g(x;) + 8[U, CN].
i€l ieJ i€l i€l

However, notice that if x; U NV # @, then x; € VU c VN c W, and hence
2g(x;) > [U, Via/3.

Thus

6[U, CN] _ 36[U, CN] 3[v, CN]
2ig(x;) SRR

We now see that

______Eg(xxi) <1l+eg,
2g(x;)

using only the fact that C D spt(g).

Second, choose x € K, and put
C' = xC = xspt(g) U xK 1 spt(g) O spt(g) .

The sets xx; U give a minimal covering of XCN = C'N. Put y; = xx;. Then, as
above, we see that

Zigxly) < 2Zgly;) + 6[U, CN]
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(since [U, CN] =[U, C'N]). Thus
Zrglxx;) > 2iglxy) - 6[U, CNI,
and it follows that

2o g(xx3)
2 g(xy)

>1-¢.

COROLLARY 1. Iff~ g, then, given € > 0, therve exist points V; € G such that

2. 8(y;)
Ef(Yj)
Proof. Let f=2Zf; and g(x) = Z f;(xx;) for all x. We shall use Lemma 5 in its

equivalent “other s1ded” form for the funct1ons f; and K= {x } to obtain points
y; € G such that

-1 <e

£: (v + X
lz-ll—(ylﬁl—l <g foralli.

| 22;1(v)
It follows that .
Ziely) | Zi205h05x) <
275 £(y5) 22 Z) £:(v5)

since, for positive a; and b,, |(ai/bi) -1 | < g for all i, implies that
|20 a; - Ziby] < Zia; - by| <eZb;

and hence that |(Za;/Zb;) - 1| < e.

Proof of Theorem A. Suppose f > sf, that is, £ ~ g with g(x) > sf(x) for all x.
Given ¢ > 0, Corollary 1 shows that there are points y; such that

> 228(y3) > s27 £(y;) _
20 f(yy) . 2y

1+

This must be true for all ¢ > 0, and thus s < 1 as claimed.

COROLLARY 2. Given f € L* and € > 0, there exists a symmetvic neighbor-
hood U of e such that for any g € L™ (g # 0) with spt(g) € U we can find constants
c; > 0 and points y, € G such that

If(X) - Ecig(xyi)l < e
Jor all x € G. Also it may be assumed that spt(= ciRy_(g)) C U? spt(f).
' 1
Proof. Let U be symmetric and such that xy-1 € U implies that

[f(x) - £7)| < &
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(e' is to be chosen later). Take K in Lemma 5 to contain U? spt(f). Let g have
support in U, and apply Lemma 5 to obtain points y; € G such that

—Z—E{(—XYi—)— 1] < g" forall xe K.
2 g(y;)
Then, for x € K,
£(x) - Ef(x) g(XYi) < £(x)e" .
Zg(yi)

Also, noting that g(xyi) # 0 implies that xy; € U and hence that
lix) - ty; ] < e,

we conclude

2 ety D01 ety | _ 1 - 157D eayy)

22g(y;) 27 g(y;) 22g(y;)
< SIM —<- 8'(1+8")'
2Zig(y,)
Thus
2 f(y L :
f(x) _ (yl )g(XY1) _<- f(X)S" + E' (1 + E") < £
Eg(yi)

if ¢' and &" are suitably chosen. We define c; = f(yi'l)/E g(y;)-

Now, if x % U? spt(f) but x € spt(Ryi(g)) C Uy;j 1, then y; € x-1 U; hence
spt(Rg;i(g)) c U%x. Thus spt(Ryi(g)) N spt(f) = @, and we may discard the function
Ry (g). With this understanding we see that the inequality |f(x) - Zc; g(xy,)| <& is
trivial for x «!E U?% spt(f) and hence for x t{E K.

LEMMA 6. If f, g € Lt, f(x) > g(x) for all x, and f # g, then there exists a
Junction ' ~ £ such that £'(x) > g(x) for all x € spt(g).

Pyoof. h=1-g e L+, and h is positive on some open set U. Let

n

spt(g) « U Uxi'l,

i=1

and put f'=g + Z)in(h)/n.

Proof of Theorem B. By Lemma 6, there are functions h ~ (1 + £/2)f and
k ~ (1 + €)f such that h(x) > f(x) for x € spt(f) and k(x) > h(x) for x € spt(h). Let
C be a compact set with spt(h) C interior (C) and C cC interior (spt(k)), and let U
be a symmetric neighborhood of e such that U% spt(h) c C. Let ¢ ~ g be such that
spt (¢) < U.
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Let 6 > 0 be smaller than both
inf {h(x) - £(x)| x € spt(f)} and inf{k(x) - h(x)| x e C}.
By Corollary 2 of Lemma 5, there exist constants c; > 0 and points y; such that
|h(x) - 20c;o(xy;)| < 6 and spt (ZciRyi(qs)) c U%spt(h) c C.
Then we see that f(x) < Tc;¢(xy;) < k(x) for all x € G so that £f< tg < (1 + €)f for
t=2Zc;.
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