SOME REMARKS ON UNICITY AND CONTINUITY THEOREMS
FOR ORDINARY DIFFERENTIAL EQUATIONS

Maurice Heins

1. INTRODUCTION

In the recent text of Birkhoff and Rota on differential equations [1] proofs of
unicity and continuity theorems are referred to properties of functions f that satisfy
a differential inequality such as

(1.1) f' < Kf,

where K is a constant. This book considers ordinary differential equations for

the case of finite dimensional vector spaces. The same approach is to be found also
in [5] for the treatment of unicity theorems. The object of the present note is to
make and justify the observation that properties of continuous functions satisfying a
simple extension of (1.1) permit us to treat in a straightforward manner unicity and
continuity questions for first order ordinary differential equations with solutions
taking values in a given normed vector space. It will be seen that the present ap-
proach treats unicity and continuity questions where the Lipschitz condition is re-
placed by a condition of Osgood type (see [4, pp. 146-148]) and the criterion is of the
“almost everywhere” kind envisaged by Carathéodory [2, p. 673]. Results of the
same nature—more restricted but, by way of compensation, tractable by elementary
means—are also obtained when the Lebesgue aspects of the criterion are suppressed
and the function g is taken to be the constant one. For a general study of unicity and
continuity theorems reference is made to [3].

I am greatly indebted to Professor Cesari and the referee for their valuable
suggestions.

2. A BASIC THEOREM

We consider a continuous real-valued function f on a bounded closed interval
{a < x< b}. We denote the lower right derivate of f at x by pf(x) and the lower
left derivate of f at x by Af(x). We suppose that g is an integrable function on
{a < x< b} which takes values in the extended real line and that

(2.1) G(x) = ng(t) dt.

Let ¢ denote a function taking finite real values, the demain of which consists of the
finite reals, and which satisfies:

(1) ¢'(x) exists and is nonnegative, x # 0;

(2) lim ¢(x) = -0, lim ¢(x) = +0;
xlo xTO

(3) ¢(0) = 0.
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The following theorem will be seen to serve as a base for unicity and continuity
studies.

THEOREM 1. Suppose that pf(x) < +o when £(x) # 0 (a < x < b) and that for
almost all x for which f(x) # 0,

(2.2) po © f(x) < g(x) .

Then each of the sets {f(x) > 0}, {f(x) = 0}, {f(x) < 0} is connected. Further
f(x) > 0 = {(y) implies x <y, and 0 = f(y) > f(z) implies y < z. On the fivst (third)
set ¢ o f - G is nonincrveasing.

The theorem vemains valid if “p” is veplaced by “\”,

Proof, We start by showing that ¢ o f - G is nonincreasing on each component
of {f(x)> 0}. Suppose for the moment that inf g > -, We introduce a nonnegative,
lower semicontinuous, integrable function h on {a <x<L b} which takes the value +
at each point of the set of measure zero consisting of the x for which f(x) > 0 and
either (2.2) fails to hold or g(x) is not the derivative (finite or not) of G at x. The
function h may be constructed in the well-known manner as the restriction to
{a < x< b} of the sum of the characteristic functions of open sets On (n=1, 2, --*)
each of which contains the set of zero measure in question and which are such that
the sum of their measures is finite. We also introduce a positive number £ and let

(2.3) Gg (%) = Sx(g + gh)dt.

It is immediate that the lower right derivate of ¢ o f - Gg is nonpositive at each
point of {f(x) > 0} different from a. Consequently, ¢ o f - G; is nonincreasing on
each component of {f(x) > 0}; see [3, p. 534]. On letting ¢ — 0, we see that the
same conclusion holds for ¢ o f - G, The fact that ¢ o f - G is nonincreasing on
“each component of {f(x) > 0} when inf g = -~ follows on noting that, for each finite
constant A, the inequality (2.2) holds for almost all x of the set {f(x) > 0} when g
is replaced by max {g, A}

Of course, the same result holds if “p” is replaced by “A”.

It is now easy to see that ¢ o f - G is nonincreasing on each component of
{f(x) < 0}. It suffices to introduce ¢,(x) = -¢(-x) and f,(x) = -f(a + b - x) and to ob-
serve that

(2.4) Ap o f,(x) = ppofla+b-x).
The argument is concluded by noting that the map
x—¢,0f(x)+ Ga+b-x)

is nonincreasing on each component of {fl(x) > 0} and thereupon drawing the conse-
quence that ¢ o f - G is nonincreasing on each component of {f(x) < 0}.

We next show that the set {f(x) = 0} is connected. If this were not the case,
there would exist a component of {£(x) > 0} or of {f(x) < 0} at the endpoints of
which f vanished. However such a component cannot exist by virtue of the monotone
character of ¢ o f - G and the condition (2) imposed on ¢. Further, if {f(x) = 0} = 8,
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sup{ f(x) > 0} < min{f(x) = 0} < max{f(x) = 0}
< inf{f(x) < 0} .

All the assertions of the theorem follow.

3. UNICITY AND CONTINUITY THEOREMS
We consider the differential equation

(3.1) y'=Fx,v¥)),

where F is a function taking values in a normed vector space B and the domain D
of F is a subset of the Cartesian product {a < x < b} x B, the projection of which
under (X, y) — x is the interval {a <x<L b} itself. We suppose that a < c < b.

Unicity. The following unicity theorem subsumes the usual unicity theorems in-
volving Lipschitz conditions (¢'(x) = x~!, x> 0) or Osgood conditions

@' = [y®]*, x>0,
where Y is a continuous function defined on the nonnegative reals satisfying
1
Y(0) = 0, Y(x) > 0 for x> 0, and S [W(x)]"1dx = +).
4]

THEOREM 2. Let y and z denote solutions of (3.1) salisfying y(c) = z(c). Sup-
pose that theve exist a nonnegative integvable function g on {a <x< b} and a func-
tion ¢ satisfying the conditions stated in Section 2 such that for -~ almost all x
(a<x<b) either (1) y(x) = z(x), or (2) y(x) # z(x) and

(3.2) ¢'[|yx) -zl - [F[x, y®)] - Flx, z2x)]]| < gx.

Then y = z.

Proof. Setting f= |y - zl, we observe that f satisfies almost everywhere the
inequality

po © £(x) = ¢' [£(x)]pf(x) < g(x)

when f(x) > 0. Further setting f,(x) = f(a + b - x), we see that f, satisfies almost
everywhere the inequality

pp o f,(x) < gla+Db - x)

when f(a + b - x) > 0. The theorem now follows from Theorem 1.

Continuity. Let {z} denote a family of solutions of (3.1) which satisfy (3.2) with
respect to a given solution y of (3.1). Application of Theorem 1 yields the inequality

¢[|20) - y=) 1 < ol]z(c) - y() ] + |GEx) - Gle)|, a<x<b.
It follows that

|z -yl = max |z(x) - y&)|
' anSb
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tends to zero with lz(c) - y(ec) I This observation leads at once to standard con-
tinuity theorems concerning the dependence of a solution on its initial value since

IZ(XZ) - Y(Xl)l < IZ(XZ) - Y(Xz)l + |Y(X2) - Y(Xl)l
< lz -yl + Iyt -y
The use of derivate inequalities is also available for the study of continuity ques-
tions involving approximate solutions when hypotheses of the Osgood type hold. By
way of illustration, we consider the following situation without insisting on great

generality (see [1, pp. 105-107]). Let  be defined and continuous on {0 < x< +w},
where ¥(0) = 0, Y(x) > 0 for x> 0, and the Osgood divergence condition

(3.3) Sl[v,l/(x)]'ldx = +oo
0
is fulfilled. We suppose that a < ¢ < b, that € > 0, that y is a solution of (3.1), that
z is a differentiable function on {a < x< b} such that
{x, z(x))|a<x<b}cD
and
|z'(x) - F[x, z(x)]| <, a<x<b,
and, finally, that
|F[x, y®)] - Flx, 20]| < ¢[i®], a<x<b,
where f = Iy - z|. Then

£(x)

£(c)
dy dy
3.4) S, vorme s k-l guiee asxgv.

That the inequality (3.4) holds may be seen by noting that
pi(x) < |Flx, y®)] - Flx, zx)]| + |Flx, z2x)] - 2'x)|
< pli)] + ¢, a<x<b,

and that a corresponding inequality holds for the map x — f(a + b - x), and that, as a
consequence, the lower right derivates of

(X) dy
= j‘i Y(y) + ¢

and
f(atb-x
( ) dy

X_’Sl vy v e
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do not exceed one on {a < x < b}.

From (3.4) we conclude by an elementary argument: given 53 > 0, there exists a
6> 0 such that if max {¢, f(c)} < 6, then f(x) <7n,a<x<b.
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