PACKING INEQUALITIES FOR CIRCLES

Philip J. Davis

1. INTRODUCTION
Let the three non-overlapping discs C;, C,, C3 lie inside the unit disc C:
lzl < 1. Let r, (i=1, 2, 3) designate the radius of C;, and let d; designate the
distance from the center of C; to the origin. Then

2 2 2
(1) dyd,d; + r{+1; +r3 < 1.

In this paper, we shall prove (1) and similar inequalities for nonoverlapping discs C;
contained in the unit disc C. Let C; designate the open disc

2 2 2 s
(X‘Xi) +(Y'Yi) <ri (1=1’ 2, "ty n)'

Our goal is to find simple inequalities relating the quantities x;, y;, r;. As for ex-
ample, from geometry, we see that a necessary and sufficient condition that C; and
C; do not overlap is that (x; - xj)z + (y; - yj)2 > (r; + rj)z.

2. INEQUALITIES DERIVED FROM REAL VARIABLE THEORY

Note that if f(x, y) is a non-negative integrable function defined on C, then

) é § SCi f(x, y) dxdy < SSC £(x, y) dxdy .
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If f is positive, equality in (2) holds if and only if n=1 and C; = C. For a fixed f,
each integral in the left hand member of (2) can be expressed in terms of Xi Vip T
Simple selectmns of f are: f(x,y) = 1; f(x,y) = 1 + Ax + By with A% + B4< 1;

f(x, y) = x% + y2; f(x, y) = xy + 1/2. These selections lead to the inequalities

n
(3) 27 ri‘?‘ <1 (Area Inequality)
i=1
n
(4) 2 (Ax; + By; + l)ri2 <1 (Moment Inequality)
i=1
n
(5) 22 {rf + 2r7£ (xiZ + yf) ¥ <1 (Moment of Inertia Inequality)
i=1
n
(6) 271+ 2xiyi)rf:f <1 (Product of Inertia Inequality)
i=1

Equality holds if and only if n=1, x; =y; =0, r; = 1. Similar inequalities can be
obtained in n dimensions by employing n-fold integrals.

3. INEQUALITIES DERIVED FROM COMPLEX VARIABLE THEORY

We shall use the mean value theorem in the following form.
LEMMA 1. Let D designate the disc |z - zol <r. If f is vegular in D, then

) S S £(z) dx dy = 7r? £(z,) .
D

[~ o]
__ Proof. The expansion f(z) = Z, _o(mn! =) (zg)(z - zg)" converges uniformly in
D. Hence,

S‘S'D f(z) dx dy = OZ}O (1)1 f(n)(zo)SSD (z - zo)"dxdy .

Set z - zy = pelf, Then

2M AT .
SS (z - o) dxdy = S S ptleinfgsdg.
D 0 0

This last integral equals ar if n=0 and equals 0 if n=1, 2, *-- . Substituting
these values in the infinite series yields (7).

THEOREM 2. Let C, (i=1, 2, *=, n) designate n discs that lie in S: |z| <R
without overlapping., Then, if zZ, = Xy + 1y,

n
+Z)riZ<R2'.

i=1 -

22122 *°* 2,

8) R _
R
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In particulay, if S is the unit disc C,

(8") |zy2, ez, + 20 rE< 1

i=1
and, if further n = 3, we obtain the inequality (1).

Proof. Set B=S - U?=1 C.. Let f be a function that is regular in S. Then

io

(9) SSS f(z) dxdy = §1 SSCif(z)dxdy + S‘S‘B f(z) dxdy .

Using the Lemma, we see that

(10) TR% £(0) = E mr; f(z ) + SS f(z) dxdy .

i=1

Now select

n

f(z) = II

k=1 R - zz

R(z - z,)

k

It is easily verified that f is regular in §, that f(z ) =0 (k= 1, 2, -+, n), that
£0) = (-D™ II (z, /R),

k=1

and that |[f(z)| =1 for |z]|=R. By the maximum principle, it follows that |f(z)|< 1
in S. Inserting this information in (10), we find

(11) 7R (-1)® H (z /R) = 55 f(z) dx dy .
k=1
Hence, taking absolute values, we conclude
n
(12) RZ II (|24 ] /R) < 155 dxdy = R%- 20 rZ.
i=1

This completes the proof.

Several remarks are in order. In the first place, the upper bound in (8) is at-
tained if n= 1, z, - 0, r; =R. Inthe second place, the quantity

| (Izk[/R)
k=1
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emerges as a simple lower bound for the area of the multiply connected region B.

If zj, ---, z, are all located near {|z|= R}, then this quantity will be near 7R?, and
the areas of the discs C; are therefore small—as indeed they should be. If one of
the z; is zero, this term contributes nothing, and (8) reduces to the area inequality
(3). This degeneration can be avoided by the following simple device.

THEOREM 3. Let the C; be n non-overlapping discs that lie in the annulus A:
0< p< |z|<R. Then,

n n
2
(13) ®%- pHII (Jzxl/R) + p% + 2 r2 < RZ.
k=1 i=1
Proof. Write B=A -{J, C;. Then,

R” - p?)1(0) = (o) dxdy = 2 mr£(z, £(z) dx dy .
1@ - o910 = [ § t@axay= D mise+ [ se)axay

i=1

By selecting f as before, there is obtained the inequality
n n
2 2 1 2 2 2
® - o) I (|2;|/R) <2 (§ axay= ®* - p* - T 2.
i=1 B i=1

A geometrical interpretation of (8) or (13) would be interesting. For the cases n= 2
and n = 3, O. Shisha, in a written communication, has given an algebraic proof of
(8') (with a sharp inequality sign) and has strengthened (1) to the sharp inequality

d1d2d3+r1r2r3+r%+r%+r%<1.

4. RELATED INEQUALITIES

THEOREM 4. Let f be rvegulay in C: lzl < 1 and veal on the real axis, and let
NE(z) > 0 in C. Then,

(14) (u- 1% fu) + u2fu- 1) <£0) (O<u<1).

Equality holds for u=0 and u = 1.

Proof. Select z; =u, rj=1-u; Zz,=u-1, r=u, 0<uL 1. Then the discs
Ci and C; are contained in C, do not overlap, and are tangent at z = 2u - 1. Hence
from (10),

1

£0) - (u - 17 5w) - v f(u - 1) = 1 SSBf(z)dxdy - %SSB % £(z) dx dy > 0.

Example. (u - 1)z et + % vl <1 (0<Lu<L ).

Similar inequalities can be found by taking several points on the x-axis.

The hypothesis of regularity on { [z| = 1} may be dropped, and (14) (with
0 < u< 1) can be compared with the following familiar “one point” inequality [3;
. 169]: if f is regular in {Izl < 1} and 9%£(z) > 0 there, and if f(0) = 1, then
ﬁ)f(z)l <(1+ |z|)/(1 - |Z|).
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THEOREM 5. Let f(x, y) be non-negative and harmonic in C: |z| < 1. Let T
designate the set of points (X, y) with £(x, y) > 0. Then, if the Cy, *»*, C,, are non-
overlapping discs lying in C whose centers (x;, y;) liein T,

(15) 27 r2< £(0, 0)/0.
i=1

Proof. From (2) and the mean value theorem, we see that

n

n
o2 ri2 SE f(x;, yi)l:',i_2 < 1(0, 0).
i=1 i=1

Similar theorems can be derived in n dimensions.

Example. f(x,y)=x+ 1 is non-negative and harmonic in C, Select ¢ = 5/4.
Then T is the half-plane x > 1/4. Hence, at most 4/5 of C can be covered by non-

overlapping discs lying in C whose centers lie in T. The exact upper bound would
be interesting to know.

5. INEQUALITIES DERIVED FROM FUNCTIONAL ANALYSIS

Let S be a region of the complex plane that possesses a Bergman kernel function
Ks(z, w). (See [1], [2], or [3]). The related Hilbert Space L%(S) consists of all
functions that are single-valued and regular in S and such that

HEE SSS |#)|* axay <o with (@, 8) - § { szaxay.

THEOREM 6. Let C; (i=1, -+, n) be non-overlapping discs contained in S and
possessing centers z; and vadii r;. Then, if S has finite area,

(16) n?/area(S) < E Ks(zJ, zk) <m 1(rl + 1‘22 4 oo rr‘lz) .
=1

In particular, if S is the unit disc, (16) becomes

17 n2< E (l—zzk)2<r1 +r22'+---+r;12.
k=1

Proof. Let ay, *-+, a,, be arbitrary constants, and set (for f € L%S))
n n
(18) L() =2 a SS f(z) dxdy = 7 27 a, rZ £(z,) .
i=1 Ck i=1

We can also write L as follows. Let E = U?ﬂ C;, and define a complex-valued
function a to be equal to a; on C; and zero elsewhere on S. Then
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(19) L) = SS a(z)f(z) dx dy .
E

By the Schwarz inequality,

Lo < (S‘S'Ela(z)lz dxdy) (SSE ] dxdy)

< w(lal |2r§+ —_— lanIZrﬁ)S‘S‘s If(z)|2dxdy.

(20)

It follows therefore that

[ r

21) ILIP < a(fa,ff of + -+ |2 Prd).

On the other hand, ||L"Z = L, Lz Kg(z, W) (where L, means L applied to the z
variable and Lg (f(w)) means L(f(w)). (See, for example, [2].) Hence, by (18),

n

2 2 = 2 2 =
(22) lLj|® = 7% 2 aj ay rj ri Kg(zj, 2x) .
j:k=1 '
Therefore,
n
= 2.2 ] 2 _2 2.2
(23) Wj§=1 a; 2y T rkKS(zj, z) < ]all ry 4+ e+ lanl 2,

If we now set aj= r}z (j =1, +--, n), we obtain the right-hand inequality of (16).
To obtain the left-hand inequality in (16), we observe that |L(f)|2 < ||L|2 ||£]2.
Hence,

g 2 2
< ef® el

T2 ay rlzt f(zk)
i=1

Setting a, = r1;2 and using (22), we obtain the inequality

(24)

n 2 n
2 fz)| /IEF < 2 Kz, 7).
i=1 j,k=1 J

The special selection f = 1 yields (16). The kernel function for the unit circle is
7-1(1 - zw) “2, and this yields (17).

It should be noted that the special case of (16), Kg(z1, 27) < 7 ‘lrfz, has been
stressed by Bergman [1] in his work on the kernel function.
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