PACKING INEQUALITIES FOR CIRCLES

Philip J. Davis

1. INTRODUCTION

Let the three non-overlapping discs C_1 , C_2 , C_3 lie inside the unit disc C: $|z| \leq 1$. Let r_i (i = 1, 2, 3) designate the radius of C_i , and let d_i designate the distance from the center of C_i to the origin. Then

(1)
$$d_1 d_2 d_3 + r_1^2 + r_2^2 + r_3^2 \le 1.$$

In this paper, we shall prove (1) and similar inequalities for nonoverlapping discs C_i contained in the unit disc C. Let C_i designate the open disc

$$(x - x_i)^2 + (y - y_i)^2 < r_i^2$$
 (i = 1, 2, ..., n).

Our goal is to find simple inequalities relating the quantities x_i , y_i , r_i . As for example, from geometry, we see that a necessary and sufficient condition that C_i and C_j do not overlap is that $(x_i - x_j)^2 + (y_i - y_j)^2 \ge (r_i + r_j)^2$.

2. INEQUALITIES DERIVED FROM REAL VARIABLE THEORY

Note that if f(x, y) is a non-negative integrable function defined on C, then

(2)
$$\sum_{i=1}^{n} \int \int_{C_{i}} f(x, y) dx dy \leq \int \int_{C} f(x, y) dx dy.$$

Received September 5, 1962.

If f is positive, equality in (2) holds if and only if n=1 and $C_1=C$. For a fixed f, each integral in the left hand member of (2) can be expressed in terms of x_i , y_i , r_i . Simple selections of f are: f(x, y) = 1; f(x, y) = 1 + Ax + By with $A^2 + B^2 \le 1$; $f(x, y) = x^2 + y^2$; f(x, y) = xy + 1/2. These selections lead to the inequalities

(3)
$$\sum_{i=1}^{n} r_i^2 \le 1$$
 (Area Inequality)

(4)
$$\sum_{i=1}^{n} (Ax_i + By_i + 1)r_i^2 \le 1$$
 (Moment Inequality)

(5)
$$\sum_{i=1}^{n} \left\{ r_i^4 + 2r_i^2 (x_i^2 + y_i^2) \right\} \leq 1 \quad \text{(Moment of Inertia Inequality)}$$

(6)
$$\sum_{i=1}^{n} (1 + 2x_i y_i) r_i^2 \le 1$$
 (Product of Inertia Inequality)

Equality holds if and only if n = 1, $x_1 = y_1 = 0$, $r_1 = 1$. Similar inequalities can be obtained in n dimensions by employing n-fold integrals.

3. INEQUALITIES DERIVED FROM COMPLEX VARIABLE THEORY

We shall use the mean value theorem in the following form.

LEMMA 1. Let D designate the disc $|z - z_0| < r$. If f is regular in \overline{D} , then

(7)
$$\int \int_{D} f(z) dx dy = \pi r^{2} f(z_{0}).$$

Proof. The expansion $f(z) = \sum_{n=0}^{\infty} (n!)^{-1} f^{(n)}(z_0) (z - z_0)^n$ converges uniformly in Eq. Hence,

$$\int \int_{D} f(z) dx dy = \sum_{n=0}^{\infty} (n!)^{-1} f^{(n)}(z_0) \int \int_{D} (z - z_0)^{n} dx dy.$$

Set $z - z_0 = \rho e^{i\theta}$. Then

$$\int\!\int_{D} (z - z_0)^n dx dy = \int_{0}^{2\pi} \int_{0}^{r} \rho^{n+1} e^{in\theta} d\rho d\theta.$$

This last integral equals πr^2 if n = 0 and equals 0 if $n = 1, 2, \dots$. Substituting these values in the infinite series yields (7).

THEOREM 2. Let C_i (i = 1, 2, ..., n) designate n discs that lie in S: $|z| \le R$ without overlapping. Then, if $z_k = x_k + iy_k$,

(8)
$$R^{2} \left| \frac{z_{1} z_{2} \cdots z_{n}}{R^{n}} \right| + \sum_{i=1}^{n} r_{i}^{2} \leq R^{2}.$$

In particular, if S is the unit disc C,

(8')
$$|z_1 z_2 \cdots z_n| + \sum_{i=1}^n r_i^2 \le 1$$
,

and, if further n = 3, we obtain the inequality (1).

Proof. Set $B = S - \bigcup_{i=1}^{n} C_{i}$. Let f be a function that is regular in \overline{S} . Then

(9)
$$\iint_{S} \mathbf{f}(\mathbf{z}) \, d\mathbf{x} \, d\mathbf{y} = \sum_{i=1}^{n} \iint_{C_{i}} \mathbf{f}(\mathbf{z}) \, d\mathbf{x} \, d\mathbf{y} + \iint_{B} \mathbf{f}(\mathbf{z}) \, d\mathbf{x} \, d\mathbf{y}.$$

Using the Lemma, we see that

(10)
$$\pi R^2 f(0) = \sum_{i=1}^n \pi r_i^2 f(z_i) + \int \int_B f(z) dx dy.$$

Now select

$$f(z) = \prod_{k=1}^{n} \frac{R(z - z_k)}{R^2 - z \bar{z}_k}.$$

It is easily verified that f is regular in \overline{S} , that $f(z_k) = 0$ (k = 1, 2, ..., n), that

$$f(0) = (-1)^n \prod_{k=1}^n (z_k/R)$$
,

and that |f(z)| = 1 for |z| = R. By the maximum principle, it follows that $|f(z)| \le 1$ in S. Inserting this information in (10), we find

(11)
$$\pi R^2 (-1)^n \prod_{k=1}^n (z_k/R) = \iint_B f(z) dx dy.$$

Hence, taking absolute values, we conclude

(12)
$$R^{2} \prod_{k=1}^{n} (|z_{k}|/R) \leq \frac{1}{\pi} \int_{B} dx dy = R^{2} - \sum_{i=1}^{n} r_{i}^{2}.$$

This completes the proof.

Several remarks are in order. In the first place, the upper bound in (8) is attained if n = 1, $z_1 - 0$, $r_1 = R$. In the second place, the quantity

$$\pi R^{\hat{z}} \prod_{k=1}^{n} (|z_k|/R)$$

emerges as a simple lower bound for the area of the multiply connected region B. If z_1, \dots, z_n are all located near $\{|z|=R\}$, then this quantity will be near πR^2 , and the areas of the discs C_i are therefore small—as indeed they should be. If one of the z_i is zero, this term contributes nothing, and (8) reduces to the area inequality (3). This degeneration can be avoided by the following simple device.

THEOREM 3. Let the C_i be n non-overlapping discs that lie in the annulus A: $0<\rho<|z|< R$. Then,

(13)
$$(R^2 - \rho^2) \prod_{k=1}^{n} (|z_k|/R) + \rho^2 + \sum_{i=1}^{n} r_i^2 \le R^2.$$

Proof. Write $B = A - \bigcup_{i=1}^{n} C_{i}$. Then,

$$\pi(R^2 - \rho^2)f(0) = \int \int_A f(z) dx dy = \sum_{i=1}^n \pi r_i^2 f(z_i) + \int \int_B f(z) dx dy.$$

By selecting f as before, there is obtained the inequality

$$(R^2 - \rho^2) \prod_{i=1}^{n} (|z_i|/R) \le \frac{1}{\pi} \iint_B dx \, dy = (R^2 - \rho^2) - \sum_{i=1}^{n} r_i^2.$$

A geometrical interpretation of (8) or (13) would be interesting. For the cases n = 2 and n = 3, O. Shisha, in a written communication, has given an algebraic proof of (8') (with a sharp inequality sign) and has strengthened (1) to the sharp inequality

$$d_1 d_2 d_3 + r_1 r_2 r_3 + r_1^2 + r_2^2 + r_3^2 < 1$$
.

4. RELATED INEQUALITIES

THEOREM 4. Let f be regular in C: $|z| \le 1$ and real on the real axis, and let $\Re f(z) > 0$ in C. Then,

(14)
$$(u - 1)^2 f(u) + u^2 f(u - 1) \le f(0) \quad (0 \le u \le 1).$$

Equality holds for u = 0 and u = 1.

Proof. Select $z_1 = u$, $r_1 = 1 - u$; $z_2 = u - 1$, $r_2 = u$, $0 \le u \le 1$. Then the discs C_1 and C_2 are contained in C, do not overlap, and are tangent at z = 2u - 1. Hence from (10),

$$f(0) - (u - 1)^2 f(u) - u^2 f(u - 1) = \frac{1}{\pi} \int \int_B f(z) dx dy = \frac{1}{\pi} \int \int_B \Re f(z) dx dy \ge 0.$$

Example.
$$(u - 1)^2 e^u + u^2 e^{u-1} \le 1 \ (0 \le u \le 1)$$
.

Similar inequalities can be found by taking several points on the x-axis.

The hypothesis of regularity on $\{|z|=1\}$ may be dropped, and (14) (with 0 < u < 1) can be compared with the following familiar "one point" inequality [3; p. 169]: if f is regular in $\{|z|<1\}$ and $\Re f(z) \ge 0$ there, and if f(0) = 1, then $|f(z)| \le (1+|z|)/(1-|z|)$.

THEOREM 5. Let f(x, y) be non-negative and harmonic in $C: |z| \le 1$. Let T designate the set of points (x, y) with $f(x, y) \ge \sigma$. Then, if the C_1, \dots, C_n are non-overlapping discs lying in C whose centers (x_i, y_i) lie in T,

(15)
$$\sum_{i=1}^{n} r_i^2 \leq f(0, 0)/\sigma.$$

Proof. From (2) and the mean value theorem, we see that

$$\sigma \sum_{i=1}^{n} r_{i}^{2} \leq \sum_{i=1}^{n} f(x_{i}, y_{i}) r_{i}^{2} \leq f(0, 0)$$
.

Similar theorems can be derived in n dimensions.

Example. f(x, y) = x + 1 is non-negative and harmonic in C. Select $\sigma = 5/4$. Then T is the half-plane $x \ge 1/4$. Hence, at most 4/5 of C can be covered by non-overlapping discs lying in C whose centers lie in T. The exact upper bound would be interesting to know.

5. INEQUALITIES DERIVED FROM FUNCTIONAL ANALYSIS

Let S be a region of the complex plane that possesses a Bergman kernel function $K_S(z, \overline{w})$. (See [1], [2], or [3]). The related Hilbert Space $L^2(S)$ consists of all functions that are single-valued and regular in S and such that

$$\|f\|^2 = \iint_S |f(z)|^2 dx dy < \infty$$
 with $(f, g) = \iint_S f\bar{g} dx dy$.

THEOREM 6. Let C_i (i = 1, ..., n) be non-overlapping discs contained in S and possessing centers z_i and radii r_i . Then, if S has finite area,

(16)
$$n^{2}/\operatorname{area}(S) \leq \sum_{j,k=1}^{n} K_{S}(z_{j}, \bar{z}_{k}) \leq \pi^{-1}(r_{1}^{-2} + r_{2}^{-2} + \cdots r_{n}^{-2}).$$

In particular, if S is the unit disc, (16) becomes

(17)
$$n^2 \leq \sum_{i,k=1}^{n} (1 - z_i \bar{z}_k)^{-2} \leq r_1^{-2} + r_2^{-2} + \dots + r_n^{-2}.$$

Proof. Let a_1, \dots, a_n be arbitrary constants, and set (for $f \in L^2(S)$)

(18)
$$L(f) = \sum_{i=1}^{n} a_{k} \int_{C_{k}} f(z) dx dy = \pi \sum_{i=1}^{n} a_{k} r_{k}^{2} f(z_{k}).$$

We can also write L as follows. Let $E = \bigcup_{i=1}^{n} C_i$, and define a complex-valued function a to be equal to a_i on C_i and zero elsewhere on S. Then

(19)
$$L(f) = \int \int_E a(z)f(z) dx dy.$$

By the Schwarz inequality,

$$\begin{aligned} |L(f)|^2 &\leq \left(\int \int_E |a(z)|^2 \, dx \, dy \right) \left(\int \int_E |f|^2 \, dx \, dy \right) \\ &\leq \pi (|a_1|^2 r_1^2 + \dots + |a_n|^2 r_n^2) \int \int_S |f(z)|^2 \, dx \, dy \, . \end{aligned}$$

It follows therefore that

(21)
$$\|L\|^2 \leq \pi(|a_1|^2 r_1^2 + \cdots + |a_n|^2 r_n^2).$$

On the other hand, $\|L\|^2 = L_z L_{\overline{w}} K_S(z, \overline{w})$ (where L_z means L applied to the z variable and $L_{\overline{w}}(f(\overline{w}))$ means $L_{w}(f(\overline{w}))$. (See, for example, [2].) Hence, by (18),

(22)
$$\|L\|^2 = \pi^2 \sum_{j,k=1}^n a_j \bar{a}_k r_j^2 r_k^2 K_S(z_j, \bar{z}_k).$$

Therefore,

(23)
$$\pi \sum_{j,k=1}^{n} a_{j} \bar{a}_{k} r_{j}^{2} r_{k}^{2} K_{S}(z_{j}, \bar{z}_{k}) \leq |a_{1}|^{2} r_{1}^{2} + \cdots + |a_{n}|^{2} r_{n}^{2}.$$

If we now set $a_j = r_j^{-2}$ $(j = 1, \dots, n)$, we obtain the right-hand inequality of (16).

To obtain the left-hand inequality in (16), we observe that $\|L(f)\|^2 \le \|L\|^2 \|f\|^2$. Hence,

$$\left| \pi \sum_{i=1}^{n} a_{k}^{2} r_{k}^{2} f(z_{k}) \right|^{2} \leq \|L\|^{2} \|f\|^{2}.$$

Setting $a_k = r_k^{-2}$ and using (22), we obtain the inequality

(24)
$$\left| \sum_{i=1}^{n} f(z_k) \right|^2 / \|f\|^2 \le \sum_{j,k=1}^{n} K_S(z_j, \bar{z}_k).$$

The special selection f=1 yields (16). The kernel function for the unit circle is $\pi^{-1}(1-z\overline{w})^{-2}$, and this yields (17).

It should be noted that the special case of (16), $K_S(z_1, \bar{z}_1) < \pi^{-1} r_1^{-2}$, has been stressed by Bergman [1] in his work on the kernel function.

REFERENCES

- 1. S. Bergman, The kernel function and conformal mapping, Amer. Math. Soc., New York, 1950.
- 2. P. J. Davis, Interpolation and approximation, Ginn and Co., Boston, 1963.
- 3. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.

National Bureau of Standards Washington, D.C.