ONE-PARAMETER SUBGROUPS IN SEMIGROUPS
IN THE PLANE

J. G. Horne, Jr.

1. INTRODUCTION

Let S be a topological semigroup (with identity) that is embedded in the plane E.
Suppose that P is a one-parameter subgroup in S containing the identity (that is,
suppose P is algebraically and topologically isomorphic to the multiplicative group
of positive real numbers). In this note, our interest centers on two questions:

(1) What is the nature of an orbit Px for x € S if Px is neither a point nor a simple
closed curve? (2) What is the nature of the boundary of P? We show, without any
restriction on S, that the answer to the first question is that Px is homeomorphic
to P. Assuming that S is closed, we show that the boundary of P (if not empty) is
either a point (which is a zerc for P) or the circle group. If S = E, then that stage
in the proof of each result which makes use of the main lemma can be made some-
what simpler, because if the local cross section theorem is applied to the plane, it
yields a section which is an arc (see [6]). Since an orbit can cross a section at
most once, it becomes an easy matter to construct the simple closed curves needed
in order to show that if an orbit enters a certain region and if it must get out, then
it must “cross in the opposite direction.” Alternately, if it is known that a certain
orbit can nol! cross in the opposite direction, then one end of it must be bounded, and
one can find an idempotent. We make these ideas precise and use them in the proof
of Theorem 1 and (by way of Lemma 1) in the proof of Theorem 2. They are pre-
cisely the ideas used in the proof of Theorem 3.7 of [7] and Lemma 2.1 of [6]. Per-
haps the most striking illustration of the difference between the case S = E and the
general case is obtained by comparison of the figure in [7] with our figure.

So far, the only applications we have of the case S # E are slightly technical.
One yields Corollary 1.1. For another, observe that the nature of the boundary of P
seems to rule out any “reasonable” semigroup structure for a set T which is the
union of the curve y = sin 1/x (0 < x < 1) with an open arc in its boundary. For the
closure of T, such a structure has long been ruled out. However, even in the case
S = E, our results appear to have gone unnoticed hitherto.

The author is indebted to a number of people for much patient listening and
questioning in connection with the proof of the main lemma. Two entitled to special
mention are B. J. Ball and M. K. Fort, Jr.

2. THE MAIN LEMMA

The first lemma is purely topological. It is likely to seem obvious, but the proof
is not entirely trivial. As was indicated in the Introduction, this lemma makes it
possible to carry out arguments like those in [6] and [7], where the local cross sec-
tion theorem does not yield enough information. All of the results of this paper de-
pend on it; and as we intimate in the final remark, the results of Mostert in [6] on
the nature of the boundary of G can be derived from it.
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In order to simplify the statement of the main lemma, we introduce two fairly
natural terms. It is sufficiently general for our purposes to define these terms for
a rectangle. Suppose abced is a rectangle with vertices a, b, ¢ and d. Suppose that
the two sides with vertex a are ab and ac. Order the s1des ab and cd by agreeing
that a <b and c¢c < d. The sides ac and bd are not ordered. An arc A will be
said to cvoss the rectangle if it has one end point on ac, the other on bd and if, ex-
cept for these end points, it is contained inside the rectangle. If A is an arc to-
gether with an order, we say that A crosses the rectangle in the divection opposite
to that on ab and cd provided that A crosses the rectangle and the end point of A
on ac is greater than the end point of A on bd.

MAIN LEMMA. Suppose that a,b, and a,b, ave straight line segments contain-
ing points e,, f, and e,, I,, vespectively, as indicated in the figure. Ovder a.b, and
a,b, so that a1< b; (i=1, 2). Suppose that A, is an arc from b, to a, and A, is
an avc from b, fo a, suck that a;b, U A, Ua,b, UA, isa simple closed curve.
Then there exists a sub-arc of either A, ov A, that cvosses e, f,e,f, in the oppo-
site divection.

b,

Proof. ‘"We only sketch a proof. The missing details are long and tedious but
standard.

Let Z denote the rectangle e, f,e,f,. We prove that if A, contains no arc that
crosses Z in the reverse direction, then A, must contain such an arc. In a series
of steps, we essentially reduce the problem to the case where A, does not intersect
Z. The first step amounts to removing points of A; U A, that are inside or on Z
and that are on sub-arcs of A, U A, that do not cross Z at all. In case there exist
no such points of A, (that is, in case A, N Z = @), a direct proof of the lemma is
easy to give, or one can go to the last step in this proof. There is no essential dif-
ference between the way we handle the cases where A, has points inside Z and
where A, has points on, but not inside, Z. Hence we assume that A, has points
inside Z.

Now, only a finite number of sub-arcs of A, or A, can cross Z. Hence, there
exists a positive number &, such that no crossing of A, or A, intersects the ¢,-
neighborhood of any other such crossing. Next consider the components of the inter-
section of A; U A, with the inside of Z. If p is on such a component that does not
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cross Z, we say that p ison a loop of A, U A,. The set of points that are on some
loop w1th both end points on e; e, has some pos1t1ve distance &, from f,f,. Similar-
ly, the set of points that are on some loop with both end points on f f, has some
positive distance g, from e,e,. Let o; be a homeomorphism from the unit interval
I onto A; (i =1, 2). Let d denote the distance between points in the plane. Then
there exists an g, > 0 such that d(a,(t), a,(t)) > ¢, for all t in I. Choose

e < %
that d(B;t), a;(t)) <e for t € I and B;(0) = a5 (0) while B;(1) = a;(1). Let B; = g;(I)
(i=1, 2). Then Bj; is a polygonal approximation to A; (i = 1, 2) such that any cross-
ing of B; in the opposite direction corresponds to such a crossing of Aj.

min (g,, ***, £,). There are piece-wise linear homeomorphisms §;, 8, on I such

It is now possible to remove not only all of the loops of B, U B, but also all
points of (B, U B,) N Z that are not the end points of a crossing of B, or of B,. In
other words, there exist two other arecs C; (i = 1, 2) such that (1) C; has the same
end points as B; (which are the same as those of Aj); (2) Cj; is ordered so that the
least and greatest points of C; are the same as those of Bj; (3) if a sub-arc of C;
crosses Z, then it is a sub-arc of Bj;; and if such a sub-arc crosses Z in the oppo-
site direction when regarded as a sub-arc of Cj, then it has this property as a sub-
arc of B;; and (4) if p is a point of C, U C, that lies inside or on Z, then it lies on
a sub-arc of C, U C, that crosses Z.

We have assumed that A, contains no arc that crosses Z in the opposite direc-
tion; therefore, C, contains no such arc. The proof of the lemma will be complete
if we show that C, contains such an arc. If no sub-arc of C, crosses Z, then
C, N Z = @, and we can proceed immediately to the last step in the proof. Thus let
us assume that at least one sub-arc of C, crosses Z. Then there exists a sub-arc
D of C, that crosses Z and has the property that if p denotes the end point of D
on _e_,l_e2 and q denotes the end point of D on 1,1, 1 £,, then C,; does not intersect elp
or f,q. Under our assumption, p < q.

Let S, denote the simple closed curve formed by uniting the arc f,b,, the part of
C, from b, to q, and qf,. Let S, denote the simple closed curve formed by uniting
e,b,, the part of C, from b, to p, and pe,. Let E denote the arc D U qf, UT,b,,
and let F denote the sub-arc of C U a,b, from q to b,. It is not difficult to show
that a,f; and F abut on E from opposite sides. Hence, a sub-arc of a,I, from a,
and a sub-arc of F from q lie on opposite sides of S,. But if a sub-arc of a,f, is
on one side of S,, then a, I, is on this side; F has the same property. Thus a, and
b, are on opposite sides of S,. Hence, there exists a largest point f of C, on S,,
and this point must lie on T,f,. An argument similar to that above shows that f and
a, must lie on opposite sides of S,. Therefore there exists a first point e of C,
that is greater than f, that lies on S,, and that lies in e, e,. The arc of C, from f{
to e crosses Z in the opposite direction, and by the choice of C, there exists a sub-
arc of A, that crosses Z in the opposite direction. This completes the proof of the
lemma.

3. SEMIGROUPS EMBEDDED IN THE PLANE

The remaining results concern semigroups that are embedded in the plane. In-
variably, S denotes such a semigroup with identity 1, and P denotes a one-para-
meter subgroup in S that contains the identity. That is, P is a sub-semigroup of
S, containing 1 and topologically and algebraically isomorphic to the multiplicative
group of all positive real numbers. A line is a subset of S that is homeomorphic tc
the ordinary real line. Of course, Px is the set of all px for p € P, in other words,
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it is the ovbit of x. Similarly, if A, B c S, then AB denotes the set of products ab
for a€ A, b € B,

THEOREM 1. For each x € S, either Px = x, Px is a simple closed curve, or
Px is a line.

Proof. If there exists a t in P (t # 1) such that tx = x, then Px is homeomorphic
to the factor group of P modulo a closed subgroup different from the identity. Hence,
without regard to the embedding of S, we see that in this case Px is a point or a
simple closed curve. Thus, it remains for us to prove that if the (continuous) map
t — tx is one-to-one, then it is a homeomorphism.

If this is false, there exists a sequence {tn} (tn € P) such that t,x — x but
tn7 1. There is no loss in generality in supposing that the order on P and the se-
quence are chosen so that t,, is monotone increasing. We can even assume that for
some a,beP, a<1<b and b/a <t,/t,, if n> m. Let A =[a, b], and let
K= {tnx} U {x}. Then K is compact; and, with the above restrictions on t,, the
map (t, k) — tk from A X K to AK is one-to-one and hence a homeomorphism. It
follows that the set consisting of Ax and the arcs A, = At, x is an equicontinuous
collection; therefore, we can assume that each one is a straight line segment [1].
Furthermore, at,x — ax and bt,x — bx. To simplify statements, we suppose that
Ax lies along the X-axis with x at the origin. Let N be the perpendicular bisector
of the segment [ax, x]. Denote the Y-axis by Y. We suppose that each segment A,
intersects both N and Y. Let e, denote the intersection of A, and N, let f,, denote
the intersection of A, and Y, and let c¢ denote the intersection of N and Ax. In the
order inherited from P, at,x < e, < f, < bt,X. Fix the positive integer n. Now
[b, tulx is an arc from bx to atyx, and ax obviously belongs to the closure of
(bt,, +)x. Therefore it is possible to choose ux € (bt,, +=)x sufficiently close to
ax so that, if the straight line segment from ux to ax is joined with

Ax U ([b, at,|x) U A U ([bty, ulx),

the result is a simple closed curve. Furthermore we can suppose that this segment
does not intersect N. By the main lemma there exists an arc of the simple closed
curve which crosses the “rectangle” with vertices e, f,, ¢, and x in the direction
opposite to that on cx and e, I,. In virtue of the choice of ux, such an arc must be
contained in either [b, at,]x or [bt,, ulx, and by the definition of crossings, all its
points except its end points are contained between N and Y. In other words, there
exist sequences {v,} and {w,} with vy, w, € P such that v, > w,, v, X € N,
wyox €Y, (w,, v )x is contained between N and Y, and w,x — x. Now the se-
quence {v,/w_} does not have 1 as a limit point. For if it does, there is no loss
in generality in supposing that v, /w, — 1. Thus (v,/Wn) (W, X) — x; namely,

Vy X — X. Bult this is impossible, since v, x € N. Hence there existsa t e P

(1 < t< b) such that v, > tw, for all n. Thus tw, is contained between N and Y
for all n. However, tw, X — tx, and since tx € (x, bx), this is a contradiction. The
proof of the theorem is now complete.

There are many topologies on the group P, of positive real numbers that are
properly contained in the ordinary topology and that turn P, into a topological semi-
group (see the Appendix). According to the following corollary, none of these semi-
groups is embeddable in the plane.

COROLLARY 1.1. Let R be a topological semigroup embedded in the plane. If
theve exists a continuous algebraic isomorphism from the group of positive real
numbers (with the ovdinary topology) to R, then it is a homeomorphism.
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The next corollary is a step in the direction of determining the possible bound-
aries of P.

COROLLARY 1.2. If e € S is an idempotlent in the boundary of P then either
Pe = e or Pe is the cirvcle group.

Proof., If Pe # e and Pe is not a simple closed curve, then according to the
theorem, Pe is a line. Therefcre Pe - {e} is the union of two components A and
B. Denote the two components of P - {1} by C and D. We may obviously suppose
that Ce = A and De = B. Now e(BNC™) c eC™ c (eC)- = A™; therefore, since e is
an identity for B, BN C~ = §. Similarly, AN D~ = . Therefore A c C~ and
B c D”. Now there exist elements g € C, h € D such that gh € C. Therefore,
ghe € A. However, he € B c D7, so that there exists a sequence h,, € D such that
h,— he. Hence gh,e — ghe. Since h, is unbounded in P, gh, € D for all suffi-
ciently large n. For such n, gh, e € B, so that ghe € B~. Hence ghe €e A N B~,
which is a contradiction. The corollary is now evident.

The following two lemmas are used to complete the description of the possible
boundaries of one-parameter subgroups. In Lemma 1 we come as close as we can
at present to saying that an orbit which is a line is embedded as a closed subset. In
particular, we use it in the proof of Theorem 2 to show that a certain such orbit is
closed. The proof of Lemma 1 is another application of the main lemma. We say
that an orbit Px is unbounded in both divections if neither P, x nor P_x is con-
tained in a compact subset of the plane (here, P, denotes the set of t that are no
less than 1, and P_ denotes the set of t that are no greater than 1).

LEMMA 1. Suppose that y, z € S are such that Py is a line, unbounded in both
divections, and z lies in the boundary of Py. Then Pz = z.

Proof. Except for one detail, the proof is essentially the same as the proof (in
Theorem 1) that if the map t — tx is one-to-one, then it is a homeomorphism. For
if Pz # z, then Pz contains an arc. Hence there exist elements a,be P (a <1< Db)
and a monotone increasing sequence {tn} € P such that (1) [a, b]z is an arc;

(2) t,y — 2z, and (3) b/a < t,,/t, if m > n. Thus the sequence of arcs [a, b]t,y
converges to the arc [a, b]z. Therefore we may suppose that the arcs are straight
line segments with [a, b]z situated on the X-axis with z at the origin. We may also
choose straight lines N and Y as in the proof of Theorem 1, and assume that each
of the arcs [a, b]t,y crosses N and Y. As in the proof of that theorem, we seek a
collection of sub-arcs of Py, each of which crosses the region between N and Y in
the opposite direction to the direction of the arcs [a, blt,y. However, the method of
obtaining these is somewhat different from that in the previous theorem.

For any pair of integers n and m, regard [a, blt,y and [a, b]t,,y as parallel
segments (intersecting N and Y). To be definite,.suppose t, < ty,. Then [bty, atnyly
is an arc of Py from bt,y to at,,y. Let

B = [a, b]t,y U[bty, atyjy U [a, blt,y.

Choose a square Q sufficiently large to encompass B. Since Py is unbounded in
both directions, there exist elements p, g € P such that neither p nor q is inside Q
and B c [p, q]ly. Now join p and q by an arc C so that C U [p, qly is a simple
closed curve and so that C misses Q. By the main lemma, there exists an arc of Q
that crosses a certain rectangle with vertices on N and Y in the direction opposite
to the direction of the arcs [a, b]t,y and [a, b]t,,y. By virtue of the choice of C,
such an arc must be contained in either [bt,, at,,|y or [bt,,, aly.
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By using this result, it is possible to construct two sequences { v,} and {wp}
(Vn, Wn € P) such that v,y € N, wpoy € Y, vy > Wy, and wpny — z. From this point
on, essentially the same reasoning that produced a contradiction in the proof of
Theorem 1 again leads to a contradiction. We omit the details and conclude that
Pz = z,

The following lemma is known, at least for topological rings, where it obviously
really concerns semigroups. In any case, the proof is standard, and we omit it. A
vight zevo is an element z such that xz = z for all x € S. A left zevo is defined
similarly.

LEMMA 2. If z is a vight zevo for a topological semigroup T and KC T is
compact, then for every neighbovhood V of z theve exists a neighborhood W of =z
such that KW C V.

An important consequence of this lemma is the fact that if K is a compact
neighborhood of z, then there exists a neighborhood W of z such that KW c K.
Therefore if x € K N'W, then x% € K, and an argument by induction shows that x™ € K
for all n. Let I'(x) denote the closure of the set of powers of x. Then I'(x) is a
compact semigroup contained in K. Therefore I'(x), and hence K, contains an
idempotent (this may of course be z, but for our purposes that is so much the better).

THEOREM 2. Suppose that S is embedded as a closed subset of the plane. Let
F denote the boundary of P. If F + 0, then there exists an idempotent e € F, and
eithery F = {e} orv F is the civcle group. In particular, if P contains a zevo 0 in
its boundary, then P~ =P U{0}.

Proof. Suppose that F contains no idempotents. Then, for y € ¥, Py is un-
bounded in both directions. For suppose P,y C K, with K compact. As is observed
in [7, p. 386], if z is a limit point of P, y, then Pz = (P,y)”. Thus (Pz)~ is a com-
pact semigroup, and F contains an idempotent. This is contrary to our assumption.
A similar argument applies to P_y. We conclude that unless F contains an idempo-
tent, Py is unbounded in both directions, for all y € ¥. But then Py is closed, for
otherwise there exists a z in the boundary of Py. Therefore z € F, so that Pz is
unbounded in both directions. In particular, Pz # z. This is contrary to Lemma 1.
Therefore Py is closed. Finally, y? € (Py)~, so that y? € Py. But if y? = py, then
y/p is an idempotent in F.

Thus, in any case, F contains an idempotent e. By Corollary 1.2, either Pe = e
or Pe is a simple closed curve.

First consider the case Pe = e. Here e is a zero for P~ which we now denote
0. There exist no other idempotents in F. For suppose that e' is another idempo-
tent. Then Pe', being either a point or a simple closed surve, is closed. However,
0=0e'e P e'C (Pe')” = Pe', which is a contradiction, since 0 # e'.

We shall show that if 0 € (P_)", then (P_)~ is compact, and, hence,
(p.)-=pP_u{o}

[4]. It follows that O is not in (P,)”, since otherwise a similar argument shows that
(P =P, U {0}, so that P~ is a simple closed curve, which is impossible. There-
fore, (P,)” c P. For suppose there exists an x € (P,)” - P. Then it is easy to see
that Px c (P,)”; consequently, 0 € (P,)”, which is a contradiction. Hence if we can
show that 0 € (P_)~ implies (P_)~ is compact, we shall have proved that

P~ =Py {0}.
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Thus suppose 0 € (P_)", and let K be a (compact) disc with center at 0. For
x € P, we let (0, X) denote the set of t € P such that t < x. By Lemma 2, there
exists a neighborhood W of 0 such that st € K whenever s €e KNS and te WN S.
Let be KN W N P_. According to the discussion following Lemma 2, there is an
idempotent in T"(b), which is therefore in F. Since 0 is the only idempotent in F,
0 € I'(b). Now the set of accumulation points of I'(b) is an ideal in I'(b). Since I'(b)
is abelian, the set of accumulation points is a group, by a result of Koch’s [5].
Therefore 0 is the only accumulation point of I'(b), and b™ — 0.

If for some integer N, (b1 bN) c K, then, since b € W, b(bN*!, bN) c K; and,
. by induction, b? (N*! bN) = K for all n. Therefore (0, pbN)'c K. Thus

(®_)" = (0, bM)- u Y, 1],

so that (P_)” is compact.

Hence we may assume that for every integer n, (b™*!, b™ ¢ K. Then for each n
there exists an x, € (bn+ b™) that belongs to the boundary of K. Now xp = ppb™
for some pr,€ P (b < pn __<_ 1). There is no loss in generality in assuming that
p, — p for some p € P. Therefore p,b™ — 0 since b* — 0. But then x, — 0,
which is a contradiction, since every x, belongs to the boundary of K and 0 is in
the interior of K. We conclude that (P_.)~ is compact and that if Pe = e for any
idempotent e € F, then F = {e}.

It remains to consider the case where Pe is a simple closed curve for some
idempotent e € F. We may assume that S = P7. Then Pe is an ideal in S, and P
obviously lies outside Pe. Let D denote the (closed) disc bounded by Pe. Let E*
denote the result of shrinking the plane E (which contains S) to a point, and let S*
denote the image of S under this shrinking. Of course, E* jis a plane, and it is easy
to see that S* is a closed semigroup with identity and that P is essentially un-
changed. Now D is a zero in the boundary of P in S*. By the resulis above, no
other members of S* lie in the boundary of P. Relative to E, this says that in this
case the boundary of P, is Pe. This completes the proof of the theorem.

For an application of the previous results, we turn to the case where S is the
entire plane E. As usual, H(1) denotes the maximal subgroup in E, G denotes the
component of the identity in H(1), and L denotes the boundary of G. We show that
from every right zero in L there emanates a one-parameter subgroup of G (of
course, a corresponding statement holds for left zeros). This proposition holds two-
fold interest for us. First, we have used it in a fairly crucial way in [3] to find a
rather simple condition that assures the presence of a copy of the entire semigroup
of real numbers. This makes possible an extension of the results in [2]. Second, we
feel that the proposition should be of some interest in connection with the unsettled
question of the extent to which multiplication on G and L separately determine
multiplication on G U L (in this connection see [2] and [7]).

Suppose L contains a right zero w. Then L contains no simple closed curve,
and G is topologically a plane [6]. Let K be a compact neighborhood of w. Ac-
cording to the discussion following Lemma 2, there exists an x €e KN G and an
idempotent e € L (and also in K) such that e € I'(x). Now either of the possible
groups on G is solvable, so by [8, Lemma 2] there exists a one-parameter subgroup
P c G such that x” € P for all n. Hence e € P~. Since L contains no simple
closed curve, e is a zero for P,and P = P y {e}. Thus in every neighborhood of
a right zero there exists an idempotent that forms the boundary of a one-parameter
subgroup of G.
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We now make use of the possible multiplications on L as given in [6]. For one
thing, when L contains a right zero z, either (1) L is a half-ray whose end point is
a (two-sided) zero 0, and x2 = 0 for all x € L, or {2) L is a line and either (i) L
contains a zero 0 or (ii) L = zG, and every element of L is a right zero.

In case (1), L contains no idempotents other than 0, therefore z = 0, and the
argument above shows that there exists a one-parameter subgroup P ¢ G with
P~ =P U {z}. Incase (2, i), z =0, and an examination of the possible multiplica-
tions for L shows that z is not a limit point of idempotents. Thus we have again
the existence of a P € G with P~ = P U {z}. Finally, consider the case (2, ii).
Here every element of L is a right zero, so that the argument above yields the
existence of a right zero z and a one-parameter subgroup P < G such that
P~ =P U {z}. Since every w € L can be written in the form w = zg for some
g € G, and since zg = g~!zg,

(g™*Pg)~ = (g7 Pg) U {w}.

We have thus proved the following theorem.

THEOREM 3. If z is a vight zevo in L, then theve exists a one-parvameter sub-
group P < G such that P~ =P U {z}.

Remark. In conclusion we mention that the fact that Px is a line whenever it is
not a point or simple closed curve and the fact that Px must be closed under condi-
tions such as occurred in the proof of Theorem 2 can be used to advantage to give a
set of arguments, slightly different from those in [6], to determine the nature of L.
However, these arguments are not much simpler than those in [6]; and, aside from
the facts already mentioned, they do not, so far, seem to throw much additional
light on the problem. We have accordingly omitted them.

APPENDIX

Professor Fort has given the following construction of a semigroup topology for
the additive group R of all real numbers:

Let p be the sequence of integers defined so that p, = 1 and pp = 2n(1 + pn-1)
for n > 1. For each strictly increasing sequence q of real numbers, let N(q) be
the set of all numbers a such that, for some j,

a=pil+ ---+pij, where i) > qp if 1<k<j.

One now verifies the following: (1) if m is a positive integer and q, > m, then
N(g) N (m + N(q)) = #; (2) if q is given and r; = q2;, then N(r) + N(r) c N{(q); and
(8) if q, r, s are such sequences and s> q, s > r, then N(q) N N(r) D N(s). For
each £ > 0 and each sequence q, let

W(q, €) = {x € R: |x|<a or |x—a|<8 for some a € N(q)} .

By virtue of (3), these sets, together with their translates form the base for a
topology T for R. By virtue of (2), T is a Hausdorff topology; and by virtue of (2),
addition is simultaneously continuous in both variables. Obviously, T is included in
the ordinary topology; and since the sequence p converges to zero in this topology,
the inclusion is proper.
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We now outline an argument which shows that Fort’s procedure can be made to
yield different semigroup topologies. First, if the sequences q are restricted to be-
long to any collection Q satisfying

(i) if ¢ € Q and r; = q2;, then r € Q, and
(ii) if q, r € Q, then there exists an s € Q with s> r and s> q,

then a topology T(Q) is obtained. Second, for any such Q, the infinite interval

(x, +0) is open in the topology T(Q). Therefore a homeomorphism h between two
such topologies is a measurable function with respect to the ordinary topology. If it
is, furthermore, a semigroup isomorphism, then it must have the form h(x) = ax for
some o € R. Using this fact, we show that any semigroup isomorphism is neces-
sarily the identity. We then prove that if Q and Q' are appropriately different,

T(Q) # T(Q'). Thus our earlier assertion, that there are many semigroup topologies
on R, is justified.

The following properties of the sequence p are easy to verify and generally use-
ful in deriving properties about T(Q):

(I) For any integer j, pj+ ' + p; < Pj+1; in fact, j(py + *-- + pj) < Pjt1-

(I) For any number & there exists an integer N such that if i > j > N, then
P; > Olpj.

(III) A number has at most one representation as a sum of terms p;.

Suppose h(x) = ax, a # 1. We shall show that h is not a homeomorphism be-
tween T(Q) and T(Q') for any Q, Q'. If @ < 0, then obviously ap does not con-
verge to zero in any T(Q). We therefore assume a > 0. Since h™(x) = (1/a)x, we
may suppose o« > 1. We show that in this case, too, @ P does not converge to zero

in T(Q).

As mentioned in (IT), there exists an integer N such that if i > j > N, then
pi > apj; Suppose, for some i > N,

ap; = v+ ptl +o Py for some v
*)
(0 <v <1) and some finite sequence tj, ---, t,.

Then ap; > P, - Therefore p; > Pt since if p; < Pt then ap; < Pt which is a
contradiction. Also, if p; > P, then by (), p; > v+ Py + °*" + Py = OPj; conse-

quently, p; > ap;. However, a > 1, so that this is impossible. Thus, if i > N, equa-
tion (*) can hold only if p, = Py,
m

Using (II) again, we obtain a k > i such that
1+ py + - + pk_l)/pk < 1/pi-
Suppose that for such Kk,
= cese f
o) % apy = [+ Py, + + pg_ for some p o<u<l)

and some finite sequence sj, *--, s.

By the previous result, p, = P Therefore, by (*) and (**),
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(B +Pgy + "+ Ps _1)/Pr=(V+DPgy + =" + P -1)/Di-

Denote the left-hand member of this equation by x and the right-hand member by y.
Then

x< (@ +pyp+-+p 1)/ <1p, <y,

which is a contradiction.

Thus |opy - z| > 1 for all z € N(q) and for any sequence q. Therefore we can
choose a subsequence {pni} of p such that |apn, - z| > 1 for all z € N(q). Hence

apn; does not converge to zero with respect to T(Q). We conclude that the only

homeomorphism between T(Q) and T(Q') that is also an isomorphism is the iden-
tity. In other words, (R, T(Q)) and (R, T(Q") are isomorphic as topological semi-
groups only if T(Q) = T(Q").

Now suppose Q and Q' are collections of sequences satisfying (i) and (ii), and -
suppose Q contains a sequence q whose range is disjoint from the range of every
member of Q' (For example, let q;(i) = 2%, and let q,(i) = 3*. Let Q and Q' be the
smallest collections of sequences that contain q, and q,, respectively, and satisfy (i)
and (ii)). Let q' €.Q' be arbitrary. Let a = p;, where i = q,. Then, of course,

a € N(q'). However, if a € W(q, 1/2), then |a - z[ < 1/2 for some z € N(q). Since a
and z are integers, a = z. But a and z are each expressed as a sum of terms of p,
so that the only p;j appearing in the expression for z is p;. But i is in the range of
q', and the indices of terms in z are in the range of q, which is impossible. There-
fore a £ W(q, 1/2); that is, W(q, 1/2) p N(q') for all q' € Q'. Hence W(q, 1/2) is
not open in T(Q'"), and T(Q) ¢ T(Q"). In particular, T(Q) # T(Q").

Evidently each T(Q) has a countable base, is regular, and is the countable union
of compact, one-dimensional subspaces (closed intervals). Hence (R, T(Q)) is one-
dimensional and, therefore, embeddable in Euclidean three-space.
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