SOME CHARACTERIZATIONS OF HOMOLOGICAL DIMENSION

Yukihiro Kodama

1. Let X be a compact Hausdorff space, and let G be an abelian group. The
-homological dimension of X velative to G is the largest integer n_such that there
exists a pair (A, B) of closed subsets of X whose n-dimensional Cech homology
group Hy(A, B: G) is not zero. By D,(X: G) we shall denote the homological dimen-
sion of X. We have the relation dim X > D (X: G), for each group G. The equality
dim X = D_(X: G) does not necessarily hold. For example, for any positive integer
n, there exists a continuum X such that dim X = 2n and D (X G) = n for each
finitely generated abelian group G.

Let N be a class of compact Hausdorff spaces. A c¢ountable system
{Ty(G); i=1,2, -}

of locally compact fully normal spaces is called a T-sysiem for the group G with
respect to the class N if, for each X of N, we have the equality

D,(X: G) = Min {dim (X X T;(G)) - dim T;(G); i=1, 2, «--}.

If a T-system for G with respect to N consists of only one space, then the space is
called a test space for G with vespect to N (see [7]). The following notations will
be used throughout this paper.

Z: the additive group of all integers.

Zq: the cyclic group Z/qZ of order q.

R: the additive group of all rational numbers.

R,: the additive group of all rational numbers reduced mod 1.
Qp: the p-primary component of R,.

Z(ap): the limit group of the inverse system

. i+1
{Zpis 1= 1: 2’ S h; : Zpi+1 - Zpi} ’

where the homomorphism Zpi+1 - Zpi is a natural homomorphism induced by the
inclusion pit!Z c piz.

L: the class of all finite-dimensional compact Hausdorff spaces.

L,: the class of all n-dimensional compact Hausdorff spaces.

L,(G): the class of all finite-dimensional compact Hausdorff spaces X such
that dim X - D_(X: G) = n.
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In the present paper, we shall prove the following theorems.

THEOREM A. (X) Let G be one of the following groups: (i) R, (ii) Zp, (iii) Qp,
wheve p is a prime, and (iv) a divect sum of groups of types (i) to (iii). Then there
extsts a T-system for G with respect to L.

(I1) Let n be a non-negative integer, and let G be one of the groups in (I). Then

theve exists a test space for G with vespect to | J?_, L;.

(I1) Let G be one of the following groups: (i) R, (ii) Zp, (iii) Qp (iv) Z(ap),
wheve p is a prime, or (v) a divect sum of groups of types (i) to (iv). Then there
exists a test space for G with respect to Ly(G) U L,(G).

THEOREM B. (I) If n> 2 and p is a prime, theve exists no T-system for
Z(ap) with respect to Ln(Z(ap)).

(II) Threre exists no T-system for Z with vespectto L; (i=1, 2, ---).

(III) Let G be one of the groups in (i) to (iv) of (III) of Theorem A. Then therve
exists no T-system for G with vespect to L. consisting of a finite number of spaces;
in particular, theve exisits no test space for G with respect to L.

2. Let q = (qy, 45, ***) be a sequence of positive integers. In Section 4 of [5] we
constructed the Cantor manifold R(q) for the sequence q. Choose a prime p. Let
q, be a sequence of positive integers which contains all powers of all primes, and
let gqp be the subsequence of q, consisting of all powers of primes which are differ-
ent from the prime p. We denote the Cantor manifolds R(q,) and R(qp) by M, and
My, respectively. Let a = (py, Ps, *++) be a sequence of positive integers such that
p; is a divisor of p;4; for i =1, 2, ---. In Section 3 of [4] we constructed the Cantor
manifold Q(a). The Pontryagin Cantor manifold P, mod p [11] is the Cantor mani-
fold Q(a) for the sequence a = (p, p, p, **-). Let us denote by ap the sequence
(p, P?, pP3, +-*) of powers of the prime p. The following theorem was proved in [7],
but we shall give a simple proof here.

THEOREM 1. Let X be an n-dimensional compact Hausdovff space. Then
(1) D(X: R) = n #f and only if dim (X X My) = n + 2.
(ii) Dy (X: Zp) = n if and only if dim (X X Pp)=n+ 2.
(iii) D, (X: Qp) = n if and only if dim (XX Mp) =n + 2.
(iv) D, (X: Z(ap)) = n if and only if dim (XX Q(ap)) =n + 2.
Proof. We shall prove only (iii) and (iv). The cases (i) and (ii) are treated simi-
larly. We begin with the relations
D, (Mp: R) = D,(Mp: Qp) = D, (Mp: Qg = D, (Mp: Z(ap) = D, (Mp: Zp) =2,
D,(Mp: Z(ag) =D, (Mp: Zg) = 1,

where q is a prime not equal to p. By the theorem of [8], at least one of the rela-
tions

D,(X: R) = n, D,(X: Qp) =n, D,(X: Zp) = n, D, (X: Z(ag)) =n

holds for some prime q. But each of these relations means that D_(X: QP) =n. To
prove (iv) we observe that D*(Q(ap): Qp) =2 and
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D,(Qla,): Qq) = Dy(Q(ap): Zp) = Dy(Qlap): Zg) = Dy (Qlap): Z(ap))
= D,(Q(ap): Z(eg)) = D,(Qap): R) = 1,
where q is a prime not equal to p. Therefore, by the theorem of [8],
D,(X: Z(ap)) = n.

The “only if” parts are obvious.

The following lemma is proved easily in a way analogous to the proof of the
theorem of [8].

LEMMA 1. Lel X be a compact Hausdovff space. Then
(i) D,(X: R) + 2 = D (X X M, R),
(ii) D (X: Zp) + 2 = D (X X Pp: Zp) and
(iii) Dy(X: Qp) + 2 = D (X X Mp: Qp).
THEOREM 2. Let k be a non-negative integer, and let j > k. Then
i) (Mo)j is a test space for R with vespect to Li(R),
(ii) (Pp) is a test space for Zp with respect to Li(Zyp),
(iii) (Mp)J is a test space for Qp with vespect to Li(Qp).
Heve we mean by (Y)Y the j-fold product space Y X Y X «-- X Y of a space Y.

Proof. We shall prove only (iii). The other cases are treated similarly. Let
X € Lk(QP),,and let h = D (X: Qp). By (iii) of Lemma 1, it follows that

D, (X X (Mp)): Qp) = h + 2j.
Therefore, dim (X X (Mp)j) >h+2j(j=1,2,--). We must prove the equality
dim (X X (Mp)J) = h+ 2j  for j > k.
Assume that dim (X X (Mp)j) =m > h + 2j for some j > k. Then either
dim(XX(Mp)j‘1)=m— 2 or m- 1.

If dim (X X (Mp)i~1) = m - 2, then D, (X x (Mp)i-1: Qp) = m - 2 by (iii) of Theorem 1.
By (iii) of Lemma 1, D_(X: Qp) = m - 2j > h. Thus

dim (X X (Mp)j‘l) =m-1.
If dim (X X (Mp)’~%) = m - 3, then
D (XX (Mp))"*:Qp)=m-3 and D(X:Qp)=m-3-2G-2) >h.
Therefore dim (X X (Mp)j'z) = m - 2. In general,
dim XX M H=m-i (=12 -, j.

But this means that
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dimX=m-j>h+2j-j=h+j>h+k=dimX.

This contradiction implies the truth of the equality dim (X X (Mp)j) = h + 2j.
Conversely, let dim (X X (Mp)j) =h+ 2j (j > k). We shall prove that

dim (X X (Mp)~}) = h + 2(j - 1).  Assume that dim (XX (Mp)i-1) =h+ 2j - 1. If
dim (X X (MP)J-?-) =h + 2j - 3, it follows that
D, (X X (Mp)I~2: Qp) = h+ 2j - 3,
D, (X X (Mp): Qp) = h+ 2j + 1 > dim (X X (Mp)J).
Therefore dim (X X (Mp)j‘z) = h + 2j - 2. In general,
dim (XX (Mp)J=) =h+2j-1 (i=1,2, - ).
But this means that dimX = h + j > dim X. Thus we can conclude that
dim (XX (Mp) ™) =h+ 2(j - 1).

By (iii) of Theorem 1 and (iii) of Lemma 1, D_(X: Q) = h. This completes the proof.
Proof of Theorem A. (I) Put

Ti(R) = Mo), Ti(Zp) = (Pp), Ti(@p)=Mp) (i=1,2, ).
Let G be one of the groups R, Zp and Qp. By the proof of Theorem 2, if
X € Ly(G) U L,(G), then D, (X: G) = dim (X X Ti(G)) - dim Ti(G) (i=1, 2, -=-). If
X € Ly(G) for i > 1, then

D,(X: G) = dim (X X T;(Q)) - dim T;(G)  (j > 1),
D, (X: G) = dim (X X Tj(G)) - dim TJ-(G) ~-i+j G>1i.

Therefore {dim (XX Tj(G)) - dim T (G); i=1, 2, *=-} is a nonincreasing sequence.
Thus, it is obvious that the system {T;(G)} forms a T-system for G with respect
to L. Nextlet G =Zy Gy, where Gy is one of the groups R, Zp and QP' Put

T; (G) = Ua Ti(Gg) (i=1, 2, ). Then T;(G) is locally compact and fully normal.
Let X be a finite-dimensional compact Hausdorff space. Since

D,(X: Gg) = dim (X X T;(Gg)) = 2j = Min {dim (X X T;(Gg)) - 2i; i=1, 2, -}
for j > dim X and each a, and since D (X: G) = Maxy {D,(X: Gy)} [2] and

dim (X X T;(G)) = Max {dim (X X T;(Gg))} ,
o

we have the equality
D,(X: G) = Min {dim (X X T;(G)) - dimT;(GQ); i=1, 2, *=-}.

(II) If G is one of the groups in (i) to (iv) of (I) of Theorem A, then the space
Tn+1(G), which is the (n + 1)st member of the T-system constructed in the proof of

(I), is a test space for G with respect to U?:o L;.
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(III) This is a consequence of Theorem 1.
Proof of Theovem B. (I) Let {Tj; i=1, 2, .-} be a T-system for Z(ap) with
respect to Ln(Z(ap)) for n > 2. Put X = (Mp)". Now dim X = 2n, and
D,(X: Z(ap)) =n.

Therefore X belongs to Ln(Z(ap)). By the definition of a T-system, there exists an
integer i such that

D, (X: Z(ap)) = dim (X X T3) = dim T;.
But, for every Y € L, we have the relation dim (X X Y) > 2n - 1 + dim Y. Therefore,

n=dim(XX T;) = dim T; > 2n - 1. This contradicts the fact that n > 2.

(I1) If for i =1, 2, ---, the X; are replicas of the unit circle in the complex plane,
and if f;: X;41 — X; is defined by f;(z) = 22, then the inverse limit space X = lim X

is the dyadic solenoid. Also, X € L;, D, (X: Z) =0, and dim (XX Y) =dim Y + 1 for
every Y in L. This shows that there exists no T-system for Z with respect to L,.
Let n > 2. Let M be the contintum constructed in Lemma 17 of [5], and let E! be
the i-cube. Put X = Mx E® 2 Then X € Ly, D, (X: Z) =n - 1, and

dimXXY)=dimY+n

for every Y in L. This completes the proof of (II).

(II) Let {Ty; i= 1, 2, ---, m} be a T-system for G with respect to L. Take an
integer n > Max {dim T;}. There exists a continuum X which belongs to
1

L,(G) N L2n. Then it follows that

n = D, (X: G) = Min {dim (X X T;) - dim T; } > 2n - Max {dim T;} > n.
1 1

This completes the proof of the theorem.

The following corollary, which is a generalization of Theorem 4.1 of [1] or
Theorem 5 of [6], is easily proved in analogy with the proof of Theorem 5 of [6].

COROLLARY 1. Let X and Y be finite-dimensional compact Hausdovff spaces.
Then, if dim (X X Y) = k, there exists a prime p such that

D, (X: Qp) + D, (Y: Qp) > k.

Proof. Since R; = Zj, Qp, there exists a prime p such that D (X X Y: Qp) = k,
by [2] and [8]. Take an integer i, > Max {dim X, dim Y}. We know, by Theorem 2,
that dim (X X Y X (Mp)?%0) = k + 4ip. By Theorem 4 of [10] it follows that

dim (X X (Mp) ©) + dim (Y X (Mp) ©) > k + 4ig.
Since dim (X x (M, )lo) = D, (X: Qp) + 2ig and since dim (Y X (Mp)iO) =D, (Y: Qp) + 2ip
by Theorem 2, it follows that D, (X: Qp) + D, {Y: Q) > k.

The following corollary was proved by Cohen [2].

COROLLARY 2. Let X be a finite-dimensional compact Hausdovff space which
is a union of countable number of compact subsets Xi, and let G be one of the groups
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in (i) to (iv) of () of Theorem A. Then D_(X: G) = Max {Dx(X;: G); i=1, 2, ---}.
Proof. Let dim X = n. There exists a test space T for G with respect to
?=0 L;, by (II) of Theorem A. By the classical sum theorem of dimension theory,

we know that dim (X X T) = Max {dim (X; x T); i=1, 2, ---}. Since T is a test space
for G and dim X, < n, it follows that

D, (X: G) =dim (XX T) - dim T = Max {dim(X; X T); i=1, 2, ---} - dim T
= Max{D(X;: G); i=1, 2, -} .

COROLLARY 3. Let X and Y be finite-dimensional, compact metvic spaces, {
a continuous mapping of X into Y, and G one of the groups in Corollary 2.
(i) If dim £~ (y) < n for every point y of Y, then D*(X: G) < D*(Y: G) + n.
(ii) If ord £ < n, then D*(Y: G) < D*(X: G) + n.
(iii) If £ is open and has finite ovder, then D*(X: G) = D*(Y: G).
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