EXTREMAL LENGTH DEFINITIONS FOR THE CONFORMAL
CAPACITY OF RINGS IN SPACE

F. W. Gehring

1. INTRODUCTION

It is well known that many important properties of conformal and quasiconformal
mappings in the plane can be deduced from studying what happens to the modulus or,
equivalently, to the capacity of rings. Recently Loewner showed in [7] how this
method can be extended to higher dimensions by defining a conformal capacity for
rings in Euclidean 3-space by means of a Dirichlet integral. The present author has
found Loewner’s idea very fruitful, and he has used it to establish a number of re-
sults on conformal and quasiconformal mappings in space. (See [2], [3] and [4].)

J. Viisdld, in [13] and [14], and B. V. Sabat, in [8] and [9], have investigated
quasiconformal mappings in space, using extremal lengths. In doing so, each of
them has tacitly introduced a new kind of conformal capacity for a space ring R.
Viisidld considered the module of the family of curves in R that join the boundary
components of R, while Sabat studied the module of a family of surfaces that sepa-
rate the boundary components of R.

In the first part of this paper we shall give two extremal length definitions for
the conformal capacity of a ring in space. The first of these is essentially equiva-
lent to Vidis#lid’s definition, while the second is a slightly modified version of Sabat’s
definition. We shall then show that these two extremal length definitions are equiva-
lent to the Dirichlet integral definition due to Loewner.

In the second part of the paper, we use these extremal length definitions to obtain
upper and lower bounds for the moduli of some rings in space that have axial sym-
metry. In particular, we show that the moduli of the Grétzsch and Teichmiiller ex-
tremal rings in space are greater than or equal to the moduli of the corresponding
rings in the plane.

2. NOTATION

We consider sets in the Mobius space, that is, in the finite Euclidean 3-space
plus the point at infinity. Points will be designated by capital letters P and Q or
by small letters x and y. In the latter case, x,, X,, X, will denote the coordinates
for x, and similarly for y; x will denote the point at infinity if any one of its co-
ordinates x; is infinite. Points are treated as vectors, and IP] and |x| will de-
note the norms of P and x, respectively.

Given a point P and sets E and F, we let p(P, E) denote the distance between
P and E, and p(E, F) the distance between E and F. We further let 3E, €E, and
E denote the boundary, complement, and closure of E, respectively.
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Finally, for each function u = u(x), Vu will denote the vector —a-E-, ﬂ, -;}B-) ,
0x,’ 0%, 0X,4

defined at each point where the three partial derivatives exist.

3. CONFORMAL CAPACITY OF A RING

A 7ing R is defined as a finite domain whose complement in the Msbius space
consists of two components, C, and C,. We let C; denote the component that con-
tains the point at infinity, and we set B, = 0C,, B, = 0C,. Then B, and B, are
simply the components of oR.

Next, following Loewner, we define the conformal capacity of a ring R as

(1) T'(R) = infSRl vu|? dw,

where u ranges over all functions that are continuously differentiable in R and have
boundary values 0 on B, and 1 on B,. When R is unbounded, this last requirement
will mean that u(x) — 1 as |x| —« in R. Loewner proved, in [7], that T'(R) > 0 if

and only if R has nondegenerate boundary components, that is, if neither B, nor B,

reduces to a point.

We can enlarge the class of competing functions u as follows. A function u is
said to be absolutely continuous on lines, or simply ACL, in a finite domain D if,
for each sphere U with U c D, u is absolutely continuous on almost all line seg-
ments in U parallel to the coordinate axes. If u is continuous and ACL in a ring
R, then u has partial derivatives a.e. in R. If, in addition, u has boundary values
0 on B, and 1 on B,, then

I'(R) §§ |vul? do.
R

(See Lemma 1 of [3].) We call such a function u an admissible function for R, and
we see that we may take the infimum in (1) over this class of functions without af-
fecting the value of I'(R).

If R has nondegenerate boundary components, there exists a unique admissible
function u for which

I'(R) = SR |Vu|3 dw .

(See Theorem 1 of {4].) We call u the extremal function for R. It satisfies the
variational condition

(2) SR |Vu| Vu-Vwdw = 0,

where w is any function that is continuous and ACL in R, that has boundary value 0
on 3R, and for which |Vw| is L3-integrable. (See Corollary 2 of [4].)



EXTREMAL LENGTH DEFINITIONS FOR CONFORMAL CAPACITY 139
4, EXTREMAL LENGTHS

Let R be a ring. A curve vy is said to join the boundary components in R if y
lies in R, except for its endpoints, and if one of these endpoints lies in B, and the
other in B,. A compact set T is said to separate the boundary components of R if
» Cc R and if C, and C, lie in different components of €Z. Now, given a function £
that is nonnegative and Borel measurable in R, we let

L() = L(R, 1) = inf S fds,
Yy Y

where the infimum is taken over all locally rectifiable curves y that join the boun-
dary components in R. Next we let

A(f) = A(R, f) = inf 5 £2do,
5 vYZ

where now the infimum is taken over all compact piecewise smooth surfaces Z that
separate the boundary components of R. Finally we set

V() = V(R, ) = SR 3 dw .

The main purpose of this paper is to establish the following two extremal length
definitions for the conformal capacity of a ring in space.

THEOREM 1. If R is a ving, then

(3) it YO _ rmy - supAO°

£ L)} £ V(D2

The infimum is taken over all f for which V() and L(f) are not simultaneously 0
or «, and the supremum oveyr all f for which A(f) and V(f) are not simultaneously
0 o7 o,

J. Viisila informs me that he also has proved a result similar to the first part
of (3).
5. PRELIMINARY RESULTS

We list three lemmas that will be used in the proof of Theorem 1.

LEMMA 1. Let S be a spherical suvface of radius r, and let f be nonnegative
and Bovel measurable on S. Then each pair of points on S can be joined by a civcu-

lay arc o C S such that
3 3
(§ 1as)” <ar { f2a0,
a S

wheve A is an absolute constant.

This is established by replacing |Vu| by f in the proof of Lemma 1 in [4].
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LEMMA 2. Let R be a ving with nondegenerate boundary components, and let {
be nonnegative, Borel measurable, and L3-integrable in the finite space. For each
a> 0 therve exists a b > 0 with the following property. If P, and P, ave the end-
points of a rectifiable curve B, if p(P,, B,) < b, and if either p(P,, B,) <b or
|p,| > 4/, then

(4) Sﬁ fds > L(f) - a.

Proof. Fix a> 0 and choose ¢ > 0 so that

(5) ( ) log log 2’

where A is the constant of Lemma 1. Then we can find a number b (0 <b < 1/V2)
such that the following is true. C, lies in the sphere |x[ < 1/b and has diameter
greater than 4b, C, meets the surface |x|=2/b, 3b < p(B,, B,),

(6) 5 Pdw<c
|x-@|<2b

for every point Q, and

7 Bdw < c.
‘S‘|x|>2/b =

Now let B be a rectifiable curve joining P, and P,, where p(P,, B,) < b and
where either p(P,, B,) <b or |P,|> 4/b. In order to establish (4), it suffices to
show for i = 0, 1 that either 8 meets Bj or there exists a circular arc «; joining
B to B; such that

a
o. -2

1
Then, for example, if 8 does not meet 9R, B U o, U a, will contain a rectifiable
curve y that joins the boundary components in R, and

SfdsZS fds-‘g fds-S fds > L(f) - a,
B Y (e -

a,

as desired.

Suppose that 8 N B, is empty, and choose Q, in B, so that | P, - Q,] < b. Then
(6) implies that there exists a spherical surface S,, with center at Q, and radius r,
(b < ry < 2b), such that

S do < 3525
Now P, lies inside, and P, outside of S,. Furthermore, the diameter of S, is less

than that of B,. Hence S, meets B and B,, and by Lemma 1 and (5) we can find a
circular arc o, C S, that joins 8 to By and for which
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a
fds < .

Now suppose that 8 N B, is empty. Then we can find a spherical surface S,,
with center at Q, and radius r,, such that

3 _c
(8) r, SSlf d0510g2'

When p(P,, B,) < b, we choose Q, in B, so that |P, - Q| <b,andb < r, < 2b so
that (8) holds. When |P,|> 4/b, we take Q, as the origin and, on the basis of (7),
choose 2/b < r; < 4/b so that (8) is valid. In each case it is easy to see that P,
and P, are separated by S,, and hence that S; meets 8. The hypotheses further
imply, in each case, that 8 € €C, and that S, N C, is not empty. Thus S, also
meets B,. Lemma 1 now yields a circular arc a, C S,, joining 8 to B,, such that

S fds < 3,
al

and the proof of Lemma 2 is complete.

Given a set Z and a number b > 0, we let ~(b) denote the set of points x for
which p(x, Z) < b.

LEMMA 3. Let R be a ving with nondegenerate boundary components, let u be
the extremal function for R, and let Z be a compact set that separvates the boundary
components of R. Then

jz(b) |7u|? dw > 2bT(R)

for 0< b < p(Z, 3R).

Proof. Fix 0<b < p(Z, 9R). Next, for i =0, 1, Ir Dj; be the component of €=
that contains Cj, and let E; be the set of points for which 0 < p(x, ¥D;) < b. Then
E; c D; and E, U E,; . Z(b). Hence it is sufficient to show that

9) S |vul? dw > bT(R)
Ey

for i=0, 1.

We consider the case where i = 1. For this, set w = v - bu, where the function
v is defined as follows:

v(x) = min (b, p(x, €D,)).

Then w is clearly continuous and ACL in R. Next, it is easy to see that v has
boundary values 0 on B, and b on B,, and hence that w has boundary value 0 on
dR. Finally, |Vv|< 1 a.e. in E,, while |vv| =0 a.e. in R - E,. This last state-
ment follows from the fact that almost every point of €E, is a point of linear den-
sity for € E, in the directions of the coordinate axes. (See, for example, [10, p.
298].) Since E, is bounded, |\7w| is L*-integrable in R, and we can apply the
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variational condition in (2) to conclude that

S |Vu|2dw>5 |Vulvu.Vvdw=b5‘ |Vul3dw=bI‘(R),
E, = JR R

as desired.

A trivial modification of the argument above yields (9) for i = 0, thus completing
the proof of Lemma 3.

6. PROOF OF THE FIRST HALF OF THEOREM 1

We prove here that

LV
(10) T'(R) = llflf ——L(f)3 ,

where the infimum is taken over all nonnegative Borel measurable functions f with
V(f) and L(f) not simultaneously 0 or .

Fix a > 0, let u be a continuously differentiable admissible function for R with

‘S qu|3 dw <T'(R) + a,
R

and set f = |Vu|. Then
S fds = S |Vu|ds> 1
' Y -

for each locally rectifiable curve y that joins the boundary components in R. Hence
L{f) > 1, V() < T'(R) + a,
and letting a — 0, we obtain the inequality

V@) < rw).

inf
f

To complete the proof for (10), we must show that

(11) r®) < YO

— L(f)3

for all nonnegative Borel measurable functions f with V(f) and L(f) not simultane-
ously 0 or . Now (11) is trivial in case I'(R) = 0, L(f) = 0, or V(f) = ». Hence we
may assume without loss of generality that R has nondegenerate boundary compon-
ents and that L(f) > 1 and V{f) < .

Let 0 <a< 1, and extend £ to be equal to 0 in ¥R. Then f satisfies the hy-
potheses of Lemma 2, and we can find a number b (0 < b < 1) for which the conclu-
sions of Lemma 2 hold. Next, let
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g(x) = ?n_(l_ﬁf SUf(x +y)dw,

where U is the sphere Iyl < b. Then g is bounded and continuous in the finite
space. Moreover,

(12) 5,8 gds > L(f) - a

for each polygonal arc 8 joining P, and P,, where P, is in B, and where either P,
isin B, or |P,|> 5/b. For by Fubini’s theorem,

Syemas = § (g 16+ v o) asto = iy S (S se0as) awe,
Yy

where By denotes the translation of g8 through the vector. y. Lemma 2 then implies
that

5 fds> L(f) -~ a
By -

for all lyl < b, and hence (12) follows.

Since g is bounded and since B, and B, are nondegenerate, (12) implies that
L(f) <. Now for each x let

u(x) = infj gds,
B B

where B is any polygonal arc joining x to B, and set

v(x) = min (1, —I-_.l(lf()—X)--E) .

It is easy to see that v satisfies a uniform Lipschitz condition, that v = 0 on B,, and
that v = 1 on B, and outside the sphere le < 5/b. Hence v is admissible for R,
and since

vvl<tm—=
a.e. in R, we obtain the inequality
I'(R) < — 1 S g3dw.
— (L) - a)3 Jg
Minkowski’s inequality (see [5, p. 148]) implies that

5R gt do < (g SU [SR £(x + )% do) | 12 dwly) ) v,
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Thus

V()

TR < Tm -2

and, letting a — 0, we obtain (11). This completes the proof of the first half of
Theorem 1.
7. PROOF OF THE SECOND HALF OF THEOREM 1

We prove next that

A3
V)2’

(13) T'(R) = sup

where the supremum is taken over all nonnegative Borel measurable functions £
with A(f) and V(f) not simultaneously 0 or .

Fix a> 0, and let f be nonnegative and Borel measurable in R. By the result
proved in Section 7 of [3], we can find an admissible function u with the following
properties: u is piecewise linear in R,

S |Vu|? dw<T'(R) + a,
R

and, for all but a finite set of b in 0 < b < 1, the points where u =b form a poly-
hedral surface > that separates the boundary components of R. Thus

A®< | fPdo,
z
and, integrating over all such b, we find that

AWM < Sol (Sz t2d0 ) db < SR " vuldw .

Holder’s inequality yields the result
2
AD3< (5 f3dw) (f |7ul? dw) < V@? (T(R) + a),
R R

and, letting a — 0, we conclude that

A
V(£)2

< T(R)

for all £ with A(f) and V(f) not simultaneously 0 or .
To complete the proof of (13), we must show that

A(f)

(14) 'R)< sup V2
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This is clearly so when I'(R) = 0, and hence we need only consider the case where R
has nondegenerate boundary components.

Let u be the extremal function for R, and, for each r > 0, let
B 1 5 ) 1/2
f(x, r) = (——m(U) ‘S‘U |Vu(x + y)l dw ,
where U is the sphere |y| < r and where |Vul is taken as 0 in ¥R. Next, for

each a> 0, let

g(x)= sup f(x,r), h(x) = sup f{(x, r).
0<r<la 0<r<o0

Both g and h are nonnegative Borel measurable functions, and a form of the Hardy-
Littlewood maximal theorem, due to K. T. Smith, implies that h is L3-integrable
over R. (See Theorem 1 of [11].) Then, since

lim f(x, r) = |Vu(x)|

r—0

a.e. in R, we conclude from Lebesgue’s dominated convergence theorem that

(15) lim V(g) = S |Vu|3 dw = T(R).
R

a—0
Now fix a > 0, let Z be a compact piecewise smooth surface that separates the

boundary components of R, and choose b> 0 and r > 0 so that r < a and
b+ r < p(Z, oR). By Fubini’s theorem,

Sz(b) fx, x)%dw - Sz:(b) (F%l_ﬁ SU | Vutx + | dw(Y)) dw (%)

5, (J g 9000 )

where U is the sphere |y| <r, Zy is the translation of Z through the vector y,
and Zy(b) is the set of points x with p(x, Zy) < b. Lemma 3 implies that

5‘ | Vu|? dw > 2bT'(R)
2y ()

for all |y] < r, and hence that

S f(x, r)*dw > 2bT(R) .
> (b)

Since f is continuous and Z is piecewise smooth,

2 2 . 1
SZ g(x)“ do > 52 f(x, r)“do = ll)i-r)r:) 5 SZ‘(b) f(x, )% dw >T(R),
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and we conclude that
A(g) > T'(R).

This, together with (15), implies that

AP
I'(R) < ,
S 022200 V(g)?

and we obtain (14), thus completing the proof of the second half of Theorem 1.

8. MODULUS OF A RING

A plane ring is a finite plane domain whose complement with respect to the ex-
tended plane consists of two components. It is well known that each such ring R'
can be mapped conformally onto some annulus a < lz] < b. The conformal invariant

mod R' = logg

is called the modulus of the ring R'.

The situation in space is quite different. First of all, the exterior of the Alexan-
der horned sphere, (see [1] or [6, p. 176]), minus a closed neighborhood of the point
at infinity, is a ring according to the definition in Section 3. Hence a space ring may
fail to be topologically equivalent to any spherical annulus a < |x| < b. Next, even
if we restrict ourselves to rings that are homeomorphic to spherical annuli, we see
that the only conformal mappings in space are the Mobius transformations. Thus R
is conformally equivalent to a spherical annulus if and only if R is bounded by two
spherical surfaces or by a spherical surface and a plane.

On the other hand, we can get a satisfactory definition for the modulus of a space
ring in terms of its conformal capacity if we set

47 1/2.

Then mod R is a conformal invariant, and the modulus of the spherical annulus
a< |xl < b turns out to be log b/a. (See Section 2 in [3].)

It is important to obtain estimates for the moduli of certain simple rings, and,
applying Theorem 1, we obtain the following result. (Compare Lemma 7 of [3].)

THEOREM 2. Suppose that y(x) is a continuously differentiable homeomorphism
of a< lxl < b onto a ring R, that y(x) has a nonvanishing Jacobian, and that y(X)
maps each radius of a < xl < b onto a curve that is normal to the image of each
surface |x|=r. Then

b b
(17 (DL <moar< (D,mE,
a 2

where, for a<<r <b,



EXTREMAL LENGTH DEFINITIONS FOR CONFORMAL CAPACITY 147

3.1/2 3.1/2
D, (r) = lmIin (%((—}%‘ ,  Da(r) = |mlax —_I\TI((XX))

Here J(xX) is the absolute value of the Jacobian, and N(x) is the stretching normal to
xI =r, that is, .

NG) - lim | y(x + hx) - y(x)|

(h real).
h—0 l th

Pyroof. For the first part of (17), let = be the image of |x| =r (a<r<b), and
let £ be nonnegative and Borel measurable in R. Then Z is a smooth surface that
separates the boundary components of R, and J(x)/N(x) is the ratio between corre-
sponding elements of area on = and |x|=r. Hence

A(f) < S f2d0=S fz(l—\I-J)do,
- Yz |x|=r
and since 0 < D, (r) < «, HSlder’s inequality implies that

a@*? < (Sl 1 clo)l/Z SI . f3(-'—;)3/2d0§(477)1/2Df(r) e > Jdo.

(

If we multiply both sides of this inequality by 2;—5) and integrate with respect to r,

we obtain the relation

b
A(f)3/25 Dy < (417)1/25 £ 5dw = (4 2V .

r a<|x|<b

This means that

ING -2

20, < an(§ Dr0r %)

whenever A(f) and V(f) are not simultaneously 0 or «. Taking the supremum over
all such f yields the inequality

r(R)§4n(SbD1(r)91;£)_z,

and this together with (16) gives the first half of (17).

For the second part of (17), let ¥ be the image of a fixed radius of a < |x| < b,
and let f be nonnegative and Borel measurable in R. Then y is a locally rectifiable
curve that joins the boundary components in R, and N(x) is the ratio between corre-
sponding elements of length on y and the radius of a < |x| < b. Thus

b b
L(f) <S fds = S fNdr < S £p2/3 51/ 3 ar
T Yy a — Ya
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and Holder’s inequality gives
L(f) < (5 Dz(r) S £2 Jrldr.
If we integrate over all the radii of a < |x| < b, we obtain the relation

arL(fy < (5bD2( )— S

This means that

lelcs £3Jdw = (S:Dz(r)-(i‘—r)ZV(f).

-2
47 (S Dz(r)— < ]‘_,I((ff))3

whenever L(f) and V(f) are not simultaneously 0 or «. Taking the infimum over
all such f yields the inequality

4m S D(r) - ) <T'[®),
and this together with (16) completes the proof of Theorem 2.

9. AN APPLICATION

In conclusion we show how Theorem 2 can be used to estimate the moduli of
some simple space rings that have axial symmetry.

Let R' be a plane ring in the y,y,-plane, let R' be symmetric in the y,-axis,
and let R be the space ring obtained by revolving R' about the y,-axis. Then there
exists a conformal mapping y, + iy, = {(x, + ix,), of some plane annulus
a< |x1 + ile < b in the x,x,~plane onto R', that preserves symmetries with re-
spect to the x,- and y,-axes. If we introduce polar coordinates (s, ¢) and (t, 6) in
the x,x,- and y,ys-planes, respectively, we obtain a homeomorphism y(x) of the
spherical annulus a < le < b onto R by letting

y,+it=1f(x, +is) and 0=¢.

It is easy to verify that y(x) satisfies the hypotheses of Theorem 2 and that

N(x)3
—J(—XT f (Xl + IS)
for each point x. Hence
x 1/2
D (r) = min 2 fy(xq + ix)) ,
x1+ix2|=r yz
1
(18) X, 1/2
D,(r) = max [==f1(x;+ ix),)
x1+ix2|=r Y2
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We consider an example. Fix a > 0, and let R' be the plane ring in the y,y,-
plane bounded by the segment -1 <y,<0, y,=0 and by the ray a<y, <, y,=0.
Next, let R be the space ring formed by revolving R' about the y,-axis, that is, the
ring bounded by the segment -1 <y, <0, y,=y;=0 and by theray a<y, < o,

Y2 = ¥s = 0. R' is the Teichmiiller extremal ring [12, pp. 637-639], and R is its
counterpart in space.

Now we can find a conformal mapping y, + iy, = f(x, + ix,), of some plane annulus
1< |x, + ix,| < b onto R', that preserves symmetries in the x,- and y,-axes. The
inverse mapping X, + ix, = g(y, + iy,) is analytic in y, > 0 and sends this half-plane
either into' x, > 0 or into x,< 0. Hence we can apply the half-plane form of
Schwarz’s Lemma to conclude that

X

P
y2

lg(y, + iy | <
for y, > 0. By symmetry this holds for all relevant y, + iy,. Thus

> 1

Xz £ X, + ix
Y- ( 1 2)
for 1< |x, + ix,| < b, and together with (17) and (18) this yields the inequalities

b
(19) log b < Sl D,(r) % < mod R.

When a > 1, we can apply the reflection principle to show that (19) still holds for
the case where R' is the plane ring bounded by the circle |y + iy2| = 1 and by the
ray a<y, <=, y, = 0, and where R is the ring bounded by |[y|=1 and by
a<ly, <o, y,=y3=0. Inthis case, R' is the Grtzsch extremal ring [12, pp. 631-
635] and R its analogue in space.

In both of the cases considered above, log b is the modulus of the plane ring R'.
We thus obtain the following result.

COROLLARY. The modulus of the Grotzsch ving in space is not less than the
modulus of the corvrvesponding Grotzsch ving in the plane. Similarly, the modulus of
the Teichmiiller ving in space is not less than the modulus of the covresponding
Teichmiiller ving in the plane.

If we let log ®(a) denote the modulus of the Grotzsch ring bounded by |x| =1
and by a < x, < =, x, = X; = 0, then it is easy to show that ®(a)/a is nondecreasing
in 1 < a <, and hence that

1im 2@ _ .

a—00 a
The exact value of X is not yet known. However, combining the Corollary above with
known results on the Grotzsch ring in the plane and with Lemma 8 of [3], we con-
clude that 4 <A < 12.4 ---.
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