PARTIALLY FREE SUBSETS OF EUCLIDEAN n-SPACE.

R. L. Wilder

In an earlier paper [7] I have studied subcontinua of euclidean n-space ER
(n > 2) that are what might be called pariially free: for each positive number ¢,
they admit e-transformations (continuous mappings) into sets that either do not
meet the original set at all (such sets are called free), or meet it in a set having
prescribed dimensional limitations. Continua that are free were the subject of
earlier papers [2], [4], but as a suitable modification of the well-known Alexander
Horned Sphere shows, even such a simple continuum as the 2-sphere in E2? is not
always free. However, it was recently shown by Bing [1] that a 2-sphere S in E? is
always partially free, in that it can be subjected to e¢-transformations into sets which
meet S only in a 0-dimensional set (“Cantor set”). And in the paper first cited
above, I showed that a converse of Bing’s theorem holds (thus furnishing a new posi-
tional characterization of the 2-sphere in E3), and I found an analogous theorem for
the generalized manifold in E™.

These results have the following noteworthy features: let C denote the original
set, f the transformation, and T the closed subset of C such that

C'={(C) c (En\\- C)UT;

then
(1) in the case of Bing’s result, f is a homeomorphism on C - T,

(2) if U is an arbitrary component of E™ - C, one can always assume that
C'cUuT, and

(3) the set T depends on €.

It is easy to show that in (1) one may assume that f(C - T) ¢ E” - C (although this
does not necessarily imply that #(T) c T). However, the results found in [7] did not
require (1) at all, the most general type of continuous mapping being sufficient for
the converse theorem. Consequently one might search for a set of sufficient condi-
tions that would either incorporate (1) in significant fashion or modify it so that
only certain types of “monotoneity” conditions are imposed upon the mapping. Also,
one may ask that condition (2)—that one can “push” C - T into either complementary
domain—be deleted, no assumption being made as to where in E” - C the set C' - T
falls (in the case of the Alexander Horned Sphere, the sphere is free relative to one
complementary domain and only partially free relative to the other); and that the ef-
fect of making T independent of ¢ be considered. Each of these possibilities is in-
corporated in at least one of the theorems stated below; the first two appear in all
the main theorems, and the third in Theorems 1, 3 and 4.

We begin with a Lemma that extends Theorem 1 of [2] to partially free sets (here
and elsewhere in this paper, the symbol rel stands for “relative to”).

LEMMA 1. In E®, let C be a continuum such that for each € > 0 theve exist a
subset T of C that is a frontier set rel C not disconnecting either C oy E, and an

b

Received September 11, 1961,
This research was supported by the Air Force Office of Scientific Research,

97



98 R. L. WILDER

¢ - transformation £(C) = C' into (E™ - C) U T that carrvies C - T into E™ - C. Then
C is a frontier set rel E®; and if C cuts E®, then E™ - C consists of exactly two
domains of which C is the common boundary.

Proof. Suppose E™ - C has at least three components U, V, and W, and let
ueU, veV, weW, Then there exists an ¢ > 0 such that under every e-trans-
formation of C, the image separates each of the point pairs (u, v), (u, w), (v, w) [2,
p. 157]. Let T, f, and C' be as described in the hypothesis of the Lemma. Also let

C, = (C - T) U " 1(f(T) - T)

and C" = £(C,).

Since T is a frontier set rel C and C - T is connected, the set C,, and hence
also C", is connected. And since C" = f(C) - C, the set C" must lie in a single
component of E™ - C and contain all points of C' not in T. It must therefore fail
to meet two of the domains U, V, W. Suppose it meets neither V nor W. Since T
does not cut E™, there exist v, € F(V) - T and w, € F(W) - T. Hence the set
K=V U(C-T)U W is connected, inasmuch as V, C - T, and W are connected and
C - T contains the limit points v, and w; of V and W, respectively. However,

K N C'= @, and this contradicts the fact that by the choice of ¢, C' separates v and
w in E™. We conclude that E® has at most two components.

Every point of C is a frontier point rel E™, For otherwise C would contain
some S(x, 2¢) with x € C and € > 0. Again, let T and f be as described in the
hypothesis. Since T is a frontier set rel C, there would exist a point

y € (C-T)NS(x, ).

But evidently f(y) € S(x, 2¢) and therefore it could not lie in E® - C,

Suppose C cuts E™. As already shown, E® - C has then exactly two components,
U and V. Let B = F(U), and suppose C - B# 0. Let p' €e C - B and q € U. Let
£ > 0 be such that, under every g-transformation of B, the image of B separates
p' and q, and 2& <d(p', U). Let T and f be as described in the hypothesis of the
Lemma. Then, since T is a frontier set rel C, there exists p € (C - T) N S{p', &).
It is easily shown that no £-mapping can throw a point of B into S(p', £), and conse-
quently f(B) separates p and q. The set C" defined above must lie in V, since
f(p) € C" and f(p) £ U. And since T fails to separate E®, B - T # §, so that
U U (C - T) is a connected subset of E® - f(C) € E® - £(B) containing both p and q;
this contradicts the fact that f(B) separates p and q. We conclude that
C = F(U) = F(V).

COROLLARY. In E", let a compact set C be the common boundary of (at least)
two domains U and V; and for each € > 0 let theve exist a closed set T such that
H,_2(T) =0 and dim T < n - 2, and such that some g-transformation of C into
(E®» -C)U T carvies C - T into E* - C. Then E* - C=U U V.

Proof. Since C is a common boundary of two domains, and dim T < n - 2, T is
a frontier set rel C. And since H,_»(T) = 0, the set C - T is connected [3, Theorem
4].

Remark. The necessity of the condition in Lemma 1 that T do not disconnect C
is shown by simple examples; for instance, let C be a 2-sphere in E3, together with
a radius, and let T consist only of the point where that radius meets the 2-sphere.
The same example, but with T consisting of all points on the radius mentioned,
shows the necessity for the assumption that T be a frontier set rel C. Finally, to
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show the necessity of the assumption that T does not separate E®, let again n = 3,
and let C consist of (1) a 2-sphere T and (2) a curve interior to T that spirals
toward T in such a manner as to have T as limiting set; here T is a frontier set
rel C and does not disconnect C.

It is necessary to recall here the distinctions regarding “separation” in the set-
theoretic sense and in the sense of homology. If C is a connected set and T c C,
then T separates C if C - T is not connected. On the other hand, if C is any set
and T c C, then T 0-separates C if there exists a bounding compact 0-cycle of C
having compact carrier in C - T but not bounding on any compact subset of C - T.

As to local separation: If C is any point set and T c C, then T separates C
locally if there exists an open, connected subset D of C such that D - T is not con-
nected. And T is alocal 0-separating set of C if for some open subset U of C and
some compact cycle Z, of U - T, Z, bounds on a compact subset of U but does not
bound on any compact subset of U - T.

(To define, more generally, r-separation and local r-separation, one simply re-
places the 0’s above by r’s.)

LEMMA 2. If X is a locally connected, locally compact space, then a local
separating set T of X is a local 0-separating set of X; and conversely, if a closed
set T is a local 0-separating set of X, then T is a local separating set of X. Simi-
layr statements hold regarding the velalions between “ separating”’ and “0- separating.”

Indication of proof. In the first case, there exists a domain (that is, an open,
connected set) D such that D - T = D, U D, (separated); and since X is locally con-
nected and locally compact, there exists a continuum C in D containing points x,
and x, of D, and D,, respectively. A nontrivial O-cycle on x, U X, bounds in D but
not in D - T. For the converse case, there exist an open set U and a compact cycle
Z, of U - T that bounds in U but not in U - T. There exists a carrier of Z; in
U - T that is the union of m continua Kj, ---, K,,,, where m is the number of com-
ponents of U meeting K [5, p. 105, Corollary 3.4]. We can express Z, as
Z1 + ** + Zm, where Z; is the portion of Z, on K; and Z; bounds in the component
C; of U that contains K; (i=1, -»-, m). If Z;#0 in U - T, then some Z; # 0 in
C; - T, and since C; is a domain of X, the set C; - T cannot be connected (other-
wise, T being closed, C; - T would be a domain of X in which Z; bounds).

The following Lemma contains Theorem 2 of [2] as a special case:

LEMMA 3. In EP, let C be an lcX continuum that cuts E®. Let T be a closed
subset of C that is a frontiev set rel C and not a local r-separating set of either C
or E® for r <k, and such that if € > 0 therve exists an &-tvansformation
f:C > (E™- C) UT that carrvies C - T into E™ - C and is (k - 1)-monotone on
C - T. Then E® - C is the union of disjoint ulcX domains U and V having C as
common boundary.

The conclusion still holds if T depends on €, provided it may be assumed that
f can be chosen so that £{(T) C T.

(By lck we denote local r-connectedness in all dimensions r < k. By restricting
to homology over a field, we can define a mapping f: X — Y to be n-monotone if, for
each y € Y, H.(f" (y)) = 0 for all r < n. It should be noted that when k = 0, the
hypothesis of Lemma 3 imposes no monotonelty on f.)

Proof. By Lemma 1, E® - C is the union of disjoint domains U and V of which
C is the common boundary. Suppose U is not r-ulc for some r < k. Then there
exist p € C and € > 0 such that whenever 0 < § < 3¢, the set U N S(p, 6) contains
an r-cycle nonbounding in U N S{p, 3¢).
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Since C is lck, there exists a positive number & < € such that every r-cycle of
C N S(p, 6) bounds on C N S(p, €). Let vy be a cycle of U N S(p, 6), nonbounding in
UN S(p, 3e). Let 1> 0 be chosen so that every 7n-transformation of C is linked by
¥, in S(p, 2¢) [2, p. 159, Lemma]. Let 6' be selected so that 0 < &' < & and so that
some compact carrier M of y, liesin U N S(p, 6'). Since r <k and T is not a
local r-separating set of E, the cycle Y, bounds on a compact set A, containing
M, of S(p, 6') - T. Let n' be a positive number, less than n and less than d(A, T).
By hypothesis, there exists an 7'-transformation f: C — (E® - C) U T carrying
C - T into E” - C, and if possible we select f so that f(C - T) ¢ V. Then there
exists on A N F(S(p, 2’) - U) —and hence on (C - T) N S(p, 6') —a cycle Z, such
that Z,. ~vy, on AN U (see [5, p. 203, Lemma 1.13]). By the choice of 6, Z,. ~ 0
on C N S(p, £), and since T is not a local r-separating set of C, Z_.~ 0 on
(C - T)N S(p, €¢). Butthen y_ ~ 0 on the set

[U U (C - T)] NnS(p, &) < S(p, 2¢) - £(C),

and this contradicts the choice of f. We may assume, then, that if ' < n and
7' < d(A, T), there does not exist an f such that f(C - T) C V.

In this case, we select n' as before, and a mapping f as before, but so that now
(1) £ is (r - 1)-monotone on C - T,

(2) £f(C) = C' separates M from V,

(3) £(C r S{p, €)) c S(p, 2¢), and

4) £(C r (E™ - S(p, 9)) N S(p, 8') = P.

Since C' separates M and V, M lies in an open subset W of S(p, 0') whose
boundary is a subset of (C' N S(p, 6')) UF(p, 6'). With A as above, there exists on
A N F(W) —and hence on C'N S(p, 6') —a cycle Z, such that y,.~ Z,. on AN W.
By the choice of ' and A, Z, ison C'- T - £(T). Let F be a carrier of Z, on
A N(C'- T - £(T)). Since f is (r - 1)-monotone on C - T, there exists a cycle Z1
on

£=3(F) c (C - T) N S(p, J)

(see condition (4) above) such that f(Zy) ~ Z, on F. Since Z%~0 on CN S(p, €)
and T is not a local r-separating set of C, Zx ~ 0 on some compact subset F' of
C N S(p, €) - T containing F. By (3), f(F') c S(p, 2¢), and therefore Z,~ 0 on

f(C - T) N S(p, 2¢). But then v, ~0 on S(p, 2¢) - C, contrary to the choice of 7'
and f. We conclude that U is ulck, and similarly V is ulck,

For the case where T is independent of ¢ but f(T) ¢ T, the proof differs only in
that n' cannot be subjected to the condition “less than d(A, T)” and A is of course
selected after the 7n'-transformation f has been selected. The essential require-
ment that Z,, be on C' - T - {(T) in the second part of the proof is automatically
satisfied under the circumstances.

THEOREM 1. In E?®, let C be an lck continuum that cuts EP, wheve k = m - 1
ifn=2m or n=2m + 1. Let T be a closed subset of C which is a frontier set
rel C and is not a local r-separating set of either C or E" for r < k, and such that
if € > 0 there exists an g-transformation f: C — (E® - C) U T that carvies C - T
into E™ - C and is (k - 1)-monotone on C - T. Then, with the additional assumption
that in case n is odd, H,_ (C) is finitely genevated, the set C is an ovientable
(n - 1)-gcem.
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Proof. If n is even, the theorem follows from Lemma 3 and [5, p. 308, Theorem
7.1]. ¥ n is odd, then Hy,(U) is finitely generated by the Alexander Duality
Theorem, and the theorem follows from [5, p. 308, Theorem 7.3].

THEOREM 2. Under the same hypothesis as in Theovem 1, except that T need
not be assumed closed and may depend on €, and that £ may be so chosen that
i(T) c T, the same conclusion follows.

Corollaries of these theorems for E2® have a special interest; below, we state
one for the case of the 2-sphere. We recall that if C is a common boundary of two
domains such that H,(C) = 0, and T is a closed, totally disconnected subset of C,
then T cannot separate C locally [7, p. 120, Corollary].

COROLLARY. In E3, let C be a 1-acyclic, locally connected continuum which
cuts E® such that for each € > 0 theve exist a totally disconnected subset T of C
and an &-transformation f: C — (E® - C)U T that carries C - T into E* - C and T
into a subset of T. Then C is a 2-sphere.

Before proceeding, we point out that the definition of local r-separation actually
refers to a medial, rather than to a local, property, since it is stated relative to all
open subsets of a space (for a discussion of medial properties, see my paper [6]).
In particular, a set that is not a local r-separating set cannot r-separate. For
some purposes it is useful to know when the property is equivalent to a local

property.

LEMMA 4. Let T be a closed, totally disconnected subset of a locally compact
space, and for each point x in T, let theve exist arbitrarily small open sets U, con-
taining X, such that each compact r-cycle of U - T that bounds in U bounds also in
U-T. Then T is not a local r-separating set of the space.

Pyroof. Let U be any open set, Zr a cycle with compact carrier K in U - T,
and A a compact set carrying the homology Z,.~0 in U. Let AN T =T'. Then
T' is a closed, totally disconnected subset of T not meeting K. By hypothesis, if
x € T', there exists an open set U, C U - K containing x such that if y, is a com-
pact cycle of Uy, - T that bounds in Uy, then it bounds in Uy - T. Since T is closed
and totally disconnected, there exists in Ux an open set Vx such that Vx c Uy and
TN F(Vx) =P. And since A is compact, T' is compact, and a finite number of such
sets Vy, say Vi, V2, -+, Vi, cover T'. Replacing V, by W;=V ] - Uf:z V;, and
so on, we obtain a covering of T' by disjoint open sets whose boundaries do not meet
T and lie in U - K.

From the elementary exact sequence of the pair A, A - W,, it follows that Z. is
homologous on A - W, to a cycle Z, on F(W,); and since Z, ~ 0 in U, - T, where
U, is the Uy to which V, and W, correspond, we can replace A by a compact set
A, that agrees with A on the complement of W, and meets T' only in the sets Wj
(i > 1). Proceeding in this manner, we replace A by a set Ay that liesin U - T.

Remark. If T is a closed point set forming an annular ring in a plane X, and
r = 0, then T is a set satisfying the hypothesis of the Lemma with the exception of
the total disconnectedness of T; yet T is a local O-separating set. Analogously, if
T is a solid torus in a 3-space X and r = 1, then a similar remark holds.

We recall that we call a space X r-declinable at x € X if there exists an open
set U containing x such that every compact r-cycle of X is homologous to a com-
pact r-cycle of X - U. If X is r-declinable at every point, we call X itself r-
declinable. We can now prove the following lemma:
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LEMMA 5. Let X be an (r + 1)-declinable, locally compact space, and T a
closed, totally disconnected subset of X that is not an r-separating set of X. Then
T is not a local r-separating set of X.

Proof. Let x € X, and let U be an open set containing x. Since x is (r + 1)-
declinable, there exists an open set P containing x such that every compact r-
cycle of X is homologous to a compact r-cycle of X - P. Since T is closed and
totally disconnected, there exists an open set Q, containing x, such that Qc U N P
and TN F = @, where F is the boundary of Q. Clearly every compact r-cycle of X
is homologous to a compact r-cycle in X - Q.

Let Z, be a cycle on a compact subset K of Q - T which bounds on some com-
pact subset A; of Q. Since T is not an r-separating set of X, Z .. also bounds on a
compact subset A, of X - T. We may assume that Kc A; N A, (augmenting A, and
A, by K, if necessary, to justify this relation). Consider the sequence of homo-
morphisms

A i
Hr+1(A1 U Az) i Hr(Al N Aﬁ i Hr(A]_) + Hr(A?)

forming a portion of the Mayer-Vietoris sequence of the triad A, UA,, A, A,. If
we indicate homology classes by brackets, then i[Z,] = 0, and consequently [Z r]
has antecedent [Z.,;] in H,;1(A1 U A). By the choice of Q, in the homomorphism

J
Hr+1(A1 U AZ) - hr+1(X)

induced by inclusion, j[Z,,;] is represented by a compact cycle ¥ r+1 of X - Q.
(We use h to denote homology groups based on compact supports.)

Let us extend X to a space X' as follows: Let M be a compact subset of X - Q
carrying ¥ ,._1, and let C be the join of M to an ideal point p; C N X = M. Then X'
is X augmented by C; it is topologized in an obvious manner so as to be locally com-
pact. Note, however, that vy .,; ~ 0 on the compact subset C of X', and hence
Z,..1~0in X'

r
Let TN Q=T, and T-T,=T,;andlet U, =X'-T,, U,=X"'- F - T,. Note
that U, UU,=X'and U, NU,=X'-T - F.

Consider the diagram

A i
Hr+1(A1 U Az) e Hr(Al N Az) — Hr(AI) + Hr(AZ)

oo e .

h,. (X" Ly h (X' - T - F) —— h,(U;) + h(U).

By commutativity, 'gA{Zy+1] = A'f[Zr+1], and since f[Zr+1] = 0, it follows that
gA[Z,,1]1=0 and that Z,4) ~0 in X'- T - F. It then follows easily that Z.4+1 ~ 0
in Q - T and, since QC U and U and x were arbitrary, that T is not a local r-
separating set by virtue of Lemma 4.

Remark. Since X is (r + 1)-declinable whenever h.,;(X) is trivial, Lemma 5
is really a generalization of the Lemma of [7] (compare Lemma 2).

Definition. A subset M of a space X is called semi-r-connected at x € X if
there exists a neighborhood U of x such that h,(MnN U | M)=0. If M is semi-r-
connected at all x € X, we say that M is semi-r-connected rel X. [By he(A l B)
we mean the image of h.(A) in h.(B) induced by inclusion. Our concept is a
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relativization of the notion of semi-r-connectedness as given in [5, p. 167, Definition
19.4]. If M is an open set with compact closure, it provides a “uniform semi-r-
connectedness” such as was used in [5] in Theorems 3.9, 3.15, and 3.17 of Chapter
XII (where the word “uniformly” was inadvertently omitted).]

We recall that by the symbol M?,rﬂ we denote an orientable n-gem that is
spherelike in homology in dimensions r and r + 1.

LEMMA 6. In order that a closed subset M of an M3} 11, S, should be r-
declinable, it is necessary and sufficient that S - M be semi-(n - r - 1)-connected
rel S.

Proof of sufficiency. Suppose S - M is semi-(n - r - 1)-connected rel S, but
that M is not r-declinable at x € M. Then there exists an open subset P of S con-
taining x such that

(1) some cycle Z . on a compact subset F of M is not homologous on M to any
cycle of M - P, and

(2) all (n _r- 1)-cycles of P - M are bounding in S - M.

Let T=(S-P) u(MNP). Then Z,. # 0 on T, so that by the Alexander Duality
Theorem there exists a cycle Z,_,_j in P - M linked with Z,.. But Z,_,._ 1 ~ 0 in
S-McS-F, sothat Z,_,._1; cannot be linked with Z...

Proof of necessity. Let M be r-declinable, and suppose that S - M is not semi-
(n - r - 1)-connected at x € S. Since S is r-lc, x £ S - M. Hence x is a point of M
such that every open set P which contains x also contains an (n - r - 1)-cycle of
S - M that fails to bound in S - M. Let P be an open subset of S such that every
r-cycle of M is homologous to a cycle of M - P. Since S is also (n-r - 1)-lc,
there exists an open set Q such that x € QC P and h,_,_;(Q|P) = 0. Let Z, . ;
be a cycle of Q - M that is nonbounding in S - M. Then [5, p. 266, Theorem 8.3]
Zn.r_1 is linked with a cycle Z.. of M. But there exists a cycle Yy on M - P that
is in the same homology class of M as Z, and is therefore also linked with Z,_.._).
But Z,,_,_1 ~0 in P, so that it cannot be linked with y..

LEMMA 7. Let M be a closed subset of an M} ., S, and T a closed, fotally
disconnected subset of M which is not an r-separating set of M. If S - M is semi-

(n - r - 2)-connected rel S, then T is not a local r-separating set of M.

Proof. By Lemma 6, M is (r + 1)-declinable and hence, by Lemma 5, T is not a
local r-separating set of M.

THEOREM 3. In E® (n> 2), let C be an 1cX continuum (with k=m - 1 if
n=2m o7 n=2m+ 1), that cuts E™, and let T be a closed, totally disconnected
subset of C that is not an r-sepavating set of C for r < k. Suppose that for each
€ > 0 there exists an eg-transformation f: C — (E™ - C) U T that carries C - T into
E™ - C and is (k - 1)-monotone on C - T, and that E® - C is semi-(n - r - 2)-
connected rel E™ for all r < k. Then C is an orientable (n - 1)-gcm.

Proof. By Lemma 7, T is not a local r-separating set of C for r < k. By
Lemma 3, E® - C is the union of two disjoint ulck domains having C as common
boundary. If n = 2m, the theorem now follows from [5, p. 308, Theorem 7.1]; and if
n = 2m + 1, the theorem follows from [5, p. 308, Theorem 7.2].

Remark. If T depends on £, then we may of course add the assumption that
f(T) c T, again apply Lemma 3, and so forth, and arrive at the same conclusion as
in Theorem 3.
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It is interesting to note that by increasing the requirement of semi-connectivity
by one dimension when n is odd, the other conditions of the hypothesis of Theorem 3
can be modified. Thus we can state the following theorem:

THEOREM 4. In E™ (n> 2), let C be an 1cX continuum (k=m -1 #f n=2m
o n=2m + 1) that cuts E™, and let T be a closed, totally disconnected subset of C
that is not an r-separating set of C for r < k - 1. Suppose that for arbitrary € > 0
theve exists an €-transformation f: C — (E® - C) U T carrying C - T into E* - C
which is (k - 1)- monotone on C - T, and that E* - C is semi-(n - r - 2)-connected
rel E® for r < k when n is even, and for r < k + 1 when n is odd. Then C is an
orientable (n - 1)-gcm.

Proof. By Lemma 3, E® - C is the union of disjoint ulck-! domains U and V
having C as common boundary. We shall show that T is not a k-separating set of
C, from which it will follow that C is an orientable (n - 1)-gem.

Let Zy be a cycle with compact carrier KC C - T that bounds on some compact
subset M of C. Let € > 0 be such that all (n - k - 1)-cycles of E™ - C of diameter
less than &€ bound in E™ - C. Suppose Zyi #0 in C - T. Then [5, p. 184, Theorem
4.4] Zyx #£ 0 in C - T, and consequently, by [5, p. 269, Theorem 9.1], Z,. is linked
with an (n - k - 1)-cycle y,_x_1 of E® - (C - T).

Since E™ - C consists of the domains U and V, and n - k - 1> 0, the cycle
¥Yn-k-1 can be expressed as a sum of cycles vy and yv that have carriersin UU T
and V U T, respectively.

Since T is closed and totally disconnected, there exist a finite number of disjoint
open subsets Wi, ---, Wj of C, of diameters less than £/3, covering T, whose
boundaries (rel C) are disjoint and do not meet T. Consequently Zj is homologous

on M - Uij1=l W, to a sum of cycles lec, -, Zf{, where Z{(’ is a cycle on F(Wy).

By well-known methods, the cycles Zﬁ can be approximated in U by cycles Ulﬁ, of
diameter less than €, such that Z{ ~ UZ in E - |yy|. By the choice of &, the
cycles U£ all bound in U, and it follows that Z; bounds in E" - “'yvu We conclude
that Z; is not linked with vy, and similarly that it is not linked with yy. But then
Zy is not linked with ¥, _jy_j, and a contradiction results. We conclude that T can-
not be a k-separating set of C.

By Lenima 3, the domains U and V are ulck, and when n = 2m, the theorem
follows from [5, p. 308, Theorem 7.1]. If n=2m + 1, then E” - C is semi-m-
connected, and the theorem follows from [5, p. 308, Theorem 7.2].

In the next theorem, we exploit the semi-connectedness of E® - C in arriving at
conditions where T is dependent upon &.

THEOREM 5. Iz E® (n> 2), let C be an lc¥ continuum (k=m - 1 if n=2m
or n=2m + 1) cutting E®, and let E™ - C be semi-r-connected rel E™ foy
r=n-k-2,..,n-2, For arbitrary € > 0, let theve exist a closed and totally
disconnected subset T of C and an €-transformation f: C — (E® - C) U T that
carvies C - T into E® - C and is (k - 1)-monotone on C - T, and such that if n> 3,
T is not an r-separvating set of C for r =1, .-, k and £ is 0-monotone on T. Then
C is an ovientable (n - 1)-gcm.

Proof., By Lemma 1, E™ - C is the union of two disjoint domains U and V of
which C is common boundary. Since n > 2, a closed and totally disconnected subset
of C is not a separating set of C; therefore, by Lemma 2, it is not a 0-separating
set of C; and since E™ - C is semi-(n - 2)-connected rel E™, such a set would by

Lemma 7 not be a local 0-separating set of C (and hence not a local separating set
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of C). For 0<r <k and n> 3, the set T (depcndent upon ¢) is not a local r-
separating set of C (by application of Lemma 7).

We first show that U is ulck. For the case where for every ¢ > 0 we may as-
sume that f(C - T) ¢ V, the proof is obtained by methods similar to those used in
proving Lemma 3. Where we must assume that f(C - T) ¢ U and n > 3, the chief
difference from the proof used in the corresponding case of the proof of Lemma 3 is
that, since f is assumed 0-monotone on T, the set f(T) and hence the set T U £(T)
is closed and totally disconnected, whence the set A of the proof of Lemma 3 may
be selected in S(p, 6') - T - £(T).

If n =3 and only the 0-ulc is needed, but f is not assumed O-monotone on T,
we may proceed as follows: Suppose U is not ulc; then there exist € > 0 and x € C
such that in every S(x, 6) (0 < 6 < 3¢g) there exist points of U in different compo-
nents of U N S(x, 3¢). Since C is locally connected, there exists a 6 (0 < 6 < g)
such that C N S(x, 5) lies in a single component M of C N S(x, €). Select &' so that
0< 6 <0, andlet p, q € S(x, ") in different components of U N S(x, 3¢), and
r € VN S(x, 8"). Let n> 0 be such that every n-transformation of C separates
each of the point pairs (p, q), (p, r), (q, r) in S(p, 2¢). Let f and T be as in the
hypothesis (with 1 replacing €) and with  small enough so that f(M) c S(x, 2¢) and
f(C) N S(x, &') C £f(M). Let C' = f(C). As in the proof of Lemma 1, the set
C" =C'- C is connected and lies in U or V; the latter case is handled by obvious
methods, and we consider only the case where C" c U.

Let A, be an arc from p to r in S(p, 6') - T, and in the order from p to r let
a, be the first point of M on A,, and b the last point of M. Let A, be an arc from
q to r in S(p, 6') - T, and in the order from q to r let a, be the first point of M
on A,. If the subarc pa; of A, fails to meet C', then pa, U(M - T) Urb (where rb
is also a subarc of A,) is a connected subset of S(x, 2¢) not meeting C'; and if the
subarc qa, of A, fails to meet C', then qa, U (M - T) U rb is a connected subset of
S(x, 2¢) not meeting C'; in either case a contradiction results, and therefore we may
suppose that there exist points ¢, € C' N pa, and ¢, € C' N qa,.

Consider the set M, = (M - T) U f"}({(M N T) N S(x, ') - T). By the choice of 7,
f71((M N T) N S(x, 8') - T) c M, and since T is a frontier set rel C, M, is a con-
nected subset of M such that f(M,) = M" contains all points of C' - T in S(p, 6').
Hence c,, ¢, € M", and pc, U M" Uqc, (where pc, and qc, are subarcs of A, and
A,, respectively) is a connected subset of S(x, 2€) not meeting C. This contradicts
the fact that p and q lie in different components of U N S(x, 3¢).

In every case, then, U is ulck, and likewise V. That C is an orientable
(n - 1)-gcm now follows from [5, p. 308, Theorem 7.1] when n is even, and from
[5, p. 308, Theorem 7.2] when n is odd.

ThT following corollary of Theorem 5 is of interest in connection with Theorem
1 of [7].

COROLLARY. In E3,let C be a l-acyclic, locally connected continuum cutting
E3 such that for each € > 0 there exists an t-tvansformation f: C — (E* - C) U T,
wheve T is a closed and totally disconnected subset of C and f carries C - T into
E3 - C. Then C is a 2-sphere.

The corresponding case, the spherelike gem, is determined by the following
corollary of Theorem 5:

COROLLARY. In E™ (n> 3), let C be an 1c¥ continuum (k=m -1 if n=2m
o n=2m + 1) cutting E™ such that Hp(C) = 0 when 1 <r <k + 1. For each € > 0,
let theve exist a closed and totally disconnected subset T of C that is not an
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r-separating set of C if 1 < r <k, and an ¢-transformation £:C — (E? - C) U T
that carrvies C - T into E™ - C, is (k - 1)-monotone on C - T, and is 0-monotone
on T. Then C is a spherelike (n - 1)-gem.

Proof. Since C is an orientable (n - 1)-gcm by Theorem 5, the spherelike
character of C follows from the Poincaré Duality.

In all of the above theorems, local connectedness of the continuum imbedded in
E™ has been assumed only to the dimension [n/2] - 1. The next two theorems ex-
ploit the local connectedness to higher dimensions.

THEOREM 6. In E® (n> 2), let C be an 1c®~3 continuum that cuts E®, such
that E™ - C is semi-(n - 2)-connected rel E*. For each € > 0, let there exist a
closed and totally disconnected subset T of C that is not a local r-separating set of
C for 1 <r <n - 3, and an e¢-transformation f: C — (E™ - C) U T that carries
C - T into E®- C. Then C is an orientable (n - 1)-gcm.

Proof. By Lemma 7, no closed and totally disconnected subset T of C is a
local O-separating set of C. By methods similar to those used above we can now
show that one of the domains complementary to C, say U, is ule™-3, And, by the
argument that was used in the proof of Theorem 5 to show, when n= 3 and C" c U,
that U is 0O-ulc, it may be shown in the present case that V is O-ulc. The theorem
now follows from [5, p. 308, Theorem 7.2].

Remark. It is interesting to note that when n = 3, Theorems 5 and 6 are equiva-
- lent, but that when n = 4, Theorem 6 is stronger than Theorem 5.

For the case where the given continuum C is 1c™-2 we can modify the condition
that f carry C - T into E™ - C. For this, we need the following analogue of
Lemma 1:

LEMMA 8. In E® (n> 2), let C be a continuum such that for each € > 0 there
exist a closed and totally disconnected subset T of C not sepavating C, and an ¢-
transformation £f(C) = C' into (E™ - C) U T such that C' - C lies in one component
of En - C. Then C is a frontier set rel E®; and if C cuts EV, then E™ - C con-
sists of exactly two domains of which C is the common boundary.

Proof. That E™ - C has at most two components and that C is a frontier set
rel E® may be shown by methods similar to those used in proving Lemma 1. To
show that when C cuts E®, its complement consists of exactly two domains having
- C as common boundary, we begin the argument as in the proof of Lemma 1; but in
order to show that C' - C c V, we select the £-transformation f so that not all
points of C - T in S(p', €¢) map into T. To do this, we note that the closure of
C N S(p', €) contains a continuum K which meets F(p', £) and contains p', so that
if F is an n-transformation (where n < £/4), not all points of K can map into T,
inasmuch as this would imply that f(K) is a single point. With this further restric-
tion on f, we can again select p € (C' - T) N S(p', £) in such a way that f(p) € C' - C
and moreover f(p) € V. The proof is now concluded as that of Lemma 1.

THEOREM 7. In E® (n> 2), let C be an 1c™2 continuum that cuts E®. For
arbitrary € > 0, let there exist a closed and totally disconnected subset T of C that
is not a local r-separating set of C for r < n - 2, and an €-transformation
f:C = (E® - C)U T such that £(C) - C lies in one component of E* - C. Then C
is an orientable (n - 1)-gcm.

Pyroof. By Lemma 8, E® - C is the union of disjoint domains U and V having C
as common boundary. And since for every & > 0, there exists an g-transformation
£(C) = C' such that C' - C lies in a single component of E" - C, we may assume that
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for arbitrarily small €, f may be so chosen that C' - C lies in V. We may now use
the argument that was used in proving Theorem 3 of [7] to show that U is ule™-2

That C is an orientable (n - 1)-gcm now follows from [5, p. 311, Theorem 8.3].
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