DEFINING RELATIONS FOR FULL SEMIGROUPS
OF FINITE TRANSFORMATIONS

Bjarni Jonsson

1. INTRODUCTION

A transformation f of a set I into itself is said to be finite if and only if f(x) = x
for all but finitely many elements x of I. Under the operation of composition the
set F(I) of all finite transformations of I into itself is a semigroup having the iden-
tity map id; as its identity element. As generators for F(I) we may take all the
transpositions (%, y) and replacements (x/y) with x, y €I and x # y. Here (x/y) is
the transformation that maps y onto x and leaves all the other elements of I fixed,
while (X, y) is of course the permutation that interchanges x and y, leaving all the
other elements fixed. By an elemeniary ivansformation we shall mean a transforma-
tion that is either a transposition or a replacement.

The purpose of this paper is to give a set of defining relations for F(I), taking
the set of all elementary transformations as a generating set. The reason for taking
this generating set rather than a smaller irredundant one is that the individual de-
fining relations can then be given in a simple form particularly convenient for appli-
cations. This is illustrated in Section 4, where we outline a new proof of a theorem
of Galler [1] concerning the relation between cylindric algebras and polyadic
algebras.

2. CANONICAL REPRESENTATIONS

We consider a fixed set I consisting of at least three elements. By an elemen-
tary sequence we mean a finite sequence whose terms are elementary transforma-
tions. If a= {ag, ay, ***, a5_1 ) is an elementary sequence, then we let

a’” =agaj---an_1.

By a vepresentation of a member f of F(I) we mean an elementary sequence a with
f=aT.

Since the set of all elementary transformations obviously generates F(I), every
finite transformation f of I has a representation. We shall now single out certain
representations of f that will be referred to as canonical representations. This con-
cept is motivated by the consideration of the directed graph whose vertices are the
elements of I and whose edges are in one-to-one correspondence with the elements
of I in such a way that, for each x in I, the corresponding edge has x as its initial
vertex and f(x) as its terminal vertex. Let J be the set of all members x of I such
that fP(x) = x for some positive integer p. Clearly f maps J onto itself, and the
restriction f' of f to J is a finite permutation. The graph of f' therefore consists
of pairwise disjoint cycles, of which all but finitely many are degenerate, consisting
of just one vertex.
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For any x in I, the sequence x, f(x), f2(x), .-+ must contain repetitions, and
therefore f™(x) € J for sufficiently large n. For x not in J, let p(x) be the smallest
such positive integer n. If we now consider a fixed member y of J and all those
members x of I- J for which fP(%)(x) = y, then it is clear that the corresponding
subgraph is a tree having y as its root. Thus the graph of f consists of pairwise
disjoint cycles, all but finitely many of them degenerate, together with a finite num-
ber of finite trees whose roots are vertices on the cycles. This picture suggests a
systematic although not unique way of representing f as a product of elementary
transformations. Reading from right to left, we first represent f' as a product of
transpositions (x, y) with x, y € J, and then follow this by all the replacements
(f(x)/x) with x € I - J, the only restriction on their order being that if x and f(x)
both belong to I - J, then (f2(x)/f(x)) must precede (f(x)/x). In other words, we
start at the bottom of each tree and work our way up. This condition is needed be-
cause (f2(x)/f(x)) (f(x)/x) maps both x and f(x) onto f3(x), while (f(x)/x) (f3(x)/£(x))
maps X onto f(x) and f(x) onto f3(x).

A formal definition of a canonical sequence will now be given. By a defect of an
elementary sequence a = <ao, aj, -, an_1> we shall mean an ordered pair <p, q
of natural numbers p and q such that p < q < n and one of the following conditions
holds:

(1) ap isa transposition and a4 is a replacement,
(2) ap= (x/y) and aq = (y, 2),
(3) ap = (x/y) and aq = (y/2),
(4) ap = (x/y) and aq = (z/y),

where X,y,2 €I and X #y # z. We say that <p, q> is a defect of a of iype 1, 2,
3 or 4 in case it satisfies the condition (1), (2), (3) or (4), respectively. By a can-
onical sequence we mean an elementary sequence that has no defect.

The following auxiliary concept will also be used in the next section: Suppose
a=<ag, a1, ***, an-1 > is an elementary sequence that has no defect of type 1. If,
for some r < n, a, is a transposition, then the smallest such r is called the cvifi-
cal index of a, and we let

a'ﬂ' = ar ar+1 “ee a‘n-—l;

but if all the terms a, are replacements, then we call n the critical index of a, and
let a7 = id;.

The next lemma shows to what extent two canonical representations of the same
finite transformations can differ from each other.

LEMMA A. For any canonical sequences

a= <aO: aj, -, arn-1> and b= <b0» by, **y b‘n—1>’

aT = b7 if and only if a” = b¥, a and b have the same critical index r, and the
sequences

a'= <a0’ ag, >, ar-1> and b! = <b0’ by, -y br-1>

ave obtained from each other by a permutation of the terms.
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Pyoof. If r is the critical index of a, and a;= (uj/v;) for i=0,1, -+, r - 1,
then vg, v, ***, V.1 are precisely those elements x of I for which (a")k(x) # x for
k=1, 2, ---, and for each i <r we have

aT(v;) =vw; and a(vy) =v,,

while all the remaining elements x of I satisfy the condition a7(x) = a"(x). From
this and the corresponding statement concerning b the lemma readily follows.

3. THE MAIN THEOREM

We express our principal result in terms of homomorphisms of F(I) into semi-
groups with identity. It is understood that under such a homomorphism the identity
element idy of F(I) is to map onto the identity element of the other semi-groups;
that is, the identity element is treated as a distinguished element.

THEOREM. In ovder for a map

x5 —Ix vy, &y —[xy]

of the elementary transformations of 1 into a semi-group S with identity e to ex-
tend to a homomovphism of F(1) into S it is necessary and sufficient that the follow-
ing conditions hold for all X,y, z, u €l with X+y +z+xand y+u#+z:

@) [x, y]l=1y, x], i) [x, yllx, yl=e,
(i) [x, ylix, z] =1y, zlx, y], (iv) [x, ylIx/y] =[y/z][%, v],
v) [x, ylix/y] = [y/x], (i) |x/yllvw/z] = [v/z][x/y],

(vii) [x/yllw/y] = [v/y].

Proof. The conditions (i) to (vii) are clearly necessary, since the corresponding
relations for the elementary transformations are easily verified. The proof of the
converse will be based on a series of lemmas. It will be assumed throughout that (i)
to (vii) hold. The condition (i) will frequently be used without being explicitly
mentioned.

LEMMA B. For any distinct elements x,y, z, u of 1 the following conditions
hold:

(viii) [x, y]l[z, u] = [z, u][x, y], (ix) [x, yl[z/ul = [z/u][x, ¥],
&) [x/yllx, y] = [x/y], i) [x, yl{z/x] = [x/v][z/x],
xii) [x/y]ly/x] = [x/y], xiii) [x/ylly, z] = [z/y][x/z2],

(xiv) [x/ylly/z] = [x/y](»/z].
Proof of (viii). By (ii) and (iii),
[X, Y] [Zy u] = [Xy Y] [y’ Z] [y, Z] [Z, u] = [Y: Z][X, Z][Z, u] [y’ u]

= [y’ Z][Z, u] [X, u] [y’ u] = [Z, U] [y’ 11] [Y7 u] [X, Y] = [Z’ u] [X, Y] .
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Proof of (ix). By (ii) to (iv),
[x, yl[z/ul = [x, ylly, 2]y, z][z/u] = [x, z][x, y][y/ully, 2]
=[x, z][x/ul(x, ylly, 2] = [2/ul[x, z][x, 2][x, y] = [z/ul[x, y].
Proof of (x). By (ii) to (v),
[x/y1[x, y] = [x/y][x, 2z][x, 2][x, y] = [x, z][2/y][x, yl[y, 2]
= [x, zlly, zlly/zl[x, ylly, 2] = [x, 2]y, z][x, y][x/z]]y, z]
=[x, zl[x, yl[x, z][x/z][y, 2] = [x, z][x, y][z/x][y, z]
=[x, zl[x, ylly, zlly/x]= [x, z][x, zl[x, yl[y/x]= [x/y].
Proof of (xi) and (xii). By (v) and (vii),
[x/y][z/x] = [%, y]ly/xl[2/%] = [x, yl[2/x],
[x/y1ly/x] = [x, ylly/x][y/x] = [x, y][y/x] = [x/y].
Proof of (xiii). By (iii) to (v) and (xi),
[x/y]ly, z] = [x, ylly/x]ly, 2] = [%, ylly, z][z/x]
= [y, zl[x, z]{z/x] = [y, z]l[x/z] = [2/y][x/z].
Proof of (xiv). By (iv) to i),
[x/ylly/z] = [%, yl[y/x]ly/2] = [x, y]ly/z][y/x]
= [x/z][x, y]ly/x] = [x/2][x/y] = [x/y][x/2].

Let g be the given map of the set of all elementary transformations into S,
g((x, ¥)) =[x, y] and g((x/y)) = [x/y]; and for any elementary sequence
a=<4p9, a1, ' an—l> let

h(a) = g(ag)g(ay) ---gla,_y) -

The set S' of all elementary sequences is a free semigroup under juxtaposition,
generated by the one-termed sequences and with the null sequence 0§ as its identity
element. The function h is a homomorphism of S' into S, and the map a — a7 is a
homomorphism of S' onto F(I). The theorem is equivalent to the assertion that, for
all a, b in S', a7 = b7 implies that h(a) = h(b). Each of the conditions (i) to (xiv)
permits us in certain cases to replace a 2-termed segment < ax-1, Ak > of a by
another 2-, 1-, or O-termed sequence without changing a7 or h(a). A sequence ob-
tained from a by a finite number of such operations will be called a fransform of a.
Since we shall frequently use inductive arguments, it is important to observe that a
transform of a has at most the same number of terms as a. Thusif x,y,z,ue€l
are distinct, then each of the following replacements is permissible:
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{3, &2 /2, % v, &/, @/xD - {&/v)),
| {x, ), x 3D —8;

but in the last two cases we are not permitted to go in the opposite direction.

LEMMA C. Suppose a = <a0, ay, ***, an._1 > is a sequence of transpositions.
(1) If a7 = idy, then 9 is a transform of a.

(2) If ueland aT(u) = v # u, then there exists a transform

b =<by, by, =, by 1D

of a such that
b0=(ua V), bi(u)=u for i=1,2,, m-1,

and b;(x) = x whenever x € I, a7(x) = x and i < m.

Pyoof. For n =0, 1, this is trivial. Consider a given n > 1, assuming the
statement to be true for all smaller values of n.

If a7 = id, and if we let ¢ = <a1, ay, -+, an_1>, then ¢7 = ag is a transposition
(u, v), and we may apply the inductive hypothesis to infer that ¢ has a transform
b = {bg, b1, ***, bm-1) such that bo = (u, v) and, for 0 < i< m, b; leaves all the
members of I fixed, except possibly v. Since a transposition moves two members
of I, it follows that there can be no such terms bj;. Thus m=1, b = <b0> = <a°>.
Consequently <ao, a0> is a transform of a, and according to (ii) so is f.

Under the hypothesis of (2), let k be the largest index such that ay(u) # u. If
k = 0, then a, = (u, v). Consider the sequence c = {ayj, ap, **, an_1>, and observe
that ¢7(u) = u and c¢7(x) = x whenever aT(x) = x. Reference to the inductive hy-
pothesis easily leads to the desired conclusion; if ¢’ + idy, we take in place of u an
arbitrary element u' with c7(u') # u'.

Finally suppose that k> 0. Then ax_; = (%, y) and ayx= (z, u) with x#y and
z # u. We may also assume that x# u and y # z. If x=2 and y = u, then we use
(ii) to obtain an (n - 2)-termed transform of a, to which the inductive hypothesis
may be applied. In the remaining three cases,

X=2Z,y#\4, X#+2Z,y=1, X#+Z,y#u,
we may in accordance with (iii) and (viii) replace {ay_j, 2y ) by

iy, w, x,7)>, Kz, x 2>, <zuw,xy)),

respectively. In each case the resulting transform a' of a has the property that
k - 1 is the largest index i such that aj(u) # u. Iteration of this process therefore
leads either to the first subcase, or else to the case k = 0.

The lemma now follows by induction.
LEMMA D. Every elementary sequence has a canonical transform.

Proof. For j=1, 2, 3, 4, we shall prove the following statement:
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(D;) If an n-termed elementary sequence a = <ao, ag, -, an_1> has no defect
of type less than j, then a has a transform a' that either has fewer than n terms
or else has no defect of type less than or equal to j.

Proof of (D,). If a has a defect of type 1, then there exists p < n - 1 such that
ap is a transposition and a4 is a replacement, say ap = (x, y) and ap¢] = (z/w)
with x # y and z # u. We may also assume that x#u and y# 2. If x=2z and y =u,
we use (v) to obtain an (n - 1)-termed transform of a, but in the remaining three

cases,
X=2zZ, Y#UU, X+zZ,y=nuu, X#%Z, y#u,

we employ (iv), (xi) and (ix) to obtain a transform a' of a that either has fewer
transpositions than a, or else has the same number of transpositions but has fewer
defects of type 1. Iteration of this process therefore leads either to the first case
or else to a transform that has no defect of type 1.

Proof of (D,). Let r be the critical index of a. By Lemma B, applied to the
sequence <ar, ar+l, ***, 8n-1), We may assume that if a(x) = x, then a;(x) = x for
i=r,r+1, -, n- 1, Therefore, if a has a defect of type 2, then for some p< r,
ap has the form ap = (x/y), where aT(y) = z # y. Choose the largest p for which this
is true. Again using Lemma B, we may assume that a, = (y, z).

For p < k < r, we have ap = (u/vy) with vy # vy, y, z. Letting uj = a,(ux) and
a% = (u/vy), we see by (iv) and (ix) that {ay, a > may be replaced by {a, ak).
Doing this successively for k=r -~ 1, r - 2, -+, p + 1, and then replacing (ap, ap
by <(z/y), (x/z)) if x + z, but by <(x/y)> in case x = z, we obtain a transform of
a that has no defects of type 1, and has fewer transpositions than a. Iteration of this
process leads to the desired result.

Proof of (D). Assuming that a is an n-termed elementary sequence that has no
defects of type 1 or 2, but does have a defect of type 3, we associate with a three
natural numbers p, q and s. First, p and q are so defined that <p, q> is a defect
of a of type 3, with g as small as possible and, for the given value of q, with p as
large as possible. Secondly, s is defined to be the largest integer with p < s < q for
which there exist up, up+1, **+, us+1 € I such that ax = (u k+1/ux) for
k=p,p+ 1, ---, s. The objective is to show that a has a transform a' which
satisfies one of the following three conditions:

(@) a' has fewer than n terms,
(8) a' has no defect of type 1, 2, or 3,

(y) a' has no defect of type 1 or 2, but does have a defect of type 3, and the as-
sociated numbers p', q' and s' are such that either q'> q, or q'=q and
p' > p,orelse q'=q, p'=p and s' < s.

Observe that up, up+1, **-, us are distinct. If s = q, then ug+1 = up. By
q - p - 1 applications of (xiii), followed by a single application of (xii), we find that
the segment <ap, Ap+ls **» aq> can be replaced by the sequence

<(up+1/up): (up+l’ up+2), (up+21 up+3), ) (uq_]_, uq)> ’

and since the resulting transform of a has fewer than n terms, our assertion is
proved for this case.
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Next suppose s =q - 1. Then aqg= (up/x), where X # up, uq. If x=ux with
p <k < q, we apply (vi) q - k - 1 times and then (vii) once, to replace the segment
<ak, A+l " aq> by the shorter sequence <aq, Ak+ls Ak+2, *7'y Ag-1 >; but if
x#ux for k=p+1,p+ 2, -+, q- 1, then we use (vi) q - p - 1 times and (xiv) once,
to replace the segment (ap, Ap+ls s aq> by the sequence

{ap, Upt1/%), 8pi1, 8p+2, ***5 Bg-1 ) -

The resulting transform a' of a clearly has no defects of type 1 or 2. Furthermore,
if a' does have a defect of type 3, then it is not difficult to show that the associated
number q' is greater than q.

Finally, suppose that s < q - 1. Then ags+]1= (X/y) with y # X, ug+] and X # ug.
If y = ug, then ag may be dropped from the sequence, according to (vii); but if
y # us, then as and as4+] may be interchanged, according to (vi). For the resulting
transform a' of a, we have q' =q and p'=p+ 1 in case s =p, but p' =p and
s' =s - 1 in case s > p. Thus (y) applies in this case.

Thus in all cases one of the conditions («), (8), (¥) applies. By an iteration of
this process we must eventually come to a case in which either (o) or (8) holds, and
this proves (D,).

Proof of (D,). I a has no defect of type 1, 2, or 3, but does have a defect
<p, q> of type 4, choose p and q so that p is as large as possible. For
k=p,p+ 1, .-, g we have ay = (ux/vy), where Vp = Vgq. If p<k<aq, then Ug # Vi
and vq (= vp) # Uk, because a has no defect of type 3, and also Vq # Vk by the choice
of p. By (vi) we may therefore successively interchange aj and aq for
k=q-1,q-2, -, p+1, and from the sequence so obtained we may drop ap,
according to (vii), thereby obtaining a transform of a having only n - 1 terms.

This completes the proof of (D,) to (D,), and the lemma follows by induction,

LEMMA E. Any two elementary sequences that vepresent the same finite trans-
Sformation have a common lvansform,

Proof. By Lemma D we may assume that the given sequences are canonical, and
by Lemma A we may further assume that the terms are either all transpositions or
else all replacements. In the former case the conclusion is an easy consequence of
Lemma C, and we therefore consider only the latter case.

If the two given sequences are

a=<ag, ay, *, am_1> and b= <b0, by, -, bn_1>,
then according to Lemma A, m = n, and there exists a permutation ¢ of the indices
0,1, -, m - 1 such that b; = ag(j) for i <m. If a; = (y/v;) for i=0, 1, ---, m - 1,
then vg, vi, ***, V.1 are distinct and
(1) ug#vp and  uy(g) # Vg(p) whenever p < q < m.
Assuming that ¢ is not the identity permutation, let s be the smallest index such

that ¢(s) # s. Then s = ¢(t), where s < t < m, therefore ¢(t - 1) > s = ¢(t), and it
follows by (1) that

U (t-1) # V(1) and Ug(t) # Ve (t-1)-
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By (vi) we may therefore interchange the terms b;_; and b; of b. The resulting
transform b' of b is canonical, for in general, if we interchange two successive
terms b¢.] and b; of a canonical sequence b, the new sequence b' is canonical un-
less <t -1, t> is a defect of b', which is not the case in the present situation.

The sequence b' is obtained from a by the permutation ¢' of the indices, where
d'(t - 1) =) =s, ¢'(t) = d(t - 1), and ¢'(k) = ¢(k) for k#t - 1, t. Assuming that ¢’
is not the identity permutation, let s' be the smallest index such that ¢'(s') # s', and
let t' be the index with ¢'(t') = s'. Since ¢'(k) = ¢(k) =k for k< s, we have s < s".
Ift=s+ 1, then ¢'(s) = s, so that s <s';butif t> s+ 1, then s'=s and t'=1t- 1.
Induction on n - s and t therefore shows that in the present case a is actually a
transform of b.

Our theorem is an immediate consequence of this last lemma; for if a and b are
two elementary sequences with al = bT, then they have a common transform c, and
it follows that h(a) = h(c) = h(b).

4. APPLICATIONS TO CYLINDRIC ALGEBRAS

We recall that a cylindric algebra is a Boolean algebra A with certain distin-
guished elements dj,; and unary operations C;, where i and j run through some set
I, such that the following conditions hold whenever a, b € A, i, j, k €I, and i # k # j:

C;(0) = 0, a< C;(a), Ci(aCi(b)) = C;(a) Ci(b):
CiC;=C;C4, dyj,j=1, Cilds, i dk,3) = dy,j
Ci(ad; ;o) Ci(bd; 1) = Ci(abd; 1) .

The cardinal of I is called the dimiernsion of the cylindric algebra, and the algebra is
said to be locally finite provided for each a € A there are only finitely many i € I
with Cya) # a. '

In the investigations of Galler [1] into the connection between cylindric algebras
and polyadic algebras, the problem arose of introducing into a locally finite, infinite-
dimensional cylindric algebra an operation corresponding to the logical operation of
substitution. This should be a homomorphism of F(I) into the semigroup of all func-
tions on A into itself. The logical analogue dictates what the images of the elemen-
tary transformations should be, and the principal difficulty consists in showing that
the map can be extended to 2 homomorphism. The direct proof of this fact, which
was outlined by Galler [1], is rather involved. We shall now indicate briefly how a
proof of this result can be based on the principal theorem of this paper.

The result in question can be stated as folilows.

THEOREM. For any locally finite, infinite-dimensional cylindric algebra
<A, di,j, Ci>i,jeI there exists a homomovphism S of F(I) into the semigroup of all
Sunctions on A into itself such that for all i, j, r € I with i + j # r + 1 and for all
a € A with C.(a) = a.

Si/5)@ = C5(d; @), 8 5@) = 8(;/1)8(:/5)S(x /1) @ -

(In order to qualify as a substitution, the map S must of course satisfy certain addi-
tional conditions. These are, however, easily verified, see for example Galler [1].)

Outline of proof. Given i, j € I with i # j, let
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[i/il(a) = C;(dj,;2) for all a € A.

Using various known elementary arithmetic properties of cylindric algebras (see for
example Galler [1] or Henkin and Tarski [2]), one easily shows that the conditions
(vi), (vii), (xii), (xiv) are satisfied. We would also like to define the function [i, j] on
A into itself in such a way that

[i,jl(a) = [i/r][i/il[r/i] (@) for all a € A,

where for each a in A the corresponding member r of I is chosen so that

C(a) =a and i # r # j; but it must be ascertained that this definition is unambiguous
and does not depend on the particular element r that is chosen. For this purpose we
first verify that, with the above restrictions on r,

(1) [i/r][r/}] (@) = [i/]](a) .
Assuming now that i, j, r, s € I are distinct and that a € A is such that
C.(a) = C5a) = a,
we infer that
[i/s][i/i1[s/i](a) = [i/s][i/i][s/r][x/i] (a)
= [i/s][s/r][i/i]l[x/i] (@) = [i/x]}[i/i][r/i] (a) .

In the last step, use is made of the facts that the set of all x € A with C4(x) = x is
closed under the Boolean operations and under the operations Cj, and that it contains
all the elements d; j with i, j # s. Thus in the present case the element

b = [i/]][r/i] (2)

belongs to this set, and (1) can be used with r and a replaced by s and b.

After the proposed definition of [i, j| has been shown to be unambiguous, it only
remains to verify the conditions (i) to (v). In each case the proof, based primarily
on (vi, (vii), (xii) and (xiv), and on (1), is straight-forward and offers no difficulty.
Once the conditions (i) to (vii) have been established, the existence of the desired
homomorphism follows from our main theorem.
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