ON SEQUENCES OF SUBORDINATE FUNCTIONS
Ch. Pommerenke

Let f(z) and g(z) be two functions regular in the disk lzl < 1. If there exists a
function ¢(z) that is regular in |z| < 1 and satisfies |q!>(z)| <1 and ¢(0) = 0, such
that

g(z) = 1(¢(2))

in |z] < 1, then g(z) is called subordinate to £(z) (see for instance [2, p. 163]). The
condition implies that g(0) = £(0) and |g'(0)| < |£'(0)|. The relation of subordination
is transitive. We shall prove the following theorems:

THEOREM 1. Let the functions 1,(z) be vegulay in | z | < 1, let a, = £,(0) be
positive, and let £ (z) be subovdinate to f,,1(z). Then the condition

o =1lim a, <=
n—o0

is necessary and sufficient in ovder that {fn(z)} converges uniformly in |z| <r for
every r < 1.

THEOREM 2. Let the functions i,(z) be rvegular in |z| <1, let a, =1(0) be
positive, and let £, ,(z) be subovdinate to £, (z). Then the sequence {f,(z)} con-
vervges uniformly in lz] <r for every r < 1. The limit function is constant if and
only if

a=lim o, =0.

n—roo

Remarks. 1. Note the difference in the assumptions: In Theorem 1 we assume
that £ (z) is subordinate to f_, ,(z), whereas in Theorem 2 we assume the reverse
relationship. -

2. In Theorem 1 we have an,) > a@,. Therefore either the limit a exists or
0n — . In Theorem 2 we have oy,,] < a,. Hence the limit o always exists and is
nonnegative.

3. In Theorem 2, it is of course essential to assume that f,(0) is real and non-
negative, as the example f, (z) = (-1)® z shows.

4. Theorem 1 implies that if its hypothesis is satisfied and if Ifn(z)l <K in
some neighborhood of z = 0, then |fy(z)| < M(r) in |z| <r for every r < 1. The
functions fn(z) = e"Z give an example for Theorem 1 with @ = n — .

We need two lemmas. We denote by A the class of all functions ¢(z) that are
regular in |z| < 1 and satisfy the conditions |¢(z)| < 1 and ¢(0) = 0.

LEMMA 1. Every function € = ¢(z) of class A with ¢'(0) >0 > 0 maps the
disk -
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g
lzl <p=-T7 ==

one-to-one onto a vegion that contains the disk |¢| < p?.

P?]'oof. For the case where ¢ = 1, the lemma is trivial. If 0 < 0 < 1, then by [3,
p. 167},

i9 $'(0) - p o-p _
|¢(.Oel)|Zpl—_T(o—)pZP1_op—Pz-

Since ¢(z) is univalent in |z| < p [3, p. 171], we get the desired result.

LEMMA 2. To every 6 > 0 and r < 1, theve covvesponds an n > 0 such that, for
every function ¢(z) of class A with ¢'(0) > 1 - 9, we have

|¢(z) - 2] <6

z'n. lzl <r.
Proof (see[1, p. 20]). Let

o(z) = 2. b, z".
n=1

o0
Since ‘q&(z)[ < 1 in the unit disk, 2 lbnl2 < 1. For b, =¢'(0) > 1 -7, we have

n=1
Z oalf<1- 0y |* <1-a-n* <.
n=2

From Schwarz’s inequality we obtain

(]

| o(z) - z|? = |(b; - Dz + 25 bnznl2

n=2

2 - 2\ <
_<_<(1“b1) + 2 |by|”) Z e
n=2 n=1
rZ
1-r2

< @?+ 2n)

and we can make this expression less than or equal to 62 by choosing n > 0 small
enough.

Proof of Theovem 1. (a) If {f, (z)} converges uniformly in |z| <1/2, we see
immediately that {an} is bounded. Since the sequence {an} is increasing, it con-
verges to a finite limit.

Now we assume that ¢, —» a with 0 < ¢ < = (if ¢ = 0, we have a, = 0, contrary
to the hypothesis of the theorem). Since f,,(z) is subordinate to f, (z) for n > m,
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there exist functions ¢ _  (z) of class A such that

If r is given (0 < r < 1), let o be obtained from the equation

o

@ T
Since a, > a and 0 < @ < «, we can find an integer m such that
ayn/a, >0
for n > m. From equation (1) we obtain
o = 5,0 = £,(0)6],,(0) = &, ¢1,,,(0),
and therefore
¢1nn(0) = @ /o, > o.
Next, applying Lemma 1 and equation (2), we see that the function ¢ = ¢,,,(z)
maps |z| < Jr onto a region that contains the disk |§’| <r. Let z =Y ,,,(¢) be the

inverse function to € = ¢mn(z). Then Ymn(€) is regular in |§| < r and satisfies the
inequality |11/mn(§)| < Vr. Therefore we get from equation (1) that for n>m

» £,00) = £ (W (5
in |¢| < r. This implies that

m.'=1x|fn(§)|_<~ max |fm(z)|
lel<r |2|<vr

forall n>m= m(r). Hence there exists an M(r) such that, for all n,
(3) |£,(0)] < M(r)

in |z| < r, and the sequence {f,(z)} is normal in |z|< 1.
(b) Therefore there exists a subsequence {fny(z)} that converges uniformly in

|z| <R for every R < 1. Let £(z) be the limit function. Let € > 0 and r < 1 be
given. We choose a v, such that

4) |in,(2) - £(2)| < e/2

for v > v, and |z| < r. Because of inequality (3), the sequence {£!(z)} is collec-
tively bounded, also, and we can find a positive number § such that

(5) [,z - £ (z")] <e&/2

for |z' - z"|§ 6, Iz'IS r+ 90, lz"| <r+ 0, and all n.
Applying Lemma 2 to the function ¢,,(z) with k < n, we see that
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(6) ) |¢kn(z) - z| <6
in |z| <r if

$en(0) = /0y > 1 -7,

for a certain n > 0. This inequality is valid if n > k > N, for a suitably chosen
integer N.

Now we can complete the proof. If |z| < r and k > N, we choose some n;, > k
with v > y,. Then (6) is true with n = n,,. Because

fk(z) = an(¢an(z)) ’

we thus deduce from (5) that

|tk (@) - £, (@)] < e/2.

Combining this inequality with (4), we finally get
|£(z) - £ (2)| < e

for |z|§ r, k> N.

Proof of Theorem 2. (a) Since f,;(z) is subordinate to f (z) and hence to
£,(z), we have £,(0) = £;(0) for every n. Therefore we can assume that £, (0) = 0 for
all n. The maximum

M, (r) = max |f,(z)]
z |<r

satisfies [2, p. 164]

() M, () < M ().

Therefore Mpu(r)< Mj(r), and the sequence {fn(z)} is normal. For a, —a > 0,
the proof of the first part of Theorem 2 is similar to part (b) of the proof of Theorem

1. The limit function f(z) is not constant, because

£'(0) = 1lim £4(0) = liman =a # 0.

n-—oo N-—o0
(b) Let @, — 0. Then there exists an increasing sequence {nv} such that

dy = On /any—vo.

v+l

Since fnu+1 (z) is subordinate to fnu(z), we have

(8) fn 1 @) =1n (xp(2),

vl

with functions x,(z) of class A. We have
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O,y = th 1 (0) = £h (OX(0) = an _x}(0)

and
X'V(O) =q, — 0.
If r <1 is given, we choose a g such that
q,<Vr-r

for v > p. Then we have, for |z| <r [3, p. 167],
qy + ¥ _ 3/2
lxu(z)|§r1+quSr(\/F-—r+r)—r .

From equation (8) we deduce that

maxfn( ©i.
- Eer“ I__H r/la )|

Therefore we have, for v > p,

My, () < My, ( {(3/2)V- K )

and

lim sup My (r) < M,, (0) = |fnu(0)| =0.

V— o0

Using inequality (7), we see that Mu(r) — 0 for every r < 1, so that f_(z) — 0 uni-
formly in each circle |z|<r < 1.
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