ON SEQUENCES OF SUBORDINATE FUNCTIONS

Ch. Pommerenke

Let f(z) and g(z) be two functions regular in the disk |z| < 1. If there exists a function $\phi(z)$ that is regular in |z| < 1 and satisfies $|\phi(z)| < 1$ and $\phi(0) = 0$, such that

$$g(z) = f(\phi(z))$$

in |z| < 1, then g(z) is called *subordinate* to f(z) (see for instance [2, p. 163]). The condition implies that g(0) = f(0) and $|g'(0)| \le |f'(0)|$. The relation of subordination is transitive. We shall prove the following theorems:

THEOREM 1. Let the functions $f_n(z)$ be regular in |z| < 1, let $\alpha_n = f_n'(0)$ be positive, and let $f_n(z)$ be subordinate to $f_{n+1}(z)$. Then the condition

$$\alpha = \lim_{n \to \infty} \alpha_n < \infty$$

is necessary and sufficient in order that $\{f_n(z)\}$ converges uniformly in $\left|\,z\right| \leq r$ for every r < 1.

THEOREM 2. Let the functions $f_n(z)$ be regular in |z| < 1, let $\alpha_n = f_n'(0)$ be positive, and let $f_{n+1}(z)$ be subordinate to $f_n(z)$. Then the sequence $\{f_n(z)\}$ converges uniformly in $|z| \le r$ for every r < 1. The limit function is constant if and only if

$$\alpha = \lim_{n \to \infty} \alpha_n = 0$$
.

Remarks. 1. Note the difference in the assumptions: In Theorem 1 we assume that $f_n(z)$ is subordinate to $f_{n+1}(z)$, whereas in Theorem 2 we assume the reverse relationship.

- 2. In Theorem 1 we have $\alpha_{n+1} \geq \alpha_n$. Therefore either the limit α exists or $\alpha_n \to \infty$. In Theorem 2 we have $\alpha_{n+1} \leq \alpha_n$. Hence the limit α always exists and is nonnegative.
- 3. In Theorem 2, it is of course essential to assume that $f_n'(0)$ is real and nonnegative, as the example $f_n(z) = (-1)^n z$ shows.
- 4. Theorem 1 implies that if its hypothesis is satisfied and if $|f_n(z)| \le K$ in some neighborhood of z=0, then $|f_n(z)| \le M(r)$ in $|z| \le r$ for every r < 1. The functions $f_n(z) = e^{nz}$ give an example for Theorem 1 with $\alpha_n = n \to \infty$.

We need two lemmas. We denote by A the class of all functions $\phi(z)$ that are regular in |z| < 1 and satisfy the conditions $|\phi(z)| < 1$ and $\phi(0) = 0$.

LEMMA 1. Every function $\zeta=\varphi(z)$ of class A with $\varphi'(0)\geq\sigma>0$ maps the disk

Received October 26, 1959.

$$|\mathbf{z}| < \rho = \frac{\sigma}{1 + \sqrt{1 - \sigma^2}}$$

one-to-one onto a region that contains the disk $|\zeta| < \rho^2$.

Proof. For the case where $\sigma = 1$, the lemma is trivial. If $0 < \sigma < 1$, then by [3, p. 167],

$$|\phi(\rho e^{i\theta})| \ge \rho \frac{\phi'(0) - \rho}{1 - \phi'(0)\rho} \ge \rho \frac{\sigma - \rho}{1 - \sigma\rho} = \rho^2$$
.

Since $\phi(z)$ is univalent in $|z| < \rho$ [3, p. 171], we get the desired result.

LEMMA 2. To every $\delta>0$ and r<1, there corresponds an $\eta>0$ such that, for every function $\phi(z)$ of class A with $\phi'(0)\geq 1-\eta$, we have

$$|\phi(z) - z| < \delta$$

in $|z| \leq r$.

Proof (see [1, p. 20]). Let

$$\phi(z) = \sum_{n=1}^{\infty} b_n z^n.$$

Since $|\phi(z)| < 1$ in the unit disk, $\sum_{n=1}^{\infty} |b_n|^2 \le 1$. For $b_1 = \phi'(0) \ge 1 - \eta$, we have

$$\sum_{n=2}^{\infty} |b_n|^2 \le 1 - |b_1|^2 \le 1 - (1 - \eta)^2 \le 2\eta.$$

From Schwarz's inequality we obtain

$$\begin{aligned} |\phi(z) - z|^2 &= |(b_1 - 1)z + \sum_{n=2}^{\infty} b_n z^n|^2 \\ &\leq \left((1 - b_1)^2 + \sum_{n=2}^{\infty} |b_n|^2 \right) \sum_{n=1}^{\infty} r^{2n} \\ &\leq (\eta^2 + 2\eta) \frac{r^2}{1 - r^2} . \end{aligned}$$

and we can make this expression less than or equal to $\,\delta^2\,$ by choosing $\,\eta>0\,$ small enough.

Proof of Theorem 1. (a) If $\{f_n(z)\}$ converges uniformly in $|z| \le 1/2$, we see immediately that $\{\alpha_n\}$ is bounded. Since the sequence $\{\alpha_n\}$ is increasing, it converges to a finite limit.

Now we assume that $\alpha_n \to \alpha$ with $0 < \alpha < \infty$ (if $\alpha = 0$, we have $\alpha_n \equiv 0$, contrary to the hypothesis of the theorem). Since $f_m(z)$ is subordinate to $f_n(z)$ for $n \geq m$,

there exist functions $\phi_{mn}(z)$ of class A such that

(1)
$$f_m(z) = f_n(\phi_{mn}(z))$$
 $(n \ge m)$.

If r is given (0 < r < 1), let σ be obtained from the equation

$$\sqrt{\mathbf{r}} = \frac{\sigma}{1 + \sqrt{1 - \sigma^2}}.$$

Since $\alpha_n \to \alpha$ and $0 < \alpha < \infty$, we can find an integer m such that

$$\alpha_{\rm m}/\alpha_{\rm n} \geq \sigma$$

for $n \ge m$. From equation (1) we obtain

$$\alpha_{\rm m} = f_{\rm m}^{\,\prime}(0) = f_{\rm n}^{\,\prime}(0) \, \phi_{\rm mn}^{\,\prime}(0) = \alpha_{\rm n} \, \phi_{\rm mn}^{\,\prime}(0)$$

and therefore

$$\phi'_{mn}(0) = \alpha_m/\alpha_n > \sigma$$
.

Next, applying Lemma 1 and equation (2), we see that the function $\zeta = \phi_{mn}(z)$ maps $|z| < \sqrt{r}$ onto a region that contains the disk $|\zeta| < r$. Let $z = \psi_{mn}(\zeta)$ be the inverse function to $\zeta = \phi_{mn}(z)$. Then $\psi_{mn}(\zeta)$ is regular in $|\zeta| < r$ and satisfies the inequality $|\psi_{mn}(\zeta)| \le \sqrt{r}$. Therefore we get from equation (1) that for $n \ge m$

$$f_n(\zeta) = f_m(\psi_{mn}(\zeta))$$

in $|\zeta| < r$. This implies that

$$\max_{\left|\right. \zeta \left| < r \right.} \left| f_{n}(\zeta) \right| \leq \max_{\left|\right. z \left| < \sqrt{r} \right.} \left| f_{m}(z) \right|$$

for all $n \ge m = m(r)$. Hence there exists an M(r) such that, for all n,

$$\left|f_{n}(\zeta)\right| < M(r)$$

in $|z| \le r$, and the sequence $\{f_n(z)\}$ is normal in |z| < 1.

(b) Therefore there exists a subsequence $\{f_{n_{\nu}}(z)\}$ that converges uniformly in $|z| \leq R$ for every R < 1. Let f(z) be the limit function. Let $\epsilon > 0$ and r < 1 be given. We choose a ν_0 such that

$$\left|f_{n_{\mathcal{V}}}(z) - f(z)\right| < \epsilon/2$$

for $\nu \ge \nu_0$ and $|z| \le r$. Because of inequality (3), the sequence $\{f_n(z)\}$ is collectively bounded, also, and we can find a positive number δ such that

(5)
$$\left|f_{n}(z') - f_{n}(z'')\right| < \varepsilon/2$$

for
$$|z' - z''| \le \delta$$
, $|z'| \le r + \delta$, $|z''| \le r + \delta$, and all n.

Applying Lemma 2 to the function $\phi_{kn}(z)$ with k < n, we see that

$$\left|\phi_{\mathbf{k}\mathbf{n}}(\mathbf{z}) - \mathbf{z}\right| \leq \delta$$

in $|z| \le r$ if

$$\phi_{\mathrm{kn}}^{\prime}(0) = \alpha_{\mathrm{k}}/\alpha_{\mathrm{n}} \geq 1 - \eta$$
 ,

for a certain $\eta > 0$. This inequality is valid if $n \ge k \ge N$, for a suitably chosen integer N.

Now we can complete the proof. If $|z| \le r$ and $k \ge N$, we choose some $n_{\nu} \ge k$ with $\nu \ge \nu_0$. Then (6) is true with $n = n_{\nu}$. Because

$$f_k(z) = f_{n\nu}(\phi_{kn\nu}(z)),$$

we thus deduce from (5) that

$$\left| f_k(z) - f_{n_n}(z) \right| < \epsilon/2$$
.

Combining this inequality with (4), we finally get

$$\big| \mathbf{f}(\mathbf{z}) - \mathbf{f}_k(\mathbf{z}) \big| < \epsilon$$

for |z| < r, k > N.

Proof of Theorem 2. (a) Since $f_{n+1}(z)$ is subordinate to $f_n(z)$ and hence to $f_1(z)$, we have $f_n(0) = f_1(0)$ for every n. Therefore we can assume that $f_n(0) = 0$ for all n. The maximum

$$\mathbf{M}_{\mathbf{n}}(\mathbf{r}) = \max_{\mathbf{z}} |\mathbf{f}_{\mathbf{n}}(\mathbf{z})|$$

satisfies [2, p. 164]

(7)
$$M_{n+1}(r) \leq M_n(r).$$

Therefore $M_n(r) \leq M_1(r)$, and the sequence $\{f_n(z)\}$ is normal. For $\alpha_n \to \alpha > 0$, the proof of the first part of Theorem 2 is similar to part (b) of the proof of Theorem 1. The limit function f(z) is not constant, because

$$f'(0) = \lim_{n \to \infty} f'_n(0) = \lim_{n \to \infty} \alpha_n = \alpha \neq 0.$$

(b) Let $\alpha_{\rm n} \to 0$. Then there exists an increasing sequence $\{n_{\nu}\}$ such that

$$q_{\nu} = \alpha_{n_{\nu+1}}/\alpha_{n_{\nu}} \rightarrow 0$$
.

Since $f_{n_{\nu+1}}(z)$ is subordinate to $f_{n_{\nu}}(z)$, we have

(8)
$$f_{n_{\nu+1}}(z) = f_{n_{\nu}}(\chi_{\nu}(z)),$$

with functions $\chi_{\nu}(z)$ of class A. We have

$$\alpha_{\rm n}{}_{\nu+1} = {\rm f}^{\, !}_{\rm n}{}_{\nu+1}(0) = {\rm f}^{\, !}_{\rm n}{}_{\nu}(0)\chi^{\, !}_{\nu}(0) = \alpha_{\rm n}{}_{\nu}\chi^{\, !}_{\nu}(0)$$

and

$$\chi_{\nu}^{\prime}(0) = q_{\nu} \rightarrow 0$$
.

If r < 1 is given, we choose a μ such that

$$q_{\nu} < \sqrt{r} - r$$

for $\nu \ge \mu$. Then we have, for $|z| \le r$ [3, p. 167],

$$\left|\chi_{\nu}(\mathbf{z})\right| \leq \mathbf{r} \frac{\mathbf{q}_{\nu} + \mathbf{r}}{1 + \mathbf{q}_{\nu} \mathbf{r}} \leq \mathbf{r}(\sqrt{\mathbf{r}} - \mathbf{r} + \mathbf{r}) = \mathbf{r}^{3/2}.$$

From equation (8) we deduce that

$$\max_{\left|z\right| \leq r} \left|f_{n_{\nu+1}}(z)\right| \leq \max_{\left|\zeta\right| \leq r^{3/2}} \left|f_{n_{\nu}}(\zeta)\right|.$$

Therefore we have, for $\nu \geq \mu$,

$$M_{n_{\nu}}(\mathbf{r}) \leq M_{n_{\mu}} \left(\mathbf{r}^{(3/2)^{\nu-\mu}} \right)$$

and

$$\lim_{\nu \to \infty} M_{n_{\nu}}(r) \le M_{n_{\mu}}(0) = |f_{n_{\mu}}(0)| = 0.$$

Using inequality (7), we see that $M_n(r) \to 0$ for every r < 1, so that $f_n(z) \to 0$ uniformly in each circle $|z| \le r < 1$.

REFERENCES

- 1. C. Carathéodory, Funktionentheorie, vol. II, Basel, 1950.
- 2. J. E. Littlewood, Lectures on the theory of functions, Oxford, 1944.
- 3. Z. Nehari, Conformal mapping, New York, 1952.

University Göttingen