SOME REMARKS ON FUNDAMENTAL SOLUTIONS OF
PARABOLIC DIFFERENTIAL EQUATIONS
OF SECOND ORDER

E. H. Rothe

1. INTRODUCTION

Let E™ be the real n-dimensional Euclidean space of points x = (xy, **+, X,), and
D C E™ an open simply connected domain. Let

n

0 F}
(1.1) L(u) = Z —a;{— (\aik—a—;—l—) - V(x)u (aik= aki, A" Z 0)
ik=1 i\ k

be a uniformly elliptic operator in D with coefficients depending on x. Let IT be the
interval 0 < t< T, and A ¢ the product DXIy. A fundamental solution of the para-
bolic equation

- ou _
(1.2) A= L(u - ot =0

in A = Aw may be defined as a function I'(x, £, t) which as function of (x, t) satisfies
(1.2) in A, and in addition has the following property: for each function h(x) which is
continuous in the closure D of D and for each (proper or improper) subdomain D,

of D, the limit relation

(1.3) lim h(§) T(x, &, t)d& =

h(x) for x interior to D,,
t—0 D.l

| 0 for x interior to D - D,

holds [19], [6], [7].

It is known that if D is bounded and has a smooth enough boundary f), then such a
fundamental solution may be constructed as follows: let {u,(x), u (x), ---} be a full
orthonormal set of eigenfunctions, and {—Al, -7, ---} the set of corresponding eigen-
values of the elliptic eigenvalue problem

(1.4) L) -Mx=0 inD,
(1.5) u=0 on D;

then

(1.6) Glx, £, 1) = :il () ug(8) e K"
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is a fundamental solution. Moreover, if G,(x, £, t) is the Green’s function belonging
to the problem (1.4), (1.5) multiplied by A, and if for v = 1, 2, ... the function G,, is
defined by the iteration

(1.7 G, &N = Gotx, &, NG, 18, £, N ag,
D

then the G defined in (1.6) may also be written as

(1.8) G(x, & t) = lim G, (x, &, v/t).

V—o00

(See [19, pp. 489, 493]. There only the case V(x) = Oand n = 3 was treated. The ex-
tension to the more general case considered in the present paper requires only minor
changes which concern the proof of the convergence of the series in (1.6) and of (1.8).
These changes are indicated in Appendix II.)

On the other hand, F. G. Dressel constructed in a totally different way a funda-
mental solution for the case of a bounded D as well as for the case D = En, (See[ 6]
and [7]; Dressel’s advance over [19] consists in the fact that he does not confine him-
self to the selfadjoint operator (1.1), but deals with a general elliptic operator L of
order 2 with coefficients which may depend on t. In the present paper, however, we
use his results only for the special case indicated.) The function constructed by
Dressel for the case D = E™ we shall call Dressel’s function, and we reserve for it
the notation I'(x, &, t); in the case of the one-dimensional heat equation

92u odu

1.9) Ercl

0,

it reduces to the well-known function (2 Vvat)~*exp[(x - £)2/4t]. To avoid confusion,
we shall refer to the function G defined by (1.6) or (1.8) as Green’s function. This
terminology is appropriate, since G(x, £, t) takes boundary values O on the set of

points (%, t) with X €D, t> 0, and on the set x€ D, t=0 (x # £). The first state-
ment follows from (1.5), (1.6), and the second from (1.6), (1.25).

In Section 2 we shall have to recall the construction of Dressel’s function. At
this moment we only note that the ¢principal part” Z(x, &, t) characterizing the
singularity at x= &, t= 0 is of the form

(1.10) Z(x, £, t) = t ™/ 2exp[-0(x, (x - £)/4t] F(£),

where F(£) is a normalizing factor (see (2.2)), and o(x, x - £§) is the uniformly posi-
tive definite quadratic form in x - £ whose matrix is the inverse of the matrix of the
coefficients a; in (1.1).

While thus for Dressel’s function the singularity is made explicit, the same is
not true for Green’s function G, either in the form (1.6) or that of (1.8). It is there-
fore not obvious that the principal part of G is also given by (1.10), in other words,
that in the difference

(1-11) ')’(X, g: t) = I‘(x, g’ t) - G(X, g; t)

the singularity “cancels out”; for there are many “d-functions” satisfying (1.3), for
example, for n = 1, the Fejér kernel
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t(2m-* {sin[(x - £§)/2t]} 2 {sin[(x - £)/2]} 2.

The main object of this paper is to prove (1.11) with a “regular” y approaching
zero as t — 0, and to show that this equality can be used to prove a number of facts
concerning G and T as well as facts concerning the eigenfunctions uy(x) and eigen-
values Ax of (1.4) and (1.5); not all of these facts are new.

The proof for (1.11) given in Section 2 is along the following lines: it is seen
easily from (1.3) (with I" replaced by G) and from (1.5) and (1.6) that the function

(1.12) Ues, 9= § h)Gx, & 08

is in A a solution of (1.2) and satisfies the boundary conditions

(1.13) lim U(x, t) = h(x) (xe D, t>0),
t—0
(1.14) lim Ux,t)=0 (xeD,%xeD, t>0).

(2, 1) (,t)

The function obtained from (1.12) by replacing G by I' satisfies (1.2) and (1.13), but
not (1.14). However, it is easy to construct a function y(x, £, t), without singularities
in A, having the following property: if G! is defined by

(1-15) Gl(x, g’ t) = F(X, &s t) - Y(X, g, t) »

then the function

(1.16) U, x, 1) = g h(8) Gl(x, £, t) e
D

satisfies (1.2), (1.13), (1.14); that is, U, is a solution of the same boundary value
problem as the function U defined by (1.12). (For details and literature see Section
2.)

Unfortunately this fact does not allow us to conclude that U, is identical with U.
For the solution of the boundary value problem in question is not unique, as is well
known (see [5, p. 299]) even in the simple case of the equation (1.9).

However it is also known that our boundary value problem has at most one solu-
tion which is continuous in the closure A of A. (See [18, pp. 253, 254], where the’
“maximum principle” is used for the uniqueness proof. The application of this prin-
ciple to parabolic equations in certain cases was already used in [12, pp. 372, 373].
See also [16].) For the existence of such a solution, it is obviously necessary, be-
cause of (1.13) and (1.14), that

(1.17) h(x) =0 for x € D.
Under the assumption (1.17), it will be shown in Appendix I that U and U, are con-
tinuous in A. Thus the integrals in (1.12) and (1.16) represent the same function for

all continuous h(x) satisfying (1.17). This in turn implies

(1.18) G(x, &, t) = G¥(x, &, t) (x, £ in D, t> 0),
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which because of (1.15) and the regularity of ¥ is what we wanted to prove.

The first of the applications of (1.11) given in Section 3 is a proof of asymptotic
relations for eigenfunctions and eigenvalues of (1.4), (1.5): we shall see that (1.18),
together with certain properties of ¥ and with (1.6) and (1.10) easily yields, for
x = £ € D, the asymptotic relation

z 2 -Akt t‘n/z
(1.19) 2 uy®e ~F for t — O+ .

k=1

Applying a suitable Tauberian theorem (see, for example, [22, p. 192]) to (1.19),
we obtain :

n/2
(1.20) ) DRTe PO
Moh FG‘)r(12‘+ 1)

for A — o |

where I'(7) denotes Euler’s gamma function. Integrating over D we obtain, for the
number A()) of eigenvalues less than A of the boundary value problem (1.4), (1.5),

n/
(1.21) A = 2 1~,F/("_I:Zl +21) SD F%x)dx.

A<

(The method of using Tauberian theorems to derive estimates for eigenfunctions and
eigenvalues is standard. It was used first by Carleman [4]. In case that L is the
Laplace operator A, M. Kac [14] combined this method with probabilistic arguments
which he used to derive (1.19) for L = A. The same approach was used by him for
certain integral operators [15], and by D. Ray for L(u) =A(u) + V(x)u in [17]. Cor-
responding results for equations whose order is greater than 2 with coefficients in
C*® were obtained by Browder [ 2], [ 3], Garding [11], and Bergendal [1] by means of
Hilbert space methods. The present paper uses straight-forward “classical analy-
sis.” In all three methods, a central role is played by what M. Kac [14] calls “the
principle of not feeling the boundary” namely, the fact that the Green’s function satis-
fying certain boundary conditions shows for t — 0+ the same asymptotic behavior as
the fundamental solution constructed. In the present paper, this principle is ex-
pressed in the relation (1.11) between G and T, and in [1] in equation (0.4), p. 244.)

The next application concerns the so-called bilinear series

[ o]

> u(x) up(é)

(1.22) TN

k=1

It is well known from the theory of integral equations that if the uy(x) form a full
orthonormal set of eigenfunctions of a homogeneous Fredholm integral equation with
a continuous and symmetric kernel K(x, £) and if the 2 are the corresponding
eigenvalues, then

(1.23) K(x, &) = 25 Ek—(x:?ui(g—),

k=1
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provided that the series converges uniformly. (See for example [21, p. 303, Satz 57])
It is also well known that in general the series does not converge. (See [21, p. 305],
where the classical sufficient conditions by Mercer and Hammerstein for the con-
vergence of (1.23) are discussed, and where an example exhibiting divergence is
given.) Our application is concerned with the case where the u, and -); are de-
fined as before, that is, are the eigenfunctions and eigenvalues of (1.4), (1.5). Here
the above kernel K is the Green’s function of the operator L defined in (1.1) be-
longing to the boundary condition (1.5), and the question is the validity of (1.23). If

L is the Laplace operator in E™ with n= 2 or 3, then for x€ D andfor £ ina
closed subdomain D, of D, A. Hammerstein constructed convergence factors (de-
pending on D,) and a lower bound p for lx - & | such that, after insertion of these
convergence factors, (1.23) is valid if £ is restricted to D, and Ix - £| > p (see
[13, p. 285, Satz 6, and p. 296]). In Section 3 it will be shown that for the general
operator L given by (1.1) with arbitrary n and arbitrary x # £ in D, (1.24) becomes
valid after insertion of the factor exp (-Ayt); in other words, that

suct0u® _ae

(1.24) K(x, £) = lim X
t—0+ k
It will also be shown that
[+ o]
. ~Nct
(1.25) lim 2, uk(x) uk(.‘;') e =0 for x# &,
t—0+ k=1

a relation which supplements (1.19). For a special class of elliptic operators, it is
known that (1.24) still holds if exp (-Ayt) is replaced by (1 + txy)~?, and that (1.25)
holds if exp (-Ayt) is replaced by (1 + txy)~? [19, p. 674]. This special case may be
described as follows: each selfadjoint operator L of order 2 in n variables (n > 3)
may (up to a factor) be written as the second Beltrami operator belonging to a Rie-
mannian line element {8, p. 637]. Our special case is that where this Riemannian
line element has constant curvature.

As a further application we consider the behaviour of I' and G for t — . As
will be seen, the relation

(1.26) I'(x, £, t) = 0(t'(““)/2) for t — o,

where O denotes Landau’s symbol, follows nearly immediately from inequalities
contained in Dressel’s work. But it will also be shown that, for arbitrary positive r,

(1.27) G(x, £, ) =0t ") for t »w.
Finally, let D(l), D(Z), D(3), -+ be a sequence of bounded domains which exhaust

E™, and denote by G(P) the Green’s function (1.6) belonging to D = D(P). Then it will
be shown that

(1.28) lim GPXx, £, t) = T'(x, £,t) for t>0.

p—-ioo

The assumptions of this paper concerning the smoothness of D and the coeffi-
cients of (1.1) are those made in [6], [7] and [19].
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2. PROOF OF (1.18)

We start by recalling the construction of Dressel’s function. First we complete
the definition (1.10) of the function Z by giving the definition of F(&): if the coordi-
nates &1, £2, ---, En are expressed in spherical coordinates r, 8 with the point x as
pole, where

r= lX - §| ={ E (xi - gi)Z}l/Z and 6 = {91’ 929 "ty Bn-l} ’

and if ¢(x, 6) is defined by setting

(2.1) O'(X, X - g) = I‘2¢(X, 0) ’
then
(2.2) F(g) = L2Ym°_ S ¢-n/24ds,

m(sn- 1) gn-1

where SP-1 ig the surface of the unit sphere in E®, m(S*~!) its measure, and ds
its surface element. (If L is the Laplace operator, then F = (2 Va)® and

7 = (4mt) -»/2exp[-r2/4t].) This completes the definition of Z. Dressels function
I'(x, £, t) is then defined by

t
(2.3) H&aﬂ=zwA;ﬂ+S Z(x, ¢, t - O)£(¢, £, 9) dEda,
0 YED .

where f(¢, £, 6) is the solution of a certain integral equation (see [7, (9)]) and satis-
fies, for suitable positive constants C and h, the following inequality ([ 7, Theorem

2]):

2
(2.4) |tx, £, )] < Ct-(vt1)/2 oxp [-_h%—__&l_] .

We now define the function y appearing in the definition (1.15) of G'. For fixed
&£ €D, let y = y(x, & t) as function of x and t be in A a solution of the boundary
value problem

(2.5) L) -3 =0,

(2.6) limy(&, £, t) =T, £,t) (&eD, t>0),

(2.7) lim y(x, £§,t)=0 (x € D).
t—0+

(The classical way is to define y(x, &, t, 7) as function of £ and 7 as that solution

of the equation adjoint to (1.2) which satisfies certain boundary conditions, and then
to prove that ¥ as function of x and t satisfies the original equation (1.2). See for
example [12, p. 323] or [10]. In the present paper we proceed in a slightly different
way which avoids the use of the adjoint to (1.2).)
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According to well-known existence and uniqueness theorems [18], problem (2.5) to
(2.7) has one and only one solution which is continuous in A, provided that the given
boundary values are continuous. To show that this condition is satisfied in our case
we must obviously, because of (2.6) and (2.7), prove that

(2.8) lim 'k, £, t)=0 for x €D, xy€eD.
(%,t)— (% ,0+)

For this purpose we recall first that, because of the uniform ellipticity of L. and the
definition of o, there exist two positive constants a and A such that

(2.9) alx - £]2<o(x, x- &) < Alx - £|?

(see[7] and[6]). Consequently, by (1. 10), (2.2), and (2.1), there exists a positive
constant C; such that

2
(2.10) 0<2(x, & t) <C t™/2 exp [_a_lx‘l;_ﬁl } :

If we denote the integral in (2.3) by I(x, £, t) then, by Lemma 2 of [ 7], conditions (2.4)
and (2.10) imply that for suitable constants C, and g,,

2
(2.11) 1=, £, ©] < C W e [ |x4‘;. d }

Since for fixed £ in D and variable % on D, |x - £| is bounded away from zero, -
(2.11), (2.10) and (2.3) imply (2.8).

We can now define y as the uniquely determined solution of the boundary value
problem (2.5), (2.6), (2.7) which is continuous in A. The following two lemmas deal
with properties of ¥y which will be needed later on.

LEMMA 2.1. For fixed x in D and t > 0, y is continuous in & as this point
varies oveyr D.

Proof. For &,, &, in D, the function 0(x, t) = y(x, &,, t) - v(x, &,, t) satisfies the
boundary value problem obtained from the one which defines y by replacing the right
member of (2.6) by I'(x, £, t) - I'(X, £,, t). Noting that 6 satisfies (2.7), we see
therefore from the maximum principle that the difference 6(x, t) is in absolute value
not greater than the maximum of | '(x, &, 7) - T'(x, &, 'r)| as X varies over D and
7 varies over the interval 0 < 7<t. This proves the lemma.

LEMMA 2.2. Forx, & in D and t> 0,
(2.12) 0<v(x, &t <T(x & t).

Proof. The right part of this inequality can be proved by application of the maxi-
mum principle (such a proof is given in [10]).

__ If the first part of (2. 12) were false, then ¥ would take on a negative minimum on
At = DX {0 <t< to} which because of the maximum principle and (2.7) would be

taken in some point of the product Dx {0 <t< t,}, and we see from (2.6) that in such
a point T" would take on a negative value. Consequently it will be sufficient to prove

LEMMA 2.3. Forall x, £ and £t > 0,
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(2.13) I(x, &, t) > 0.

Proof. We claim first: corresponding to any positive numbers t, and g, there
exists a number R such that

(2.14) ’ |Tx, £, )] <e for |x-& >R, 0<t<t,.

This follows easily from the definitions (2.3), (2.2), (1.10) together with the inequality
(2.11), if we note that, for any positive constants g and k and for p > 8,

1 1 _pttPP

tBekrz/t< tB (ler2 /1) 91 kP 2P t>0, r=|x-¢]).

It follows from (2.14) that, for any continuous function h(x) with bounded support S,
(2.15) Ve, 0= { nore g vae—o
. En

uniformly for 0 <t<t, as |x| — «. For the case where in addition h(x) is non-
negative, we prove next that

(2.16) Vx,t) >0 forall x in E® and t> 0.
For the proof, let us suppose that, for some x,, t; with t, > 0,
(2-17) V(Xl, tl) = -pl < 0-

We first choose the arbitrary number t, of the beginning of our proof to be not
smaller than t,. Since the support S of h(x) is bounded, it follows from (2.14) that
there exists an R, such that

(2.18) |[V(x, )| <p,/2 for |x|=R,, 0<t<t,y,

and that in addition S is contained in the open ball with center 0 and radius R,.
Now, in the domain B(t,) defined as the product of this ball with the interval

0 < t < ty, the function V(x, t) is a solution of (1.2), as can be seen from the follow-
ing considerations. Since h has compact support, the integral in (2.15) is for

|x| <R,, 0 < 8<t<t, an ordinary Riemann integral, the integrand being uniformly
continuous in all its variables. The approximating Riemann suns of the form

Sp(x, 1) =22 T'(x, &, Dh(4)AL
are solutions of (1.2) which satisfy the boundary conditions
Splk, t) = %} I'(x, £,, Dh(§,)AE  (|x| =Ry, 6 <t< o),
Sp(x, 8) = %} I(x, £,, Oh(£,) At (|x]| <Ryp).
For p — =, the sums in the last two lines converge to the corresponding integrals,
uniformly on Ix] =R, 6<t<t, and on |x| < R, t=0. By Harnack’s convergence

theorem, we conclude that the solutions S plx, t) sat1sfy1ng these boundary conditions
converge to a solution of (1.2). This completes the proof that V(x, t) is a solution of
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(1.2), since the limit of the Sp(x, t) is the integral (2.15). (For a proof of Harnack’s
theorem for linear parabolic equations of second order, see [12, pp. 386-387] or
[10]).

Moreover, V(x, t) is continuous in the closure of B(t,). Because of (2.17), its
minimum in this closure is at most -p,. By the maximum principle, the minimum
must be taken either on |x| =R, or on t = 0. By (2.18), the first possibility must be
excluded. The same is true of the second possibility, for it is clear from the defini-
tion (2.15) of V and the main property of Dressel’s function I' that the limit of
V(x, t) as t — 0 is h(x), and this function is nonnegative by assumption.

Thus the assumption (2.17) leads to a contradiction, and (2.16) is established for
every nonnegative continuous h(x) with compact support. We omit the routine proof
that this fact implies the assertion (2.13) of Lemma 2.3.

Our aim is to prove that the U, defined in (1.16) is a solution of (1.2), (1.13),
(1.14). Now, as function of £, ¥(x, £, t) is continuous as & varies over D, and it fol-
lows from Lemma 2.2 that it is also bounded if a positive t is fixed. Consequently
the integral '

we, 0= n@yee 5,08 €>0

exists for continuous h(£). We then have, from (1.15),
(2.19) U,(x, t) = W(x, t) - wix, t),

where we have set

Wi, 0= § O, ¢, .

Since I' satisfies (1.2) and (1.3), and ¥ satisfies (2.5), (2.6) and (2.7), it will be seen
from (2.19) that U, is indeed a solution of the boundary value problem (1.2), (1.13),
(1.14) of which U, defined by (1.12), is also a solution. (That W(x, t} satisfies (1.2)
may be seen by a method quite similar to the one outlined above for the case of the
integral (2.15).)

It was pointed out in the Introduction that this fact alone does not ensure the
equality

(2.20) Ux, t) = Uy(x, 1),

but that for its validity it will be sufficient to show that both members of (2.20) are
continuous in the closure A of A. The proof that this is true if the necessary condi-
tion (1.17) is satisfied consists essentially of some modifications in the relevant
arguments in [6], [7], [19]. These modifications will be indicated in Appendix I (Sec-
tion 4). A complete independent proof would involve copying great parts of [19] and

[71.

The proof that the validity of (2.20) for all continuous h(x) satisfying (1.17) im-
plies (1.18) is routine, and it will therefore be omitted.
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3.. APPLICATIONS

As a first application of the main result (1.18) of the preceding section we give a
proof of the asymptotic relations (1.20), (1.21). It is well known, as pointed out in
the Introduction, that it suffices to prove (1.19). X I(x, £, t) again denotes the inte-
gral in (2.3), we see from (1.18) and the definitions (1.6), (1.15) and (1.10) that

(3.1) 2 ul(®) e—kkt = t™/2 (F&) !+ Ix, x, t) - v(x, x, t).
k=1

Because of (2.7) and the fact that, by (2.11), I(x, x, t) = O(t'(n‘l)/z) for t — 0, (1.19)
follows immediately.

We now turn to the proof of (1.24) and (1.25), where K(x, £) is the Green’s func-
tion with boundary conditions zero belonging to the operator L defined in (1.2). We
then have

(3.2) u(x) = A SD K(x, @) u(a)da,

and since (see [19, Section 1]), for fixed t > 0 the series in (1.6) converges abso-
lutely and uniformly for x, £ in D, we obtain from (3.2)

5 uk(x) uk(g)

(3.3) A

M- [ kg, 9D w@u(@) e da
D

k=1 k=1

=S K(¢, a)Gx, o, t)da.
D

Let now x and £ be a pair of distinct fixed points in D, and let £ and p be positive
numbers such that (i) ﬁ( - §| > 2p, (ii) the ball Bp = Bp(£) with center £ and radius
p is contained in D, and (iii)

(3.4) 0< g K(, a)da < &
B
D

(note that K(£, @) is nonnegative). We then write
(3.5) { ¢ o6& o vaa={ a+(  ..aa,
D B

o D-B,

where the dots indicate the integrand appearing in the left member of this equation.
Now from (1.15), (1.18) and (2.13) we have

(3.6) 0<Gx, o, t) <T(x, a, t).

On the other hand, we see from (2.3), (2.10), (2.11) that, for suitable positive con-
stants C3 and g5,
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2
3.1 0< Tx, a, ) < C3lt™2 4 701/ exp {-g:;%] for |x-a|>p.

It follows from (3.6) and (3.7) that there exists a positive t, such that
0<Gx, a,t) <1 for 0<t<t, |x-a|>p,

and we see from (3.4) that
)
(3.8) 0<S K(¢, @) G(x, @, Hda<e for 0<t<t,,
B, ,
since |x - @| > p for a € By,

Now for ¢ € D - B, and |§ al > p, the function K(¢, @) is continuous in @, and
we can conclude from fhe basic property of G (see (1.3) with " replaced by G) that

(3.9) lim K(§, a)G(x, o, t)da = K(, x).
t—0 D-B,

Obviously (3.3), (3.5), (3.8), (3.9) together imply (1.24).

For the proof of (1.25) we have only to note that (3.7) remains true if I'(x, «, t)
is replaced by G(x, a, t), as is seen from (3.6). The inequality thus obtained together
with (1.6) implies (1.25).

Obviously (3.7) implies (1.26) directly, and we turn to the proof of (1.27).

We recall first that the singularity of the Green’s function K(x, &) is
O(|x - &|-(n-2)). Consequently, as is well known (see [9, p. 546]), the p-th itera-
tion K(P of K will be bounded and continuous if

1

1_n—2
n

(3.10) p> %

Let then p be such an integer. The uy(x) form a full orthonormal system of eigen-
functions of the continuous kernel K(P}((x £), and the corresponding eigenvalues are
the p-th powers of the eigenvalues Ay of K(x, £). From the theory of integral equa-
tions it is known (see, for example, [21, p. 301]) that

©0

Euk()
kl()\k)

(3.11) g [K(p)(x £)) da.
D

Let now r be an arbitrary positive integer greater than 2p. Since all eigenvalues
Ak are positive and A; may be assumed to be the smallest one, we have

1 _r1y _ r1 11 _ 71 1 1

At r,r yr-2 2 ~ yr-2 2p 4r °
ek )th Ak P A Pt Al PAth

(3.12)

Since G is nonnegative, we see from (1.6), (3.12), Schwarz’ inequality, and (3.11)
that
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0 < G(x, & t) = 20 u(x)u,(£) e Mt
k=1
o fu @] [u®) |
< Z)
THATT P =1 A2 AP
(3.13)
uk(x> uZ(®)] 172

trkr Zp _1 )LZP k 1 AZP

{5 [K(P)x, @)P da g [K(P)(&, o)]? da}l/z

tkr -2p

This proves (1.27)

It remains to prove (1.28). We use the notations of the last paragraph of the In-
troduction. In addition, we denote by y{P)(x, £, t) the function y(x, &, t) appearing in
(1.15) if D= D(P), Let then X, £ be an arbitrary pair of points in E®, and let t > 0.
Then there exists an integer p, such that for p > p, the points x and § are in D(P)
and from (2.12) (1.15) and (1.18) we have

(3.14) 0< T(x, £, 1) - GP)x, &, ) =y(P)x, £, 1) for p> p,.

Now y(P) is that solution of the boundary value problem (2.5) to (2.7) which is con-

tinuous in D(P) {0 < t}. By an argument used repeatedly, we conclude from this
that

(3.15) | y(PXx, £, t)] < Max I'(x, £, 7).
~ xen(p)
<7<t

Now it follows from (2.14) that corresponding to each € > ‘0 we can choose a p, > p,
such that

o0<rx, & nN<e fori:el')(P),0<‘rst,p2p1.
It then follows from (3.15) and (3.14) that 0 < I'(x, &, t) - G(P)(x, £, t) < e for p > p,.
This proves (1. 28)
4., APPENDIX 1.

For t, > 0 we have to prove that the functions U(x, t) and U,(x, t) defined in
(1.12) and (1.16) are continuous in the closure At, of the domain

Aty=Dx{0<t<t,}

provided that h(x) is continuous in D and satisfies (1.17). Since both functions are
certainly continuous in the interior of this domain, only the continuity at the boundary
points is in question. Now both functions satisfy the boundary conditions (1.13),
(1.14). It is easily seen that it will be sufficient to show (i) that the limit (1.13)

(for U and U,) is uniform for x € D, and (ii) that each point (x,, t,) on
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B, = Dx{0 <t < t,} has a neighborhood N, such that for all points (x, t) of the in-
tersection N;N B, the limit (1.14) (for U and U,) is uniform. Of these two state-
ments, (ii) is the easier one to prove, since it deals only with positive t-values. We
shall therefore confine ourselves to the proof of (i). For this proof it will obviously
be sufficient to establish the following two statements (A) and (B):

(A) If for any small enough positive 8, Sg denotes the “boundary strip” consist-
ing of all points of D whose distance from D is not greater than 8, then correspond-
ing to each pair of positive numbers € and t, there exists an a such that

(4.1) |Uxg, t) - h(xg)] <& for xg€ Sy, 0<t< ty,
(4.2) | U (g, t) - hixg)| <& for xp€8Se, 0<t<t;.

(B) The limit (1.13) (for U and U,) is uniform in each closed subset C of D.
Now a careful reading of the proof given in [18] for (1.13) shows that this proof ac-
tually implies the uniformity in each set having a positive distance from D (note
that the number o = o(x) on which the estimates in [19, p. 496] are based is subject
only to the restriction that it be less than the distance from x to the boundary, and
that it can therefore be chosen to be the same for all x in C.) As to U,, it is clear
from (1.15) and the fact that y(x) is continuous in D that it will be sufficient to prove
the uniformity in C of the limit relation

(4.3) lim I'(x, &, t)h(£) d& = h(x).
t—0 YD

Again, a perusal of Dressel’s papers [6], [7] will show that the limit (4.3) is indeed
uniform in a set having a positive distance from D.

It remains to prove statement (A). Since by assumption h(x) is continuous in D
and vanishes on D, there exists corresponding to each. € > 0, an « such that
(4.4) |hx)| < &/3  for x € S,,.

We have to prove the existence of a t, such that (4.1) and (4.2) hold.

We start with (4.1). With x, in Sy, we write
(4.5) U(xg, 1) = (S, ) + I(D - 8,,),
where I(B) denotes the integral with the integrand G(x, £, t) h(£) and with B as inte-

gration domain. We recall [19, last line on p. 494, and p. 495 (34)] that the G, de-
fined in (17) satisfy the inequalities

(4.6) Gyx, &0 >0 (v=0,1, 2, «=-; x> 0)
and
(4.7) o< o6& & va<a,

D

which by (1.8) imply

(4.8) G(x, £, 1) >0,
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(4.9) 0< | Gx, g nas<.
D

We see from (4.8), (4.4), (4.9) that

(4.10) 0 < ISz4) 5% SS G(x, &, t)dE < & SD Gx, £, DdE < 5.

20
To estimate I(D - S,y ), we need the following result: if ¥(x) is any function whose

derivatives up to and including the third exist and are continuous, and which is zero
on D, then, for x€ D,

(4.11) |40 - { w®6,x & nag| <22 Max L)
D

[19, p. 496 (37) and p. 495 (34)]. We now choose for Y (x) a nonnegative function
which satisfies the above requirements and which is 1 in D - S,5 and vanishes in
Sy- Since then Y (x° = 0, we see from (4.6), (4.11) that

(4.12) 0< g G(x0, £, ) dE = S Gy (x9, £, MY (&) dE - y(x0)
D—SZa D-Sza

1 Max |L@)| .

SS Gy, (0, &, MY(8) df - P(x
D

Setting A = v/t and letting v — «, we obtain from (1.8) and (4.12)

(4.13) 0< S G(x9, &, t) dt <t Max |L(Y)] .
D-
If we set
(4.14) H = Max |h()},
<€D

we see from (4.6) and (4.13) that
(4.15) : 0 < I(D - Szar) < tH Max |L(¥)] .
Thus, with t, = £(3H Max |L(y)|)~?, we see that
(4.16) 0<ID - Sa) < £/3 for 0<t< tg.
Finally it follows from (4.4), (4.5), (4.10) and (4.16) that
|u?, t) - hx9)| < |UED, )] + |h0)| <& for 0<t<t;, x%€ 8,
We have thus proved (4.1), and we turn now to the proof of (4.2). Since y is con-

tinuous in A, we see from (1.15) and (2.7) that it will be sufficient to prove the fol-
lowing: corresponding to each £ > 0, there exist o and t, such that



PARABOLIC EQUATIONS 241

(4.17) | g h(ET(x, & t)dE - h(x0)| <& for 0<t<ty, x0€ 4.
D

We denote the integral in (4.17) by U,(x° t), and write
(4.18) Uy(x, t) = Us(x, t) + Uyx, t),

where U; and U, are obtained from U, by replacing the function I' by the function
Z and the integral in (2.3), respectively. Moreover, we set

(4.19) h,(x) = h(x)/F(x), F,= Max F(x),
x€D

where F(x) is the function defined in (2.2). We now determine an « such that in
addition to (4.4)
(4.20) |n,x%| <e/6F; for x%€ S,, .
We shall now prove the existence of a t; such that
(4.21) U302, t) - h(x?) | < /2,

for x0€ S,4, 0 <t <t;;
(4.22) U0, v <e/2

these inequalities obviously imply (4.17) (as the proof will show, (4. 22) is actually
valid for all x in D). To prove (4.21), we write

(4.23) U3(x%, t) = (Szq) + ID - Sza),

where I(B) denotes the integral over B with the same integrand as in U,, that is,
h(¢) Z(x°, &, t). To estimate I(S,y), we remark first that

(4.24) F(x) = g /2 exp[-o(x, x - £)/4t]dt.
En

This is seen if (with Dressel) we introduce in the integral the spherical coordinates
r, 8 of the beginning of Section 2, and then in the integral over r the variable

w = r V¢ /2 V. The resulting integral will be seen to coincide with the definition (2.2),
if one notes that

m(s™"1) = 2(va)*/T (n/2),
(0/2) = F e vyn/2-1gy - g (T -1 gy
(n/ S.o e Vv v S‘O e’ w w

From the definitions (1.10) and (4.19) of Z and h, and from (4.20), we see that,
for x° in S, q,
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118,0)] = | SS hy(£)t™™/2 exp[-o(x, x - £)/4t]dE
2o

_<_6—;,- S\ t-n/2 exp[-o(x, x - £)/4t] dE.
0 Sza

This inequality together with (4.24) shows that
(4.25) |(S20)| <ge F® < /6  for x0 € Sq, t>0.
0

To estimate I(D - S,q), let us set H, = Max |h1(x)| for x in D, and denote by
m(D) the volume of D. Noting that for x0 € Sy and £€ D - S, , we have
|x° - ¢ > a, and using (2.9), we obtain

|1(D - S20)] = | g h1(£) t-7/2 exp[-0(x9, x0 - £) /4t]d¢
D-5oa
< H,m(D)t/2¢ —aa/at
This inequality obviously implies the existence of a t;, such that
(4.26) 1D - 8,0)| < e/6  for xP€¢S , 0<t<t;.

This completes the proof of (4.21), for we see from (4.23), (4.25), (4.26) and (4.4)
that, for x° in S¢ and 0 < t< ¢},

|U°, ©) - h(x9)| < |UE, t] + |hx°)| < 3¢/6.

Turning to the proof of (4.22), we obtain from (2.11) and (4.14) the inequality

(4.27) U4, t)] < CHVE SDt'“/Z exp[-g2|x° - £|%/4t}dE.

The right member becomes larger if the integration is extended over E®. But
the integral thus obtained has a finite value independent of x° and t as long as t > 0;
this is seen by applying the substitutions indicated in the remarks following (4.24)
to the case where o(x, x - £) = g,|x - &Iz. The actual value of the integral is
(2 vii/gp)*. Thus Uy(x?% t) is majorized by vt multiplied by a constant. This cer-
tainly proves (4.22).

5. APPENDIX II

The proof of the uniform convergence (for t > & > 0) of the series (1.6) given for
n=3 in[19, Section 1] is based on the convergence of the series

(5.1) Z; ui(x)/hlzc ’
k=1
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and the convergence of this series in turn is based on the fact, well known in the
theory of integral equations, that the partial sums are majorized by Ssz(x, &) dg,

where K has the same meaning as in (3.2). Now for n > 3 this integral does not
exist, and the proof has to be modified by introducing the p-th iteration K(P) of K
for a p satisfying (3.10), and by using the series in (3.11) instead of (5.1). The way
this has to be done will be perfectly clear from the proof for (1.27), if one notes par-
ticularly the inequality (3.13) appearing in that proof.

A similar modification has to be made in the proof given in [19, Section 2] for the
identity of the definitions (1.6) and (1.8): equations (26) and (27) of [19] will be valid
for v > 2p if p is again an integer satisfying (3.10). We then replace [19, (28)] by

(12 "“>(v2;1)(1~.;<_t>2" (2p),t<u+z ve2-2)F s )

We thus see that, for v > 4p,

ALt v+1
(1426 L P P,
2“P(2p)t

Therefore, for t> 6> 0 and v > 4p, we can replace [19] (29) by

- o]

> uy (%) ug(£)

2%P(2p)1 > |ui®) | Ju(®))
t v+l *
k=N+1 (1 k )

(5.2) P
0% pant1  (IP(YP

Since an application of Schwarz’ inequality together with (3.11) shows that the series
in the right member of (5.2) converges uniformly for (x, £) in D, we see that for
each £ > 0 we can choose N such that

(5.3) 2z uk(xiuf(ggl <g (v>4p, t>9).
k=N+1 ( k

On the other hand, we see from (3.13) that we can choose N such that, in addition to
(5.3),

(5.4) | > u B ekt < g
k=N+1

It follows from (5.3), (5.4), (1.6) and [19, (27)] that, for v > 4p and t > 6,

N
|G, £, 0) - Gylx, £, /)| < T uk(x)uk(-s)(e“"kt-
k=1

()|

The relation (1.8) follows now immediately, if we let v — «, for fixed N.
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