DOUBLY STOCHASTIC MEASURES

J. E. L. Peck

1. INTRODUCTION

A doubly stochastic $n \times n$ matrix has nonnegative elements, and the sum of each row and each column is one. A permutation matrix is a doubly stochastic matrix in which the elements are zero or one. Thus the identity matrix is a permutation matrix. Many authors, including J. von Neumann [3] and G. Birkhoff [1], have shown that the set of doubly stochastic matrices is the convex hull of the permutation matrices.

We may also consider matrices with a countable infinity of rows and columns. Let \mathcal{M}_0 denote the space of all infinite matrices M whose row- and column-sums are absolutely convergent. We say that the net $\{M_{\alpha}\}$ in \mathcal{M}_0 converges to zero if, for each row and each column, the absolute sum converges to zero with α . With this topology, Rattray and Peck [4] have shown that the closure in \mathcal{M}_0 of the convex hull of the permutation matrices is the set of all doubly stochastic matrices.

2. DOUBLY STOCHASTIC MEASURES

Let X be the half-line $[0, \infty)$, and consider the quadrant X×X. (We use the half-line for simplicity of notation; the results which follow hold also when X is the whole real line.) We shall denote by $\mathcal M$ the set of all real (not necessarily nonnegative) measures μ , defined on the measurable subsets of X×X, which are such that, for each measurable set $E \subset X$ of finite Lebesgue measure $\lambda(E)$, the total variation [2, Section 39] of μ on $E \times X$ and on $X \times E$ is finite. In what follows, λ will always indicate Lebesgue measure.

If μ is a nonnegative measure on X×X such that $\mu(E\times X) = \mu(X\times E) = \lambda(E)$ for all measurable $E\subset X$, then μ will be called a *doubly stochastic measure* and $\mu\in \mathcal{M}$. A set S is a support of a nonnegative measure μ if $\mu(X\times X\sim S)=0$. If S is a support of a doubly stochastic measure μ and is such that every section $\{y\colon (x,y)\in S\}\ (x\in X)$ and $\{x\colon (x,y)\in S\}\ (y\in Y)$ consists of one point only, then μ will be called a *permutation measure*. Thus the measure δ which has the diagonal $\Delta=\{(x,x)\colon x\in X\}$ as a support and is defined by $\delta(E)=\lambda\{x\colon (x,x)\in E\}$ for $E\subset \Delta$ is the simplest permutation measure.

Not all doubly stochastic measures are like this. If f is a nonnegative measurable function on X×X such that $\int_X f(x,y) \, d\lambda(x) = 1$ for all y, and $\int_X f(x,y) \, d\lambda(y) = 1$ for all x, then f may be called a *doubly stochastic function*. For any such f, the measure μ defined by $\mu(E) = \int_E f(x,y) \, d\lambda(x,y)$ for $E \subset X \times X$ will be a doubly stochastic measure. However, δ can not be so expressed. If ψ is a nonnegative, even, measurable function on the real line such that $\int_{-\infty}^{\infty} \psi(t) \, d\lambda(t) = 1$, then $\psi(x-y)$

Received August 15, 1958.

This paper was written at the Summer Research Institute of the Canadian Mathematical Congress.

is doubly stochastic on the plane and $\psi(x-y)+\psi(x+y)$ is doubly stochastic in a quadrant. Thus there is a large class of doubly stochastic measures.

A measure σ , defined on the square $A = \{(x,y) \colon 0 \le x < a, 0 \le y < a\}$ by $\sigma(E) = r\delta(E \cap A)$ for some real r and all measurable $E \subset X \times X$, will be called a spine on A. Thus $\sigma(X \times X) = \sigma(A) = ra$. Similarly, we may define a spine on any square, say $B = \{(x,y) \colon b_1 \le x < b_1 + a, b_2 \le y < b_2 + a\}$, by translation. Thus if $\sigma'(E + (b_1, b_2)) = \sigma(E)$, with B a support of σ' , then σ' is a spine on B, with $\sigma'(X \times X) = \sigma'(B) = ra$. A doubly infinite array of spines on congruent squares which disjointly cover $X \times X$ will be called a spine matrix. It is close to the concept of an infinite matrix, and we shall exploit this similarity.

3. THE TOPOLOGY OF \mathcal{M}

The set of doubly stochastic measures is a convex subset of \mathcal{M} , and each permutation measure is an extreme point. We set up a topology in \mathcal{M} by considering the set Φ of all bounded uniformly continuous functions ϕ on X. A neighbourhood of μ in \mathcal{M} is defined by means of real numbers a>0, $\epsilon>0$, and a finite set $\{\phi_1,\cdots,\phi_q\}\subset\Phi$. We shall say that $\nu\in N_{a,\epsilon,\phi_1},\ldots,\phi_q(\mu)$ if for all E=[0,t), where $0< t\leq a$,

$$\left| \int_{X \times E} \phi_{\mathbf{p}}(\mathbf{x}) d\mu(\mathbf{x}, \mathbf{y}) - \int_{X \times E} \phi_{\mathbf{p}}(\mathbf{x}) d\nu(\mathbf{x}, \mathbf{y}) \right| < \epsilon,$$

$$\left| \int_{E \times Y} \phi_{\mathbf{p}}(\mathbf{y}) d\mu(\mathbf{x}, \mathbf{y}) - \int_{E \times Y} \phi_{\mathbf{p}}(\mathbf{y}) d\nu(\mathbf{x}, \mathbf{y}) \right| < \epsilon,$$

for $1 \leq p \leq q$. The use of the family Φ is suggested by the weak topology of probability measures on X when considered as linear functionals on Φ , for in this topology the probability measures are closed. Also, the topology here is defined stripwise in each direction in conformity with that used in [4] for infinite doubly stochastic matrices. As an indication of what the topology on $\mathcal M$ may accomplish, we note the fact (though we shall not use it) that if χ_n is the characteristic function of the interval [-1/n, +1/n], then the sequence of doubly stochastic measures generated by the doubly stochastic functions $\frac{n}{2}[\chi_n(x+y)+\chi_n(x-y)]$ converges to the permutation measure δ .

Since the constant function 1 is in Φ , it is clear that the convex set of doubly stochastic measures is a closed subset of $\mathcal M$. We shall prove that the closure in $\mathcal M$ of the convex hull of the permutation measures is the set of all doubly stochastic measures.

Consider any $\mu \in \mathcal{M}$ which is doubly stochastic. Let $N_{a,\mathcal{E},\phi_1},...,\phi_q(\mu)$ be any neighbourhood of μ , and let

$$\sup \{ |\phi_{p}(x)| \colon x \in X, \ 1 \le p \le q \} = K.$$

Since the ϕ_p are uniformly continuous, we may find a b such that $0 < b < \epsilon/4K$, and such that the oscillation of each ϕ_p on each interval of length b is less than $\epsilon/4a$.

Let $A_{ij} = \{(x, y) : ib \le x < (i+1)b, jb \le y < (j+1)b\}$ for $i, j = 0, 2, \cdots$; then A_{ij} is a collection of congruent squares which disjointly cover $X \times X$. For each pair i, j, let σ_{ij} be the spine on the square A_{ij} with $\sigma_{ij}(X \times X) = \sigma_{ij}(A_{ij}) = \mu(A_{ij})$, and write $\nu = \Sigma_{i,j}\sigma_{ij}$. The nonnegative measure ν is in fact doubly stochastic by construction, and it is a spine matrix defined on the A_{ij} 's. We shall show that $\nu \in N_{a,\epsilon,\phi_1,\dots,\phi_q}(\mu)$. In fact, if $0 < t \le a$, we shall write

o () a, no bhair mile

$$B = \{(x, y): 0 \le y < [t/b]b\}, \qquad C = \{(x, y): [t/b]b \le y < t\}.$$

Note that $B = \bigcup_{i < \infty, j < t/b} A_{ij}$; that if E = [0, t), we have $X \times E = B \cup C$, and that this union is disjoint.

Since the oscillation of each ϕ_p is less than $\epsilon/4a$ on every A_{ij} , and since $\nu(A_{ij}) = \mu(A_{ij})$, we have

$$\begin{split} \left| \int_{A_{\mathbf{i}\mathbf{j}}} \phi_{\mathbf{p}}(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}, \, \mathbf{y}) - \int_{A_{\mathbf{i}\mathbf{j}}} \phi_{\mathbf{p}}(\mathbf{x}) \, \mathrm{d}\nu(\mathbf{x}, \, \mathbf{y}) \right| \\ & \leq \left| \int_{A_{\mathbf{i}\mathbf{j}}} \phi_{\mathbf{p}}(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}, \, \mathbf{y}) - \phi_{\mathbf{p}}(\mathbf{i}\mathbf{b}) \, \mu(A_{\mathbf{i}\mathbf{j}}) \right| \\ & + \left| \phi_{\mathbf{p}}(\mathbf{i}\mathbf{b}) \, \nu(A_{\mathbf{i}\mathbf{j}}) - \int_{A_{\mathbf{i}\mathbf{j}}} \phi_{\mathbf{p}}(\mathbf{x}) \, \mathrm{d}\nu(\mathbf{x}, \, \mathbf{y}) \right| \\ & \leq (\epsilon/4\mathbf{a}) \, \mu(A_{\mathbf{i}\mathbf{j}}) + (\epsilon/4\mathbf{a}) \, \nu(A_{\mathbf{i}\mathbf{j}}) = (\epsilon/2\mathbf{a}) \, \mu(A_{\mathbf{i}\mathbf{j}}) \, . \end{split}$$

Thus

$$\left| \int_{B} \phi_{p}(x) d\mu(x, y) - \int_{B} \phi_{p}(x) d\nu(x, y) \right| < (\epsilon/2a) \mu(B).$$

Also, b is chosen small enough so that

$$\left| \int_C \phi_p(x) \, \mathrm{d}\mu(x, y) \right| + \left| \int_C \phi_p(x) \, \mathrm{d}\nu(x, y) \right| < 2Kb < \epsilon/2.$$

Putting these two inequalities together, and observing that $\mu(B) \le a$, we have for $1 \le p \le q$ that

$$\left| \int_{X \times E} \phi_{p}(x) d\mu(x, y) - \int_{X \times E} \phi_{p}(x) d\nu(x, y) \right| < \epsilon.$$

Similarly,

$$\left| \int_{E \times X} \phi_{p}(y) d\mu(x, y) - \int_{E \times X} \phi_{p}(y) d\nu(x, y) \right| < \varepsilon.$$

Therefore $\nu \in N_{a,\epsilon,\phi_1,\dots,\phi_q}(\mu)$.

Finally if $\{\tau_{\alpha}\}$ is a net of spine matrices on the A_{ij} 's and if, for each j, $A_{j} = \bigcup_{i} A_{ij}$, we see that $\lim_{\alpha} \Sigma_{i} |\tau_{\alpha}(A_{ij})| = 0$ implies that

$$\lim_{\alpha} \left| \int_{A_{j}} \phi(x) d\tau_{\alpha}(x, y) \right| = 0$$

for each $\phi \in \Phi$. This means that the topology which \mathcal{M} induces on the spine matrices is not finer than that used in [4] for infinite matrices. Therefore by the result in [4], every neighbourhood of ν , and therefore $N_{a,\epsilon,\phi_1,\dots,\phi_q}(\mu)$, contains an element of the convex hull of those spine matrices which are permutation measures.

4. MEASURES ON A SQUARE

One may define doubly stochastic and permutation measures in the case where X is a closed interval, say X = [0, 1]. A similar theorem holds in this case, and all who have read the above may supply the statement and the proof, using the theorem in [3] or [1].

REFERENCES

- 1. G. Birkhoff, *Tres observaciones sobre el algebra lineal*, Rev. Mat. y Fisica Teorica, Tucuman. Ser. A 5 (1946), 147-150.
- 2. P. R. Halmos, Measure theory, Van Nostrand, 1950.
- 3. J. von Neumann, A certain zero-sum two-person game equivalent to the optimal assignment problem, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies no. 28 (1953), 5-12.
- 4. B. A. Rattray and J. E. L. Peck, *Infinite stochastic matrices*, Trans. Roy. Soc. Canada Sect. III. (3) 49 (1955), 55-57.

McGill University