MEAN-VALUES AND POLYHARMONIC POLYNOMIALS
Avner ~Fr iedman

INTRODUCTION. It is well known that a summable function, defined in a two-
dimensional domain, is harmonic if and only if it satisfies the Gauss Mean-Value
Theorem. An analogous statement holds for the polyharmonic case. A function
u(x, y) having 2p continuous derivatives in a domain D is p-harmonic in D if and
only if, for every (a, 8) € D and for sufficiently small positive R,

1 p-l R2j j
(0.1) TRE u(x, y)dxdy = u(a, B) + ?1 W AU(&, 3) ’
SR (a)B) =
where Sg(a, B) is a circle with center (a, 8) and radius R.

Denote by [(a, 8), n, R, ¢] a regular n-polygon with center (o, ) and vertices
27 . 27
<a+hcos (¢+—n—k),ﬁ+hsm ¢+Tk)) k=1, -, n),

where R = h cos 7/n. We say that a summable function u(x, y) possesses the prop-
erty (p, n, ¢) in a domain D if, for every (@, B) € D, the partial derivatives
Nula, B)(j=1, +--, p - 1) exist, and if for sufficiently small R

-1, RZJJ
[(@,8),n,R,9] 5=1 D% G+

where s is the area of [(0, 0), n, 1, 0] and the 7j,n are defined as follows:

2,1
Y1,n ¥ 3% 3 cosz n/n’

Y - 21{7’}(_1 n + 1 .
ko = 2k+1 7 (9K 4 1)cos®® /n

(0.3)

The property (p, n, ¢) involves double integrals taken over regular polygons.
Similarly, we define the properties (p, n, ¢)' and (p, n, ¢)" which involve, respec-
tively, line integrals taken over the edges of regular polygons, and arithmetic means
taken over the vertices of regular polygons. In the case of (p, n, ¢)', condition (0.2)
is replaced by

i p-ly; .R% plu(a, p)
(0-4) aﬁai u_(x, Y)dO' = u(a, B) + j?l (2jj!)z ’

where 0= 2s. In the case (p, n, ¢)", condition (0.2) is replaced by
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. D _P2 R plu(e, )
(0_5) Ek=zlu(a + X3, B+ yk) - U(a, B) = jg:l (2jj!)2coszj "/n .

The reason for the definition (0.3) will be explained in Remark a) to Theorem 2.

In this paper we discuss the problem of characterizing functions possessing one
of the properties (p, n, ¢), (p, n, ¢)', (p, n, ¢)". The special case p = 1 is already
known. Beckenbach and Reade [1] have proved that a summable (continuous) function
u(x, y) possesses the property (1, n, ¢) ((1, n, ¢)') if and only if u(x, y) is a harmonic
polynomial of degree n and the nth derivative of u(x, y) in the ¢-direction vanishes.
Walsh [4] has proved the same result for continuous functions possessing the property
(1, n, ¢)". The methods used in [1] and in [4] are quite different. We shall prove all
the above-mentioned results by a new method which is more general. Afterwards we
shall apply it to discuss the general case of (p, n, ¢), (p, n, ¢)', (p, n, $)".” The prob-
lem of characterizing polyharmonic polynomials was attacked also by Reade [3]. He
introduced a mean-value property which involves integration over k regular n-gons
which are homothetic, and he showed that this property characterizes k-harmonic
polynomials of degree and form which depend on k and n.

1. THEOREM 1. A necessary and sufficient condition for a summable function
u(x, y) defined in a domain D to possess the property (1, n, ¢) is that u(x, y) should
be a harmonic polynomial of degree at most n and that the nth derivative of u(x, y)
in the ¢-divection should vanish.

It is sufficient to prove the theorem for the case ¢ = 0, since the general case
follows by rotation. Suppose u(x, y) to possess the property (1, n, 0). Then

(1.1) u(a, B) = "géj SSu(X, Y)dXdY’
Sr

where Sy = [(@, B), n, R, 0]. From (1.1) it is clear that u(x, y) is infinitely differen-
tiable. Applying the operator A to both sides of (1.1) as functions of (o, B), and
using Green’s Identity, we get
1 S ou
sR? J Qv
OR

(1.2) Hula, B) = do,

where og is the boundary of S and v is the outwardly directed normal.
Writing (1.1) in the form ‘

(1.3) sR2u(a, B) = »H u(x, y)dxdy,
Sr
and differentiating twice with respect to R, we get

n
(1.4) 2su(a, ) = S %dﬂ r2tand ¥ ula+x, B+,

k=1
ORr

where
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27 .27 w
(1.5) xk=hcos—ﬁ—k, yx=nh sm-ﬁ-k, R=h cos —.

Noting that s = n tan n/n and comparing (1.2) with (1.4), we obtain

(1.6) Aula, B) + n12{ [ E u(a + Xy, B+ yi) - nu(a, B)] .
k=1

By Taylor’s Theorem,

n n
(1.7) S [ula+x, 8+%)-ua, Q] = A, e+ 00",
k=1 A=l 7
where ~
\ A
(1.8) Ayu = Z (cos—z—lﬂ—{ix + sin—z%lfa—ay) u

gau, we obtain from (1.6)

Since Aju=0 and A,u =
2 ‘h2 3
Au+—n—ﬁz- 7&“4—0(}1) = 0,

so that Au = 0. Therefore u(x, y) is harmonic. We can write

(1.9) é—z = - -a'—'§ .
Now A)u is a sum of expressions of the form

BogA-p
( ) o’ 3 u }: cosh 2K gipr-p 27K
u n n

oxH ayrA-K k=1

By symmetry it is obvious that this expression vanishes for A - 4 odd. For A - u
even, we may (by (1.9)) substitute

ayh' K axA-H
Therefore we obtain
2 TA
A n —k A
271k 9 . i 2TK 9 _ n 9t u
(1.10) Aku = E (COS——-—;{- + 1 SlnT—aT{ u = E e )—a-}—{-x .

Since by (1.6) and (1.7) each A u must vanish, we have in particular Aju= 0, or
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. Mulx, y) _
(1.11) axa = 0.
n-1
We conclude that u(x, y) = X ax(y)xX. Now by (1.9) and (1.11),
k=0
3"u(x, y)

E T
and we easily see that ay(y) is a polynomial of degree at most n - k. We have es-
tablished one part of the theorem.

Suppose now that u(x, y) is a harmonic polynomial of degree at most n, and-that
it satisfies (1.11). We shall prove that it possesses the property (1, n, 0).

It is sufficient to prove (1.1), or (1.3). Both sides of (1.3) vanish, at R = 0, to-
gether with their first derivatives. Therefore it is sufficient to prove that their
second derivatives with respect to R are equal; that is, to prove (1.4). Since u(x, y)
is harmonic, and s = n tan 7/n, it remains to prove that

I= 2 [u(a+x, B+y)-ula,p)] = 0.
k=1 '

But since u is a polynomial of degree at most n, (1.7), (1.8), (1.9) and (1.11) imply
that

I= Z i—!AAu=—a;{3=0.
A=1
This completes the proof.

Remark. The analogous theorems concerning the properties (1, n, ¢)', (1, n, ¢)",
can be proved by the same method. In the case of (1, n, ¢)', the only change is that
we differentiate the formula analogous to (1.1) only once with respect to R (and not
with respect to (a, B)), and then use Green’s Identity. In the case of (1, n, ¢)", the
formula analogous to (1.1) takes the form

Z [ula + x, B+ yi) - ula, B)] = 0.
k=1

It is interesting to observe that in this case our method can be generalized to 3 dimen-
sions. The only change is in the Taylor series corresponding to 1—112;;1 u(Py) - u(P),
where the Py are the vertices of a regular solid with center P. Indeed, this was al-
ready done by Beckenbach and Reade [2].

2.1. We shall need the following

LEMMA. For any numbers a, b and for any positive integer n, the following
identities hold:
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n ¢ ()™ 0<f=2m<m,

(2.1) E(a cos 2Ty + b sin 37—Tk) =
n n 0

k=1 (0< f=2m-1<n).

Consider first the case { = 2m. By symmetry,

b

n
> cog2m-2A-1 271k gin2Atl 27k _ 0
k=1 n n

and using the binomial theorem, we see that it suffices to prove

2m‘) . m-2x 27K . 23 21K _ _r}_(zm) (m)
(2.2) (ZA k§1co:sz st o= = om NE

The proof of (2.2) is by induction on m (1 < 2m < n). Assuming its truth for m - 1,
we prove its truth for m by induction on A. For A = 0, (2.2) reduces to

n
2m 27k __E_V(Zm)
(2.3) }El cos®™ == = 5 \m /-

The truth of (2.3) follows from the well-known trigonometric formulas

4m

1 " e 2
cos’™x = —< X 2 (I:n) cos 2(m - K)x + ( m)}_,
k=0 m

21

nk=0 (0<j<nm).

n
2. cos
k=1

Assuming the truth of (2.2) for x - 1 instead of A, we can easily prove it for A by
substituting

sin?A 27K _ gqn2a-227K (1 - cos? 2K )
n n - n

2m-1 _Z_E_T_IS = 0.

n
The case £ = 2m - 1 is treated similarly. The only change is that X cos a

k=1

2.2. THEOREM 2. Let u(x, y) be a function defined in a domain D, continuous with
its partial derivatives of the first 2p ovders, and possessing the property (p, n, ¢),
with n > 2p. Then u(x, y) is a p-harmonic polynomial of degree at most pn, and the
pn-th derivative of u(x, y) in the ¢-dirvection vanishes,

As in the previous theorem, it is enough to give the proof for the case ¢ = 0. We
prove the theorem by induction. The case p =1 is a part of Theorem 1. Assume
that the hypothesis of Theorem 2, with p replaced by p - 1, imply that u isa
(p - 1)-harmonic polynomial of degree (p - 1)n and that
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a(p-Lny(x, y)

2.4
@4 ax(p-1)n-2j5y2j

=0 (0<2j<(p-1n).

Let (o, B) € D; then

1 1%.n R?u(a, p)
(2.9 sRZ LS{ u v dxdy = wles £+ JE @024+ 1

Applying A to (2.5), we get

1 S au 1 y;nRE At lu(a, p)
2.6 —do =
( ) ;ﬁz Ray o Au(a B) + JZI (2JJ!)2 (] N 1)

Miiltiplying (2.5) by R?® and differentiating both sides{ twice with respect to R, we get

_1..S du <
R ) 3599+ 3 ? u(a + Xy, B+ Vi)

(2.7)

-2 = u(a, B) + —l—pEl 2@+ 1 7J n R plu(a, B)

Comparing (2.6) and (2.7), we obtain

' ‘ p-1,,. 2j Ajtl p-1 . 2j-2 Aj :
_ vi,nR¥ AT u(e, g)  P02(2) + 1)v; nRA-2 Adu(e, B)

(2.8)

+ ;1‘%7: > [u(a + xy, B+ yi) - ula, B

. By Taylor’s Theorem and the lemma,

2.9 ¥ [ule+ x 8+ 330 - ule, B = 2,_‘, m (2)‘) arule, B) + o(h?P).
“ k=1

Here we have used the assumptions that n > 2p and that u(x, y) possesses continuous
partial derivatives of the first 2p orders.

Substituting (2.9) in (2.8) and equating to zero the coefficients of R2A, we get the
identities

3 2 _
A‘u(j"'iyl-‘l+ cos n/n ) =0,

k. Yk - l1,n 2(2k+ l)Yk,n 9 2k )
“ “( (251 (k - 1)!)3k (2kKk1)? * (2k) 14k cosZkﬂ/n( )) !0 ®>5K,

(2.10)
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Yp-1,n 2 2p -
(2.11) AP“( 2P 1(p- DIYp (2p)!4P cos?P o/n (’p )) =0

From the definitions in (0.3) we see that the brackets in (2.10) vanish. From (2.11)
we conclude that APu= 0. Applying A to (2.5), we obtain

1 SS P2 y;n R AT u(a, B)
—3 | ) du(x, y)dxdy = Aula, B) + X ——— -
sR? Sk B y) dxdy 8 =1 @iN2G+1)

By the inductive assumptions, we conclude that

aP-1nay(x, y)

(2.12) o iy 23 = (0<2j< (p-Dn).

From (2.12) and the identity

o%u 0%2u

g};‘é = - Eﬁ + Au
it follows that
(2 13) a(p-l)n+2u a(p—l)n+2u

) ax(p-1)n-2jgy 2j+2 = = x(p-IIn-2j+25y 25’
Therefore we may substitute -g—y = ia_x in Ajyu (for A> (p - 1)n + 2), and from (1.10)
we have
0Py
Apnu = naxpn.
oPu R
From (2.8) we see that Aj,u =0, so that P 0. Applying (2.13), we get
P

(2.14) _PPulx, y) _ 0

ax Pn-2jgy2]

This implies that u(x, y) is a polynomial of degree at most pn, and the proof is com-
plete.

Remarks. a) It is clear from the proof (see formulas (2.10), (2.11)) that if
u(x, y) satisfies, at every (o, B) € D,

1 SS - P+ bj,n B A u(a, B)
(2.18) = Si{’u(x, y)dxdy = u(e, ) + j§1 @iDZasD

and if

61,n = ",n» "3 0%_1,n = Yk-1,m Ok,n#* Yk,n>

then AXu(x, y) = 0 and (2.15) reduces to
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k-1 2j AJ
1 ) ¥j,n R4 pula, B) |
-~ é!u(x, y)dxdy = u(a, B) + ;L:l 23iN2 G+ 1)

b) The analogous theorems concerning the properties (p, n, ¢)', (p, n, ¢)" can be
proved in the same way.

To prove the analogue of Theorem 2 for the case of (p, n, ¢)", observe first that
(2.9) implies APu= 0. We now apply A to both sides of (0.5) and use the inductive
assumptions (including (2.4)). Thus we conclude that u(x, y) is a p-harmonic poly-
nomial of degree at most pn, and the pn-th derivative of u(x, y) in the ¢-direction
vanishes.

Instead of proving directly the analogue of Theorem 2 for (p, n, ¢)', we show that
the properties (p, n, ¢), (p, n, ¢)' are equivalent. Indeed, multiplying (0.4) by R and
differentiating with respect to R, we obtain an equivalent formula which coincides
with (2.7). Since (2.7) and (2.5) are equivalent, our proof is complete.

2.3. a) The converse of Theorem 2 is not true. This is shown, for the case
p = 2, n = 6, by the counter-example

u(x, y) = x®+ (5a - 10)x%2+ (5 - 10a)x%y*+ ay® (a=1).
Here u(x, y) is a biharmonic polynomial of degree n = 6; but it does not possess the
property (2, 6, 0) since, as can be verified directly, (2.8) is not satisfied.
b) We give an example for the case p = 2, n = 6, of a biharmonic polynomial of
degree n + 2 = 8 which possesses the property (2, 6, 0):
u(x, y) = 3x%y - Tx%y3 - x%° + 3xy”.
Instead of proving (2.5) for u(x, y), it is sufficient to prove (2.7), or to prove (2.6) and
(2.8).

Now, since Au is a harmonic polynomial of degree 6 and 2°Au/9Ax® = 0, it fol-
lows from Theorem 1 that (2.6) holds. (2.8) can be verified directly.

c) The assumption n > 2p made in Theorem 2 is really necessary. This is
shown by the following counter-example:

p=2, n=4, ¢‘=7T/4’ u(x’Y)=st'x3y3-
The polynomial u(x, y) possesses the property (2, 4, 7/4), as can be verified di-
rectly; but it is not biharmonic.
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