NOTE ON THE CONDITION n-colc

J. H. C. Whitehead

Let X be a locally compact space which satisfies the following condition, relative to a point $x \in X$;

(A) There is a basis (V) for the (open) neighbourhoods of x, which is well-ordered by the relation \supset (that is, V precedes V' if, and only if, $V \supset V'$).

After adding a "point at ∞ ," if necessary, we assume that X is compact (this is justified by the excision axiom [2], in the study of local properties at x). If B is a subspace of any space Y, then* $H_q(Y, B)$ will denote $\underset{\longrightarrow}{\text{Lim}}\{H_q(Y_\lambda, B_\lambda)\}$ for all compact pairs $(Y_\lambda, B_\lambda) \subset (Y, B)$, partially ordered by inclusion, where $H_q(Y_\lambda, B_\lambda)$ refers to the Čech theory with coefficients in a field F. Similarly

$$H^{q}(Y, B) = \underset{\leftarrow}{\text{Lim}} \{H^{q}(Y_{\lambda}, B_{\lambda})\},$$

with F as coefficient group. If (Y, B) is itself a compact pair, there is a natural identification of $H_q(Y, B)$ with the vector space of linear maps $H^q(Y, B) \rightarrow F$.

I recall that X is n-colc at x [3] (see [1]) if, and only if, for every neighbourhood U of x, there is a neighbourhood U' such that $x \in U' \subset U$ and

$$i*H^{n}(X, A') = 0 \in H^{n}(X, A)$$
.

where A = X - U, A' = X' - U' and $i : (X, A) \subset (X, A')$.

THEOREM (B). Let X satisfy (A). Then it is n-colc at x if, and only if,

$$(C) H_n(X, X - x) = 0.$$

Proof. We identify $H_n(X, B)$ (B = A, A') with the vector space of linear maps $H^n(X, B) \rightarrow F$. Then $i*: H_n(X, A) \rightarrow H_n(X, A')$ is defined by $i*u = u \circ i*$, where $u: H^n(X, A) \rightarrow F$. Therefore $i*H_n(X, A) = 0$ if $i*H^n(X, A') = 0$, and (C) is satisfied if X is n-colc at x.

Conversely, let X satisfy (C), let ρ be the ordinal number of the sequence (V), let Λ be the set of ordinals less than ρ and let (V) be indexed to Λ in the obvious way. Let U = X - A be a given neighbourhood of x and let us assume, as we obviously may, that $U = V_0$. Let $A_{\lambda} = X - V_{\lambda}$, and let

$$G_{\lambda} = i_{\lambda}^* H^n(X, A_{\lambda}) \subset H^n(X, A) = G,$$

where $i_{\lambda}: (X, A) \subset (X, A_{\lambda})$. Then (B) will follow when we have proved that $G_{\lambda} = 0$ for some λ . Notice that if $\lambda \leq \mu$, then $V_{\lambda} \supset V_{\mu}$, $A_{\lambda} \subset A_{\mu}$ and $G_{\lambda} \supset G_{\mu}$.

Received June 1, 1956.

^{*} H_q denotes an homology and H^q a cohomology group. If $A \subset X$ is closed, I write $H^q(X - A) = H^q(X, A)$, in conformity with [2], where $H^q(X - A)$ is defined as in [3].

Let $u: G \to F$ be given. Since $i_{\mu}*u = u \circ i_{\mu}^*$, it follows from (C) that there is a $\mu \in \Lambda$, and hence a $\mu \geq \lambda$ for a given λ , such that $uG_{\mu} = 0$. Therefore $uG_{\lambda} = 0$ for every u if $G_{\lambda} = G_{\mu}$ for every $\mu \geq \lambda$. Since every linear map $G_{\lambda} \to F$ has a (linear) extension $G \to F$, it follows that $G_{\lambda} = 0$ if $G_{\lambda} = G_{\mu}$ for every $\mu \geq \lambda$. Therefore, if $G_{\lambda} \neq 0$ for every λ , the sequence Λ has no last element and we may assume, after discarding repetitions, that $G_{\lambda} \neq G_{\lambda+1}$.

Assume that $G_{\lambda} \neq G_{\lambda+1}$, and let $g_{\lambda} \in G_{\lambda} - G_{\lambda+1}$ for every $\lambda \in \Lambda$. Then it is obvious that the vectors g_{λ} are linearly independent. Therefore they belong to a basis for G, and there is a linear map $u: G \rightarrow F$ such that $ug_{\lambda} = 1$, whence $uG_{\lambda} \neq 0$ for every λ . This contradicts the preceding paragraph, and (B) is proved.

REFERENCES

- 1. E. G. Begle, Locally connected spaces and generalized manifolds, Amer. J. Math. 64 (1942), 553-574.
- 2. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Mathematical Series 15 (1952).
- 3. R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloquium Publications 32 (1949).

Mathematical Institute, Oxford