A THEOREM ON SIMPLE CARDINAL ALGEBRAS
A. B. Clarke

1. INTRODUCTION

A cardinal algebra, as defined by Tarski [1], is an algebraic system which is
closed under an operation of countable addition and which satisfies certain axioms
abstracted from the common properties of such diverse algebraic systems as the
algebras of cardinal numbers, sets, relations, and so forth.

In the framework of a cardinal algebra one can define the concept of an ideal; and
from this one can build up a fairly extensive representation theory for such algebras.
As is to be expected, the major building blocks in such a theory are the so-called
simple cardinal algebras, that is, the algebras having no nontrivial proper ideals.
The most obvious examples of simple cardinal algebras are the algebra of nonnega-
tive real numbers closed by the addition of «, and its three subalgebras: the algebra
of nonnegative integers, similarly closed; the two-element algebra {0, «}; and the
trivial algebra {0} Interestingly enough, these are the only krnown examples; how-
ever, no proof that there exist no others has been constructed. This paper does not
settle the question; but it gives a sufficient (and trivially necessary) condition for a
simple cardinal algebra to be one of the four algebras mentioned above. The condi-
tion appears particularly natural in the context of the general representation theory.

Before stating and proving our theorem we shall, for convenience, quote a few
definitions and results of Tarski [1] which are required in the sequel.

2. DEFINITIONS AND KNOWN RESULTS

A cardinal algebra is defined to be an algebraic system which consists of an
underlying set A, a binary operation +, and an operation £ of countably infinite
rank

A= <A, +, >,

and which satisfies seven axioms. The first five axioms merely imply that ~ is a
generalization of +, that there exists a zero element 0, and that the operations are
unrestrictedly commutative and associative. The last two axioms are more restric-
tive. Axiom VI states that if the same element can be written as a sum in two differ-
ent ways, then the summands have a common subdivision. Axiom VII asserts the
existence of a certain type of greatest lower bound.

VI. If 22 a; = 2 bj, then there exist elements c;; in A such that a; = 2 cij and
1< J<eo J<eo

b = Z Cip for each i, j.
i<<oo
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VIL. If a;= aj+1+ bj for each i, then theve exists an element a in A such that

anp=a+ X by, for each n.
i<<oo

A cardinal algebra can be made into a partially ordered set by defining
a<b if and only if b= a + x for some X in A.

A subset BC A is known as an ideal in ¥ if it is closed under = and if a <be€ B
implies that a € B. A cardinal algebra % is called simple if it has no nontrivial
proper ideals.

We shall require the following results due to Tarski. (The numbers in paren-
theses refer to the numbering system of [1]).

THEOREM 2.1 (2.21). If a and b ave elements of a cardinal algebra such that
na < nb for some finite integer n,then a <b.

THEOREM 2.2 (2.33). If 3 a; < a for each integer Kk, then 2 a; < a.
iSk i<oo

We will use the symbol «a to denote the sum p a;, where each a; = a.
i<eo

THEOREM 2.3 (9.34). A cardinal algebra is simple if and only if, for any two
nonzevo elements X and y, ©X = oy,

THEOREM 2.4 (9.35). Let % be a simple cardinal algebra containing an inde-
composable element (that is, a nonzero element a such that a = x + y implies that

x=0or y=0). Then % is isomorphic with the algebra of nonnegative integers
closed by the addition of .

THEOREM 2.5 (14.7). If % is a simply-ordered simple cardinal algebra, then
A is isomorphic to a subalgebra of the nonnegative veal numbers closed by the addi-
tion of .

3. THE NEW THEOREM
Let
A =<A, +, Z>

be a simple cardinal algebra in which the inequality a < b implies that a < nb for
some finite integer n. Then U is isomovphic to a subalgebra of the algebra of non-
negative real numbers closed by the addition of .

Proof. We make the following assertion, valid in every simple cardinal algebra:

If x and y are nonzero elements of A, then there exists a nonzero element z such
that z <x and z<y.

To prove this, note that, by (2.3), x < ox = «y and hence, by Axiom VI, x = Z x;,
where each x; <y. Choose z to be any nonzero x;, and the assertion follows.

We may obviously assume that A contains more than two elements, and further-
more that it contains no indecomposable element, since otherwise (2.4) completes the
proof.
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Let a, be an arbitrary nonzero element with a; < »a,. Since a, is not indecom-
posable, there exist nonzero elements x and y such that x + y = a,. By our assertion
above, there exists a nonzero element a, with a, <x and a, <y. Hence 2a; <a,.

By repeating the argument, we obtain a monotone decreasing sequence of nonzero
elements

ag>a;> >0

such that 2a;,; <a;, for each i <.

We next assert that if ¢ is any nonzero element, then a, < ¢ for some index n.
Since a, < «a, = «c, we may choose n so that a, < nc, by the hypothesis of the
theorem. Then

na, < 2%, <2°-la | <--<a;<nc.

Our assertion now follows from (2.1).

To show that % is isomorphic to the nonnegative real numbers, it is sufficient to
show that it is simply-ordered, in view of (2.5). Choose elements a and b in A
arbitrarily, and without loss of generality assume that a < «a and b < «b. Let

K={ xlxeA,x,Sa,be}.

Choose the integer n, so that nga, € K, (n, + 1)a, ¢ K. In general, for k < «, choose
the integer n; so that

2 n;ja; €K, ap+ 2 n;a; ¢ K.
i<k i<k

Since a < wa = wax and b < «b = way, by the hypothesis of the theorem all these
integers n) exist and are finite (some may possibly be zero). Now define

u= Z n;a; .
i<oo

Since 2. nja; €K, 2 nja; <a and 2 nja < b for each k < «, whence u <a and
i<k i<k i<k
u <b by (2.2). Consequently u belongs to K.

Now suppose that u < a and u < b; then by definition there exist nonzero elements
x and y such that

a=u+x, b=u+y.

By our two previous assertions, however, there exists an ay such that a; <x and
ak <y. Hence

u+ag<u+x=aand u+a <u+y=>b.

Consequently
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a + 2 niaif ak+u5a
iSk

and

a + 2 na <a+u<b,
i<k

which implies that a; + 2 n;a; € K, contradicting our choice of n,. It follows that
i<k

either u=a <b or u=b<a. Thus % is simply-ordered and, by (2.5), isomorphic

to the nonnegative reals (plus ). This completes the proof of the theorem.
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