THE CONSTRUCTION OF AUTOMORPHIC FORMS FROM
THE DERIVATIVES OF GIVEN FORMS

R. A. Rankin

1. I have recently [4] given a method for constructing automorphic forms from the
derivatives of a given form, and have found a basis from which all such forms can be
obtained. I show here how this method can be applied when there is more than one
given form. '

Let T denote the bilinear transformation

_az+b _

“ezrd o 1%

and let $ be the half-plane Im z > 0. Let T be a given horocyclic group (see [3]),
and suppose that f,(z), f,(z), -+-, f,,(z) are m + 1 given meromorphic automorphic
forms of real or complex dimensions -k, -k,, ***, -k, With multiplier systems
Vos Vis *°*s Vi, and belonging to T' . We write this

fie {P’ ki’ Vi} (1 = 0, 1’ Ty m)-
We then have
£ W) = £(Tz) = vy(T) (cz + d) f,(z)

k.
for all Te I" and z € $. For nonintegral kj, (cz + d) * denotes a certain uniquely
determined root of cz + d. See, for example, [1]. We then have, as is shown in [4],

v
1) @) = v(T)s Y ¥ (%) i v = Do v = 2 ey 4 v - w11 g,
=0 ‘F
where
(2) S=cz+d, X =c/S.

Our object is to find those polynomials P(z) in the given functions f; and their
derivatives, which, for every T, k; and v;, are automorphic forms belonging to
{T, k', v'}, for some dimension -k' and multiplier system v' depending on the k;
and v; respectively. Each term in P(z) is of the form

garfe (1) () ™ (7)

where the coefficient g; is a product of the functions f; and their derivatives for
j # i. We say that such a term has degree r; and weight s; in f;, and total degree
r and total weight s, if
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(3) Qo+ O+ o+ @y =T5, O+ 20+ -+ va, = s,
and

m m
(4) r= Y ri, s = Y s;i.

i=0 i=0

K Pe{r, k', v'}, then P(w) is transformed, by means of (1), into a polynomial
in A from which all terms with positive powers of A cancel out. It follows that, for
each term in P(z), we must have

m rs m
(5) IITvit=v', 2s+ 3 kir;j = k'.
i i=0
Such a polynomial P(z) we call an admissible polynomial. 7
These conditions are satisfied, in particular, if vi=v, ki=k for i=0, 1, ---, m,
and if each term in P(z) has the same total degree r and total weight s. For we
then have

(6) v =v¥, k'=2s+kr.

As in [4] we define

i@ »
) hiy(@ = hy = T Cw® = Gy =¥i/hio,
1
where
-1
¥%,@) = ¢, = (<DY"" |hy; 2hj, 8hyy -+ (v -hh;, 1 vhy,
hjo  hy;  hyy - by 2 h
@) 0 hijo  hy; - hiy_-3 hj, 2
hj; hjp
hjp hj;

and we consider only points z of $§ at which the functions f; and their reciprocals
are holomorphic.

Then, for v> 2, c;, € {T, 2v, 1} and 4, € {T, v(k;+ 2), v{}, and Theorem 1 of
[4] states that, if k1 is not a nonposmve integer, 2 polynomial P;(z) in f; and its de-
rivatives (for fixed i) belong to {T, r;k; + 25, v; } if and only if P; is of the form

£f1-51Q; where Qi is a polynomial of welght s; in the functions Y52, ¥;i3, **-. This
theorem we now generalize. To do so we need to introduce m new functions

(9) wi(z) = wi = kefof - kifefi,  ti(z) = t; = wi/(Ef3),

for i=1, 2, ---, m. These are particular cases of the Wronskian functions defined in
formula (23) of [4]. It is easily verified that
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wie{T, ky+k;j+2,vou}, t;e{r,2 1}.

For example, if we take m =1, f, = G, and f, = Gg, where G, and G4 are the
Eisenstein series of dimensions -4 and -6 belonging to the full modular group and
having constant ferms unity in their Fourier expansions, we obtain

W, = 4G4G('3 - 6G6G; = -69127i A = 47i(GE - G)).
Here A is the modular discriminant.

2. We prove the following theorem.

THEOREM 1. Suppose that, for i =0, 1, -+, m, fi(z) € {T, ki, ;}, where the k;
ave not zevo and ave not positive integers, and that P(z) is an admissible polynomial
in the functions f{; and their derivatives. Then P(z) e {T, k', v'}, wheve k' and v'
are defined by (5), if and only if P is a polynomial in the functions f;, ciy (u > 2)
and t;. This polynomial can be written as a polynomial in the functions f;, 1/f;
lPiIJ, (e 22) and Wwi. ;

Proof. Suppose that Pe {T', k', v'} and that 7 is a term of P(z) whose degrees
r;, weights s;, and total weight s satisfy (3), (4) and (5). Then .

r T Tr
T = £,08; 1o £ ¥

where T* is a product of powers of the quotients h; u/hio times a constant factor.
For u > 2, by (7) and (8),

1_11_11' - ﬁ-‘- C: %k
hjo ~ u T

where c;{‘u is a polynomial in the hiK/hig for k < u. By eliminating the hip_/ h;o
successively in this way, we express 7* as a polynomial in the functions c;y and
f;/fi (“Z 2;i=0, 1, ---, m), with constant coefficients. We now put

S fy ,
f_i- = F‘O ti+ klf_0 (i=1, 2, -, m)’

and in this way we express 7* as a polynomial of the form

n N f('] q
E p ra ’
=k

where p} is a polynomial in the c; (b>2;i-0,1, -, m) and t; (i=1, 2, :+-, m),

of total weight s -~ q. Here terms cia 5“, tBi are counted as having degrees zero and

weights Boyy, B respectively. Hence pg e{r, 2s - 2q, 1}, and so

n f' q
P(z) = 2 pq{f—z§ ,

q=0
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where pq is a polynomial in the fj, ¢j (k>2,0<i<m) and t; (1 <i<m), and
where pg € {T, k' - 2q, v'}. Each term of pq is of degree ri in the functions f; and
of total weight s - q, where the r; and s satisfy (5).

For T e T we have

v Pz) = Plw) = X {pgv' " 2T, + £/10} Y,
q=0

from which it follows that

> pq{(ko)\ + fi/fo)9 - (f:/fo)q} = 0.
q=1

This holds for all A = ¢/{cz + d). For fixed z €  there are infinitely many different
values of A corresponding to different T € T', and hence this equation is an identity
in . Taking X = -fy/(k,f,), we see that

n f' q
2 pq{f—° =0,
q=1 0

and so P(z) = p,; that is, P(z) is a polynomial in the functions f;, cj, (1> 2) and t;.
When expressed in terms of the functions fj, z,biu and w;, P(z) becomes a polynomial
in the functions f;, 1/f;, ¥;, and w;.

This completes the proof of the necessity of the conditions stated in the theorem;
that the conditions are sufficient is obvious since the functions f;, Ci gy and tj are
automorphic forms.

A similar but more complicated result holds when some or all of the k; are al-
lowed to be nonpositive integers. The last sentence of Theorem 1 remains true if,
for those values of i for which k; is a nonpositive integer, the functions ¥;, (> 2)
are replaced by £ gNi), l/ngi) and functions analogous to the functions 6,, ¢, X, de-
fined in [4] (formulae (15), (17), (18) and Theorem 3), where 2 < p < - kj= Nj - 1,

v > 2. This generalizes Theorem 3 of [4]. It may be noted that Theorem 3 of [4]
arises as a particular case of Theorem 1 of the present paper, when this theorem is
applied to the pair of automorphic forms f(z) and f(N)(z).

3. In this section we drop the suffix i from the symbols f; and ¥;,, since we re-
strict the discussion to the case where there is only one given form. In[4], the
homogeneous differential equation

(10) 13(AN + 10AZA'AM - 24n(AN)2A " - 203 A(V) £ 3A2(AM2 = 0

for the modular discriminant A = A(z) was obtained by applying Theorem 1 of [4] to
f = A and using the fact that, in this case, Y, is a constant multiple of ¥2. I am in-
debted to the referee for pointing out that the equation (10) was given by van der Pol
(see formula (57) on p. 282 of [2]).

Suppose now, more generally, that T' is a zonal (see [3]) horocyclic group and
that f € {I‘ , k, v}, where f is an integral automorphic form having a zero of order
m at infinity (m > 0). Then we see from (8) that iy, is an integral form of
{1, v(k + 2), ¥}, with a zero of order at least vm at infinity (v > 2). Now let
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Ny = Nu(T, k, v, m) be the number of linearly independent integral forms of

{r, v(k + 2), v’} having zeros of order at least vm at infinity, and let () denote
the number of partitions of v in which each part is at least 2. Then

p(v) = p() - pv - 1),

where p(v) is the number of unrestricted partitions of v.
If v is sufficiently large so that
(11) ﬁ(V) > Nu:
then some linear combination of the p(v) different forms of { I', v(k + 2), v/}, which
can be formed by multiplying powers of the ¥, (v > 2), must vanish; this yields a

homogeneous differential equation for f of degree m, where n; is the least integer
v such that (11) holds.

For example, if T is the full modular group with v =°1, and
f(z) = A(z) G 12(2)

(with G, = 1), then we have nj, = 4, which yields (10). Similarly
m. = 8 for k=16, 18;
n, = 10 for k = 20, 22;
n, = 11 for k = 24;
ny = 12 for k = 26, 28;
n, = 13 for k = 30;
n = 14 for k = 32, 34, 36, 38.

For in these cases m =1 and

N, = [”—“‘-filo—)] +1if vk - 10) # 2 (mod 12),

N, = [”—(I‘T‘zl—o)] if v(k - 10) = 2 (mod 12).
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