THE CONSTRUCTION OF AUTOMORPHIC FORMS FROM THE DERIVATIVES OF GIVEN FORMS

R. A. Rankin

1. I have recently [4] given a method for constructing automorphic forms from the derivatives of a given form, and have found a basis from which all such forms can be obtained. I show here how this method can be applied when there is more than one given form.

Let T denote the bilinear transformation

$$w = \frac{az + b}{cz + d} = Tz,$$

and let $\mathfrak S$ be the half-plane Im z>0. Let Γ be a given horocyclic group (see [3]), and suppose that $f_0(z), f_1(z), \cdots, f_m(z)$ are m+1 given meromorphic automorphic forms of real or complex dimensions $-k_0, -k_1, \cdots, -k_m$, with multiplier systems v_0, v_1, \cdots, v_m , and belonging to Γ . We write this

$$f_i \in \{ \Gamma, k_i, v_i \}$$
 (i = 0, 1, ..., m).

We then have

$$f_i(w) = f_i(Tz) = v_i(T)(cz + d)^{k_i}f_i(z)$$
,

for all $T \in \Gamma$ and $z \in \mathfrak{H}$. For nonintegral k_i , $(cz + d)^{k_i}$ denotes a certain uniquely determined root of cz + d. See, for example, [1]. We then have, as is shown in [4],

(1)
$$f_i^{(\nu)}(w) = v_i(T) S_{i+2\nu}^{k_i+2\nu} \sum_{\mu=0}^{\nu} {\nu \choose \mu} (k_i + \nu - 1)(k_i + \nu - 2) \cdots (k_i + \nu - \mu) \lambda^{\mu} f_i^{(\nu-\mu)}(z),$$

where

(2)
$$S = cz + d, \quad \lambda = c/S.$$

Our object is to find those polynomials P(z) in the given functions f_i and their derivatives, which, for every Γ , k_i and v_i , are automorphic forms belonging to $\{\Gamma, k', v'\}$, for some dimension -k' and multiplier system v' depending on the k_i and v_i respectively. Each term in P(z) is of the form

$$g_{i}f_{i}^{\alpha_{0}}\left(f_{i}^{\prime}\right)^{\alpha_{1}}\left(f_{i}^{\prime\prime}\right)^{\alpha_{2}}\cdots\left(f_{i}^{(\nu)}\right)^{\alpha_{\nu}}$$
,

where the coefficient g_i is a product of the functions f_j and their derivatives for $j \neq i$. We say that such a term has degree r_i and weight s_i in f_i , and total degree r and total weight s, if

Received July 21, 1956.

(3)
$$\alpha_0 + \alpha_1 + \cdots + \alpha_{\nu} = r_i, \quad \alpha_1 + 2\alpha_2 + \cdots + \nu\alpha_{\nu} = s_i,$$

and

(4)
$$\mathbf{r} = \sum_{i=0}^{m} \mathbf{r}_{i}, \quad \mathbf{s} = \sum_{i=0}^{m} \mathbf{s}_{i}.$$

If $P \in \{\Gamma, k', v'\}$, then P(w) is transformed, by means of (1), into a polynomial in λ from which all terms with positive powers of λ cancel out. It follows that, for each term in P(z), we must have

(5)
$$\prod_{i=0}^{m} v_i^{r_i} = v', \quad 2s + \sum_{i=0}^{m} k_i r_i = k'.$$

Such a polynomial P(z) we call an admissible polynomial.

These conditions are satisfied, in particular, if $v_i = v$, $k_i = k$ for $i = 0, 1, \dots$, m, and if each term in P(z) has the same total degree r and total weight s. For we then have

(6)
$$v' = v^r, k' = 2s + kr.$$

As in [4] we define

(7)
$$h_{i\nu}(z) = h_{i\nu} = \frac{f_i^{(\nu)}}{\Gamma(k_i + \nu)\nu!}, \quad c_{i\nu}(z) = c_{i\nu} = \psi_i \nu/h_{i0}^{\nu},$$

where

$$\psi_{i\nu}(z) = \psi_{i\nu} = (-1)^{\nu-1} \begin{vmatrix} h_{i1} & 2h_{i2} & 3h_{i3} & \cdots & (\nu - h)h_{i,\nu-1} & \nu h_{i\nu} \\ h_{i0} & h_{i1} & h_{i2} & \cdots & h_{i,\nu-2} & h_{i,\nu-1} \\ 0 & h_{i0} & h_{i1} & \cdots & h_{i,\nu-3} & h_{i,\nu-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & h_{i1} & h_{i2} \\ 0 & 0 & 0 & \cdots & h_{i0} & h_{i1} \end{vmatrix}$$

$$(8)$$

and we consider only points z of $\,\mathfrak{D}\,$ at which the functions $f_{i}\,$ and their reciprocals are holomorphic.

Then, for $\nu \geqslant 2$, $c_{i\nu} \in \{\Gamma, 2\nu, 1\}$ and $\psi_{i\nu} \in \{\Gamma, \nu(k_i + 2), v_i^{\nu}\}$, and Theorem 1 of [4] states that, if k_i is not a nonpositive integer, a polynomial $P_i(z)$ in f_i and its derivatives (for fixed i) belong to $\{\Gamma, r_i k_i + 2s_i, v_i^{r_i}\}$ if and only if P_i is of the form $f_i^{r_i - s_i}Q_i$, where Q_i is a polynomial of weight s_i in the functions $\psi_{i2}, \psi_{i3}, \cdots$. This theorem we now generalize. To do so we need to introduce m new functions

(9)
$$w_i(z) = w_i = k_0 f_0 f_i' - k_i f_0' f_i, \quad t_i(z) = t_i = w_i / (f_0 f_i),$$

for $i=1, 2, \cdots$, m. These are particular cases of the Wronskian functions defined in formula (23) of [4]. It is easily verified that

$$w_i \in \{ \Gamma, k_0 + k_i + 2, v_0 v_i \}, t_i \in \{ \Gamma, 2, 1 \}.$$

For example, if we take m=1, $f_0=G_4$ and $f_1=G_6$, where G_4 and G_6 are the Eisenstein series of dimensions -4 and -6 belonging to the full modular group and having constant terms unity in their Fourier expansions, we obtain

$$W_1 = 4G_4G_6' - 6G_6G_4' = -6912\pi i \triangle = 4\pi i (G_6^2 - G_4^3)$$
.

Here \triangle is the modular discriminant.

2. We prove the following theorem.

THEOREM 1. Suppose that, for $i=0,1,\cdots,m,\ f_i(z)\in\{\Gamma,k_i,v_i\}$, where the k_i are not zero and are not positive integers, and that P(z) is an admissible polynomial in the functions f_i and their derivatives. Then $P(z)\in\{\Gamma,k',v'\}$, where k' and v' are defined by (5), if and only if P is a polynomial in the functions $f_i,\ c_{i\mu}\ (\mu\geq 2)$ and t_i . This polynomial can be written as a polynomial in the functions $f_i,\ 1/f_i,\ \psi_{i\mu}\ (\mu>2)$ and w_i .

Proof. Suppose that $P \in \{\Gamma, k', v'\}$ and that τ is a term of P(z) whose degrees r_i , weights s_i , and total weight s satisfy (3), (4) and (5). Then

$$\tau = f_0^{r_0} f_1^{r_1} \cdots f_m^{r_m} \tau^*,$$

where τ^* is a product of powers of the quotients $h_{i\mu}/h_{i0}$ times a constant factor. For $\mu>2$, by (7) and (8),

$$\frac{\mathbf{h_{i}}_{\mu}}{\mathbf{h_{i0}}} = \frac{\mathbf{c_{i}}_{\mu}}{\mu} + \mathbf{c_{i}}_{\mu}^{*},$$

where $c_{i\mu}^{*}$ is a polynomial in the $h_{i\kappa}/h_{i0}$ for $\kappa<\mu$. By eliminating the $h_{i\mu}/h_{i0}$ successively in this way, we express τ^{*} as a polynomial in the functions $c_{i\mu}$ and $f_{i}^{!}/f_{i}$ ($\mu \geq 2$; $i=0,1,\cdots$, m), with constant coefficients. We now put

$$\frac{f_i'}{f_i} = \frac{1}{k_0} \left\{ t_i + k_i \frac{f_0'}{f_0} \right\} \qquad (i = 1, 2, \dots, m),$$

and in this way we express τ^* as a polynomial of the form

$$\sum_{q=0}^{n} p_{q}^{*} \left\{ \frac{f_{0}^{\prime}}{f_{0}} \right\}^{q},$$

where p_q^* is a polynomial in the $c_{i\,\mu}$ ($\mu \geq 2$; i – 0, 1, …, m) and t_i (i = 1, 2, …, m), of total weight s – q. Here terms $c_{i\,\mu}^{\alpha_{i\,\mu}}$, t^{β_i} are counted as having degrees zero and weights $\mu\alpha_{i\,\mu}$, β_i respectively. Hence p_q^* ϵ { Γ , 2s – 2q, 1}, and so

$$P(z) = \sum_{q=0}^{n} p_{q} \left\{ \frac{f'_{0}}{f_{0}} \right\}^{q},$$

where p_q is a polynomial in the $f_i,\,c_{i\,\mu}$ $(\mu\geq 2,\,0\leq i\leq m)$ and t_i $(1\leq i\leq m),$ and where $p_q\in\{\,\Gamma\,,\,k^{\,\prime}\,-\,2q,\,v^{\,\prime}\,\}.$ Each term of p_q is of degree r_i in the functions f_i and of total weight s- q, where the r_i and s satisfy (5).

For $T \in \Gamma$ we have

$$v^{\text{!`}} \, S^{k^{\text{!`}}} \, \, P(z) \, = \, P(w) \, = \, \sum_{q=0}^{n} \, \big\{ p_{q} \, v^{\text{!`}} \, S^{k^{\text{!`}} - 2q} \big\} \big\{ S^{2}(k_{0} \lambda + \, f_{0}^{\text{!`}} / f_{0}) \big\}^{\, q} \, \, ,$$

from which it follows that

$$\sum_{q=1}^{n} p_{q} \{ (k_{0}\lambda + f_{0}^{i}/f_{0})^{q} - (f_{0}^{i}/f_{0})^{q} \} = 0.$$

This holds for all $\lambda = c/(cz+d)$. For fixed $z \in \mathfrak{H}$ there are infinitely many different values of λ corresponding to different $T \in \Gamma$, and hence this equation is an identity in λ . Taking $\lambda = -f_0'/(k_0f_0)$, we see that

$$\sum_{q=1}^{n} p_{q} \left\{ \frac{f_{0}'}{f_{0}} \right\}^{q} = 0,$$

and so $P(z) = p_0$; that is, P(z) is a polynomial in the functions f_i , $c_{i\mu}$ ($\mu \geq 2$) and t_i . When expressed in terms of the functions f_i , $\psi_{i\mu}$ and w_i , P(z) becomes a polynomial in the functions f_i , $1/f_i$, $\psi_{i\mu}$ and w_i .

This completes the proof of the necessity of the conditions stated in the theorem; that the conditions are sufficient is obvious since the functions f_i , $c_{i\,\mu}$ and t_i are automorphic forms.

A similar but more complicated result holds when some or all of the k_i are allowed to be nonpositive integers. The last sentence of Theorem 1 remains true if, for those values of i for which k_i is a nonpositive integer, the functions $\psi_{i\mu}$ $(\mu \geq 2)$ are replaced by $f_i^{(N_i)}, \, 1/f_i^{(N_i)}$ and functions analogous to the functions $\delta_2, \, \phi_\mu, \, \chi_\nu$ defined in [4] (formulae (15), (17), (18) and Theorem 3), where $2 \leq \mu \leq -k_i = N_i - 1,$ $\nu \geq 2$. This generalizes Theorem 3 of [4]. It may be noted that Theorem 3 of [4] arises as a particular case of Theorem 1 of the present paper, when this theorem is applied to the pair of automorphic forms f(z) and $f^{(N)}(z)$.

3. In this section we drop the suffix i from the symbols f_i and $\psi_{i\nu}$, since we restrict the discussion to the case where there is only one given form. In [4], the homogeneous differential equation

(10)
$$13(\triangle')^4 + 10\triangle^2\triangle'\triangle'' - 24\triangle(\triangle')^2\triangle'' - 2\triangle^3\triangle^{(iv)} + 3\triangle^2(\triangle'')^2 = 0$$

for the modular discriminant $\triangle = \triangle(z)$ was obtained by applying Theorem 1 of [4] to $f = \triangle$ and using the fact that, in this case, ψ_4 is a constant multiple of ψ_2^2 . I am indebted to the referee for pointing out that the equation (10) was given by van der Pol (see formula (57) on p. 282 of [2]).

Suppose now, more generally, that Γ is a zonal (see [3]) horocyclic group and that $f \in \{\Gamma, k, v\}$, where f is an integral automorphic form having a zero of order f at infinity (f > 0). Then we see from (8) that f is an integral form of f f v(f + 2), f with a zero of order at least f f at infinity (f > 2). Now let

 $N_{\nu}=N_{\nu}(\Gamma, k, v, m)$ be the number of linearly independent integral forms of $\{\Gamma, \nu(k+2), v^{\nu}\}$ having zeros of order at least νm at infinity, and let $\hat{p}(\nu)$ denote the number of partitions of ν in which each part is at least 2. Then

$$\hat{p}(\nu) = p(\nu) - p(\nu - 1),$$

where $p(\nu)$ is the number of unrestricted partitions of ν .

If ν is sufficiently large so that

$$\hat{p}(\nu) > N_{\nu},$$

then some linear combination of the $\hat{p}(\nu)$ different forms of $\{\Gamma, \nu(k+2), v^{\nu}\}$, which can be formed by multiplying powers of the ψ_{ν} ($\nu \geq 2$), must vanish; this yields a homogeneous differential equation for f of degree n_k , where n_k is the least integer ν such that (11) holds.

For example, if Γ is the full modular group with v = 1, and

$$f(z) = \triangle(z) G_{k-1,2}(z)$$

(with $G_0 = 1$), then we have $n_{12} = 4$, which yields (10). Similarly

$$n_k = 8$$
 for $k = 16, 18$;
 $n_k = 10$ for $k = 20, 22$;
 $n_k = 11$ for $k = 24$;
 $n_k = 12$ for $k = 26, 28$;
 $n_k = 13$ for $k = 30$;
 $n_k = 14$ for $k = 32, 34, 36, 38$.

For in these cases m = 1 and

$$N_{\nu} = \left[\frac{\nu(k-10)}{12}\right] + 1 \text{ if } \nu(k-10) \not\equiv 2 \pmod{12},$$

$$N_{\nu} = \left[\frac{\nu(k-10)}{12}\right] \text{ if } \nu(k-10) \equiv 2 \pmod{12}.$$

REFERENCES

- 1. H. Petersson, Theorie der automorphen Formen beliebiger reeller Dimension und ihre Darstellung durch eine neue Art Poincaréscher Reihen, Math. Ann. 103 (1930), 369-436.
- 2. B. van der Pol, On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications II, Nederl. Akad. Wetensch. Proc. Ser. A 54 = Indagationes Math. 13 (1951), 272-284.
- 3. R. A. Rankin, On horocyclic groups, Proc. London Math. Soc. (3) 4 (1954), 219-234.
- 4. ———, The construction of automorphic forms from the derivatives of a given form, Proc. Internat. Colloquium on Zeta Functions, Bombay, 1956.

The University, Glasgow