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Determinant Functors on Exact Categories
and Their Extensions to Categories
of Bounded Complexes

FinN F. KNUDSEN

Introduction

In this paper | revisit a theme unsatisfactorily treated in [KM]. The methods used
here are more natural and more general. The theorem we prove was suggested to
me by Grothendieck in a letter dated May 19, 1973 (see Appendix B), and it states
that the category of determinants on the derived category of an exact category is
equivalent via restriction to the category of determinants on the exact category
itself.

Here is how the problem comes about [KM]. Consider the following category.
The objects are bounded complexes of locally free finite quasi-coherent sheaves
of Ox-modules on a fixed scheme (sit®¥) The morphism MofA, B) of two
such complexes is the group of global sections of the sheaf of germs of homo-
topy classes of homomorphisms fronto B. If we assign to every complex the
invertible sheaf

max max -1
f(A) — <® /\ A2i) ® <® /\ A2i+l> ,
i€eZ i€eZ
then the problem is to assign to every quasi-isomorphiseMor(A, B) an iso-
morphismf(a): f(A) — f(B) insuch away thaf becomes a functor and such
that f = A" in case of a complex consisting of a single locally free sheaf sup-
ported in degree 0. The existence of suchfafollows immediately from the
theorem. The theorem is quite general and depends (a) on certain properties of
projective modules over eommutativaing and short exact sequences of such,
and (b) on certain properties of tensor products of modules of rank 1.

The appropriate notions are that of an exact category (see [Q, Sec. 2]) and that
of a commutative Picard category. The reader not familiar with the notion of an
exact category is advised to have in mind the category of finitely genepated
jectivemodules over a commutative ring, where exact sequences are what they
are. An admissible monomorphism is an injection whose cokernel is projective,
and similarly an admissible epimorphism is a surjection with projective kernel. Of
course, in this particular case all surjections are admissible.
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408 FINN F. KNUDSEN

The axioms and some important results about commutative Picard categories
are given in Appendix A. In particular we find the notion of iamerse structure
(see Definition A.16) quite useful. Such a structure always exists and is unique up
to unique isomorphism.

In Section 1 we define the notion of a determinant and state some fundamental
properties (cf. [D]).

In Section 2, we state and prove the main theorem. Even though we give an
explicit construction of the determinant of a quasi-isomorphism, the verification
of its properties is usually done by induction with respect to length of complexes.
The good complexes for induction are themissiblecomplexes (see Definition
2.13). Unfortunately, in some silly exact categories there are acyclic complexes
that are not admissible. Fortunately, by [TT,/A6b], for every acyclic complex
A there exists aplit exact admissible compleX supported in the same degrees
asA and such tha#t @ E is admissible and acyclic; this is sufficient for the proof
to go through. In the case of projective modules, every acyclic complex is admis-
sible (in fact, split-exact), so most readers should disregard this technicality.

In Section 3 we establish, under certain conditions, natural isomorphisms be-
tween (a) the determinant of a complex and that of its cohomology and (b) the
determinant of a filtered complex and that of tie term of its associated spectral
sequence.

In Section 4 we generalize the main theoremmoltideterminantsand prove
a result suggested to me by Pierre Deligne. In Section 5, we give a formula for
the determinant of a homotopy equivalence in termsgid@d pairof homotopies
(see Definition 5.4). It is then possible to compare our construction with that of
Ranicki [R].

I am happy to thank the Research Council of Norway for financial support, the
people of the Department of Mathematics at the University of Michigan for a very
good year of algebraic geometry, Pierre Deligne for having read an early version
of the manuscript and for suggesting to me to extend [D, 4.14] to complexes, and
to the referee, who did a very thorough job and made numerous improvements—
including the very naturals~free” proof of the crucial Proposition 2.25. Thanks
also to Kalevi Suominen for pointing out to me some weaknesses in the proof oc-
curring in [KM]. Special thanks to Lisa, who bears with me when | don’t always
listen.

1. Definitions and First Properties

In order to fix the definition of a determinant functor on an exact category, and on
the exact category of bounded complexes of an exact category, we will consider
certain special subcategories of exact categories (see also [Q; TT, Apx. A]).

DerFINITION 1.1.  Let€ be an exact category. We call a class w of morphisms an
SQ-classf it satisfies the following axioms.

SQ1 Every isomorphism is in.w

SQ2 If any two ofw, 8, andB« are in w then so is the third.
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SQ3 Ife’, @, anda” are morphisms of short exact sequences and if any two of
them are in wthen so is the third.

Let £ be an exact category, w a SQ-class of morphisms,faadPicard category.
We will use the following notation€,, is the subcategory determined by and
{€}w is the category of short exact sequences and morphism& Wehave three
functorsp’, p, p”: {E}w — Ew defined bypi(A' = A —s A”) = Al fori e
{,-, "}, and likewise for morphisms.

DEeFINITION 1.2.  Apredeterminany oné&,, with values inP consists of a functor
f1: Ew — P together with a natural isomorphisfa: fiop — fiop'® fiop”.

REMARK 1.3. For any 0-objecZ of £, the sequenc& — Z —» Z is a short
exact one. Applyingf, to this sequence givef(Z) the structure of a reduced
unit and so, by Remark A.&;3(Z) is a unit.

DEFINITION 1.4. A predeterminant on &, with values inP is adeterminantf
the following three conditions are fulfilled.

(i) Compatibility. For any objectd, if ¥ = (A = A —» 0) then the mor-
phismsf,(X) anda;i(o)(fl(A)) are inverse to each other:

85 0)(f1(A)

(if) Associativity. For any short exact sequence of short exact sequences and
for any exact square (as in the left-hand diagram), the right-hand diagram is com-
mutative:

A—— B —» (C’

H I I AC) —L—— e as)
A—— C —» B’ f{ l1®f2

i i l AB)® A L2 f1(A) @ AC) @ fiA).
0—— A/ —— A/

(iii) Commutativity.The two short exact sequences on the left give rise to the
commutative diagram on the right:

1
21=A>i>A®Bﬂ»B, fiA®B) ——— £(A® B)
fZ(El)J J{fz(zl)
0
(1) (10)

So=B—2 A0B 2% A f(A)® fAiB) —— fu(B)® filA).
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ProprosITION 1.5.

(@) If «: A — B is anisomorphism, then

Ro(fa(AS B=0)) =[fi(@)]*
and
Lo(f20= 45 B) = fie).

(b) If we consider€,, as an AC(associative and commutatjveensor category
with @ as its tensor functor and consider the isomorph(s?rf;): A®B —
B & A for its commutation, then the functgy together with the natural iso-
morphismf,: f1(A & B) — fi(A) ® fi(B) makes the pairf1, fo an AC
tensor functor of AC tensor categories.

(c) For any A, we havefi(—14) = e(f1(A)) considered as an automorphism
of 1.

Proof. The proofs of (a) and (b) follow directly from functoriality, compatibility,
and commutativity. Now (c) follows from (b) and the commutative diagram

() 0, |
A.

A—Y5 ApA —5

, Lo

(1) 1-1)

A— APA ——
DErFINITION 1.6. By anadmissibléfiltration we shall mean a finite sequence of
admissible monomorphisms9 A% »— Al'»— ... »— A" = C.
fOo = A%— Als— ... 5 A" = Cand 0 = A0+ AT

— A" = C’ are admissible filtrations angd: C — C’ is a morphism, then
we will say thato respectshe filtrations if the induced maps’ — C’ factor
throughA’’.

O

The proofs of the next two propositions are outlined in [ D]. Actually, he first proves
Corollary1.10 andhen Proposition 1.9 by induction. The next proposition follows
from associativity by induction.

ProposiTION 1.7. Let0 = A° = Al>— ... »— A" = C be an admissible
filtration, and letA’"~! ~— A’ —» C' be short exact sequences&n Then, by
repeated use of, we can construct an isomorphisfi(C) — @'_; f1(C").

Moreover, if 0 = A% At ... = A" = C’ is an admissible fil-
tration, A'"~1 = A’" —» C’' are short exact sequences, aads a morphism
C — C’ that respects the filtrations and inducasmorphismsx’: C! — C’!
for eachi (i < 1 < n), thena is aw-morphism and the following diagram is
commutative
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AC) — 2 fcn

J/ ®;1=1f1(01i) n J(

® A(CT) — 2 & fi(CT).
i=1 =1

l

DEFINITION 1.8.  We call two filtrations 0= A° = Al>— ... > A" = F
and 0= B® »— B'+— ... »— B” = F compatibleif the lattice generated by
thei(A)s and the(B)s in the Gabriel-Quillen embeddirig £ — A is admissi-
ble (see [G]).

ProposITION 1.9. LetO = A% »— A'»— ... == A" = Fand0 = BY »—
Bl »— ... = B" = F be compatible filtrations. LeA’"1 > A’ — C’ and
B/~1+— B/ —» DJ be short exact sequences and, for eadnd j, let

BT+ (A'NB)) .. AT+ (B/NAY
Bi~t+ (AN BJ) A=t (BI71N AY)

be the butterfly isomorphisms. Then thié/ are the successive quotients of the
two extreme admissible filtrations

0y -+ B 14+ A NB)»— BT+ (A'NB)— - — C,
0 — - = AT 4 (B nAY = AT 4 (BT NAY) — - — C,

and the following diagram is commutative

® A(CT) ——— A(F) — @ (D)

N R

® ® fA(EM) ® ® f(E).

i=1j=1 j=1i=1

CoroLLarYy 1.10. For any exact square as shown in the first diagram, the second
diagram is commutative

A/> 5 BI 5 C/

[

A—— B —» C

A

A”> 5 BH N C//;
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f1(A) ® f1(C) — f1(A) ® fi(A") ® f1(C) ® f1(C")

I

fi(B) 1oyl

|

fi(B) ® fi(B") — fi(A) ® fu(C) ® fr(A") ® f1(C").

Proof. Since exact categories are closed under extensions, the two filtrations
A’ — B’ »— B and A’ ¥— A »— B are compatible. The extremal filtrations
areA’ — B’ — A+ B’ »— BandA’ — A »— A+ B’ »— B, with succes-

sive quotientsA’, C’, A”, C” andA’, A”, C’, C”, respectively. O

DErINITION 1.11.  Amorphismof determinants;: f — g is a natural isomor-
phismg: f1 — gisuchthat, foreveryshortexactsequehce A’ ~— A —» A”,
the following diagram is commutative:

A 225 ran e fan)

q(A) lq(A')ébq(A”)

() ,
g1(A) 275 g1(A) @ g1(A”).

DerFiNITION 1.12.  For anyleterminantd, g, 4, any morphisne: A — Bin &y,
and any short exact sequence= A’ ~— A —» A”, we define:

(f ® 8)1(A) = f1(A) ® g1(A),
(f ® g)i(a) = file) @ gi(a),
(f®2)202) =13 ¥ ®1 o (fa(¥) ® gu(X)),
¢(f. 8. M(A) = ¢(f1(A), g1(A), ha(A)),
v(f, &)(A) = ¥ (f1(A), g1(A)).

ProrosiTioN 1.13. The determinants on a categofy, with values in a Picard
category P, together with morphisms of determinants, form a category that we
denote bydet(Ey, P). The tensor product together wighand ¢ (as defined pre-
viously) induce ondet(€,,, P) the structure of a Picard category.

Proof. It follows from the general coherence theorem that{ay, ¢, ») and
¥(f, g) are morphisms of determinants and ¢bh)and ¢ are natural and sat-
isfy both the pentagonal and the hexagonal axiom. O

In the rest of this sectiorf, and&’ will denote exact categories, w and will de-
note SQ-classes of morphismsdrand€&’ respectively, and® and P’ will denote
Picard categories.
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DerINITION 1.14.  Wedenote by EXEy, £,/) the category of covariant exact func-
tors F: £ — & with the property tha#(«) € w’ for all « € w. Morphisms are
natural transformations. We will denote by ‘ethie class of natural transforma-
tionsn: F — G with the property thatj(A) € w’ for all objectsA of £.

ProposiTION 1.15.  The categorfx(Ew, &;,/) iS an exact category, anglv’ is an
SQ-class of morphisms.

Proof. We leave the proof to the reader. O
The next two propositions follow from the general coherence Theorem A.2.

ProrosiTiON 1.16. Composition induces a determinant, ttaitologicaldeter-
minant
*. EX(SW, g\/N/)eW/ — H0m®(det(5\/N,, P), det(gw, P)).

ProrosiTioN 1.17. Composition induces an AC tensor functor
. Hom®(P’, P) - Hom®(det(&, P’), det(Ey, P)).

CoroLLARY 1.18. Any inverse structure on P pulls back via the tautological
functor x: Hom®(P, P) — Hom®(det(Ey, P), det(€y, P)) to an inverse struc-
ture o,.. Because there can be no confusion, we will drop the asterisks in the in-
duced inverse structure. We then have

(f1(A) = (f7)1(A) = (f1(A))7,
(f)2(2) = (f7)2(2) = 02(f(A), f1(A")) o (f2(A))”,
03(f)(A) = 03.(f)(A) = 03(f1(A)).

REMARK 1.19. Leti: &€ — A denote the Gabriel-Quillen embedding&fnto
the abelian categod. The functori is fully faithful, exact, and reflects exactness
(see also [TT,A.7]).

We consider the full subcategoé/ of A of objectsA with the property that
there exists an objedt’ € £ such thatd @ A’ € £. The categorg’ might be called
thestabilizationof £, and we leave it to the reader to check thais an exact cat-
egory. Moreoverg’ satisfies [TT, Axiom A.1.5], which states that any morphism
t for which there exists a morphismsuch thats = 1 is an admissible epimor-
phism. It follows from [TT, A7.16b] that every morphism ifi’ that is also an
epimorphism in4 is admissible.

If wis an SQ-class of morphisms, then we say that a morphism — B be-
longs to the class Wif there exists an objedt in £ such that (a) bottt & E and
A’ @ E belong to€ and (b) the morphism @ 1 belongs to wWe leave it to the
reader to check that # belongs to Wwthena & 1z belongs to w for all sucte
and that the class \is an SQ-class of morphisms. Moreover, the restriction func-
tor det(&),,, P) — det(Ey, P) is an equivalence of categories. For this reason we
will assume from now on that every morphismérthat is an epimorphism int
is admissible.
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2. The Main Theorem

In this section,£ is an exact category and(€) denotes the exact category of
bounded complexes of objects§nWe considef as the full subcategory of(€)
consisting of complexes supported only in degre® @s a Picard category with
a fixed inverse structure. All determinants considered will have valuesinso
for short we will write det€,,) instead of det€,, P).

DErFINITION 2.1. A quasi-isomorphisnin C(£) is a morphism whose image in
C(A) induces an isomorphism in cohomology. The morphism class of quasi-
isomorphisms (resp., isomorphisms) will be denoted by qis (resp., iso0).

REMARK 2.2. By the long exact sequence in cohomology associated to a short
exact sequence, it follows that gis is an SQ-class of morphisms.

We now state the main theorem. It is a consequence of Lemma 2.22 and Proposi-
tion 2.25.

THEOREM 2.3 (Main Theorem). The restriction functodet(C(£)is) — det(Eiso)
is an equivalence and an AC tensor functor.

DEerFINITION 2.4. A complexA isacyclicif i(A) has vanishing cohomology iA.

DEFINITION 2.5. For any compleXd, we denote by [1] = TA the complex de-
fined byTA' = Ai*landdy4, = —d,. Note thatT is an exact functor.

DEFINITION 2.6. Leta: A — B be a morphism of complexes. Theapping
coneof « is the complex @), given by

C(a)l — Bi o) Ai+l,

. di i+1
de()' = ( 0 _adi+1>~

ProrosiTION 2.7. We have the short exact sequences

(é) (01)

B »—— C(a) —» A[1] @
and
1
O
Ar—2 . c(-1, @ B) —>*% Cl), @
and a commutative diagram
(¢)
0
Ar—2 C(-14) ® B 3)

o l(OOI)

B.
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CoroLLARY 2.8. A morphismw is a quasi-isomorphism if and only if its map-
ping coneC(«) is acyclic, and in this case both the horizontal and the vertical
morphisms in diagrani3) are quasi-isomorphisms.

DErFINITION 2.9. For any compled, we denote byd ® I the mapping cone of
the antidiagonal
-A=(Y)A—>A@A,

and bydo andd; we denote the maps

1 0

ao=<o>:A—>A®I and 81=(1):A—>A®I.
0 0

DEeFINITION 2.10. Two morphismsg, a3: A — B will be called homotopic,

and a map:: TA — B will be called ahomotopyfrom «g to ay, if ¢g — a1 =
dh + hd.

ProprosiTION 2.11.

(@) The mapsum= (110): A® I — A is a quasi-isomorphism, and it is an
equalizer of the homotopic quasi-isomorphisigsnd 9;.

(b) If h: TA — B is a homotopy fronag to o1 and if 4 = («o, a1, ) then, for
all i € {0, 1}, the following diagram is a commutative diagram of morphisms
of complexes

CoroLLARY 2.12. Given a functorf from C(£);s to a categoryQ all of whose
morphisms are invertible, it follows that factors throughD(€)qis. This means
that f(ag) = f(ay) for any two homotopic quasi-isomorphismgand o;.

Proof. Since sundy = sumoy, it follows t3y cancellatign thaif (dg) = f(91).
Hencef(ao) = f(hdo) = f(h) f(d0) = f(h) f(31) = f(hd1) = f(a1). U

DEerFINITION 2.13.  We will say that a complex is admissibléf the Z' andB’ are
isomorphic to objects of. By Remarkl.19, every agclic complex is admissible.

DEeFINITION 2.14. For any admissible complex the complexz = Z(A) is the
complex given byZ’ = ker(d}) andd}, = 0 for all i. We define similarly the
complexB = B(A), and we have the short exact sequedce— A Ly B[1].

DErINITION 2.15.  We will say that a morphism in(€) is admissibldf its map-
ping cone is admissible. By Rematl9, everyguasi-isomorphism is admissible.
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DEFINITION 2.16. A complexA is calledsplit exactif there exists an isomor-
phismA — C(1z) that makes the following diagram commutative:

z A Z[]
H

I

Z—— C(1ly) —» Z[1].

DerFiNITION 2.17 (The Brutal Truncation). For every integeand every com-
plex A, we denote by =*A thekth upper brutally truncatecdsubcomplex ofA. It

is the complex that remains when the objects in degjeesk are killed. Simi-
larly, we denote by <A thekth lower brutally truncatedjuotient complex ofd.
Itis the complex that remains when the objects in degjees are killed. We de-
note byX; (A) thekth brutal truncation sequencef A, the short exact sequence
0ZkA — A —» o<FA.

DerFiNITION 2.18 (The Good Truncation). For every integeand every admis-
sible complexA, we denote byy <FA the kth lower well truncatedsubcomplex
of A. Itis the complex that remains when the objects in degyeesk are killed
and A1 is replaced by kar/*~1). Similarly, we denote by =*A the kth upper
well truncatedquotient complex ofd. It is the complex obtained by augmenting
o=kA with the map inid“~1) — A*. We denote by, (A)thekth good truncation
sequencef A, the short exact sequenge“A — A —» y=FA.

LemMma 2.19. Thebrutaltruncationisafunctar,: C(£) — {C(£)}, anditmaps
isomorphisms to isomorphisms. The good truncation is a furlgto€(& )24™ —
{C(£)29M and it maps quasi-isomorphisms to quasi-isomorphigiNste: “adm”
denotes admissible.)

DEeFINITION 2.20. AnS-determinanbn &, is a sequencef,, i,).cz, where
eachf, is a determinant o0&, and eachu, is an isomorphism of determinants
fn ® fnfl -1

DerINITION 2.21. A morphism of S-determinantg: (f,, n.,) — (f,, u))

is a sequence of morphisms of determinaqs f, — f, such thatu, =

w, o (gn ® g,—1) for all n € Z. We denote the category of S-determinants by
Sdet(€y).

LemmMma 2.22. The forgetful functoSdet&,,) — det(€y) is an equivalence.

Proof. For any determinanf on&,,, we defineS°(f) = (f,, i) by
f° for n odd,
Ju= { f  for n even;
ooy for n odd,
Hon = { o for n even.
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It follows from Propositiorl.17thatS°( f) is an S-determinant, and the categories
are equivalent by Remark.A7. O

DEFINITION 2.23.  For any determinanton C&ys, we define the S-determinant

T'(f) = (fu, tn) ONEiso by fu(A) = f(A[=n]), fu(E) = f(Z[-n]), andu,(A)
via

FALD) ® F(A[-n +1) 22 FCA) L% (0 — 1

Note thatf, corresponds to restrictingto complexes supported only in degree

DEFINITION 2.24. For any S-determinany,, u,) on Eise, We define the two
mapsg(fns /’Ln) = (g]_, gz) on ngis as fO||OWS

(a) Foracomplex, we defineg;(4) = @(f,)1(A") andg1(0) =
(b) For a short exact sequenke we defineg,(X) via

®fn(An) ®(fn)2(2”) ®(fn(A/n) ® fn(A//n)) — ®fn(A/n) ® ® ,ﬁi(A//n)'

(c) For an acyclic complex, we defineg:(0): g1(Q) — 1 via g of the short
exact sequencg(Q) — Q Ay TZ(Q) and the isomorphism

® n
® /(2 ® @ fu(Z'Y) — R (fu(Z") ® fra(2") 22201
(d) Foraquasi-isomorphismthatis an admissible epimorplisms A ~» B,
we definegi(«) as the composition

210)®1

21(4) 25 ¢1(0) ® g1(B) == 1® g1(B) —> g1(B).

(d*) For aquasi-isomorphism that is an admissible monomorpHisi#ts B —»
0, we defineg; as the inverse of the composition

21(B) =25 ¢1(4) ® 81(0) 229, 21(4) @1 —> gy(A).

(e) For an arbitrary quasi-isomorphism <, B, we use the factorization of
Proposition 2.74 »2 C(14) ® B —» B, and define
81(e) = g1(oa) ga(ex2).
(f) Foramorphismy,: (f,, un) — (f,, i), we defineg(q): g1 — g1 by
8(q)(A) = @ gu(A").

ProrosITION 2.25. The mapd* andg are functors, and they establish an equiv-
alence of categoriedet(C&yis) and Sde(Eiso).

We will prove the proposition through a series of lemmas.
LemMma 2.26. On the full exact subcategory of acyclic complexes, we have that

g is well-defined, is a determinant, and factors through tiggd subcategory
Unit(P) (see [S, 2.2.5.1]).
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Proof. We apply Propositiod.10 to the gact square

Z2'r—Z —> Z"

[ ] ]

Q/ >—> Q *» Q//
TZ' —— TZ —» TZ".
The lemma then follows because thg are morphisms of determinants. O

Lemma 2.27. For a composition of admissible epimorphistis®s B £» C,
we havegi(Ba) = g1(B)gi(e).

Proof. We apply Propositiori.10, Lemma 2.26, and Remark A.8 to the exact
square

Q' Q —»0

[ [ ]

O— A —» C

Lol

Q"—— B —» C. O
LemMa 2.28. For a composition of admissible monomorphistns®s B 2 C,
we havegi(Ba) = gi1(B)gi(@).
Proof. The dual construction of the previous proof. O

LemMma 2.29. The two possible definitions fgi on isomorphisms agree and are
given bygi(a) = Q(fu)(a").

Proof. This is Proposition 1.5(a) applied to tifg. O

Lemma 2.30. For two factorizationsA »2s € £+ B and A »*5 ¢ 2% B
with B = B"a”, we havegi(B)gi(a) = g1(B")g1(a”).

Proof. Since the two factorizations can be covered by the fiber productarid
C” over B and since fiber products with at least one epimorphism exists in exact
categories, we can reduce the lemma to the case of

c’.
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After applyingg, the right triangle commutes by Lemma 2.27. To see that the left

triangle is commutative, we apply Propositthi0,Lemma 2.26, and Remark A.8
to the exact square

0—— Q’ o’

L]

A— C —» Q

Il

A—— C" —» Q7. O

LemmMma 2.31. For a compositiorA LN RN C, g1(Ba) = g1(B)gi(a).

Proof. The lemma follows by Lemmas 2.29 and 2.27 applied to the commutative
diagram

100
010
1 001
(o) 000
o 00
A C(-1y)@®B——— C(-L)®C(-1z) @ C
00100
5 (00D 1 (o 001 2)
(0) 0000
B ’ C(-15) & C
h (00D
C
and Corollaryl.10applied to the exact square
C(-1}) =———=C(-1) ———» 0

I | I

C(-1ly) e Br—— C(-1Ly)dC(-1p)dC —» C(B)

i l |

B——m— C(-1p)dC —» C(B). O

LeEmMmaA 2.32. For any morphisny,: (f,, w,) — (f,. i,,), g(g) is a morphism
of determinantsgi, g2) — (g1, g5)- In fact, g is an AC tensor functor.

Proof. For any short exact sequenee= A’ — A —» A” we have, by general
coherence and since eaghis natural, a commutative diagram
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(%)
g1(A) =5 g1(A) ® ga(A”)

g(q)(A)J/ Jg(q)(A’)‘@g(q)(A”) ()

! gé(Z) i I / "
81(A) —— g1(A) ® g1(A7).

Consider a quasi-isomorphistit A — B. We need to prove that the following
diagram is commutative:

()
g1(4) = ¢1(B)

g(q)(A)J Jg(q)(B) (%)
e

, 8(@) ,
g1(A) —— gi(B).

When B is acyclic andA = 0, commutativity follows because eaeh) is a
morphism of determinants—and dually far acyclic andB = 0. This, to-
gether with Lemma 2.26, shows commutativity for all quasi-isomorphisms of
acyclic complexes. The diagram) then shows thafxx) is commutative for
guasi-isomorphisms that are admissible epimorphsms or monomorphisms; by
Lemma 2.31¢g(g) is a morphism of determinants. Thats an AC tensor functor
follows from general coherence. O

LemMma 2.33. The compositiofT* o g is the identity, and; is faithful.

Proof. Let (f,, u,) = (T" o g)(fu, a). FOr any objectA of £,
(f)1(A) = T*"(g1(A)) = g1(A[—n]) = (f)1(A).

Similarly, we see thatf,)’, = (f,)2. Hence by Proposition 1.5(a)f,)] = (fu)1
for all isomorphisms. Finally!, = u, because botll"* andg are AC tensor
functors.

Let g andg’ be determinants on(€)qs, and letg andg’ be two morphisms
g — g’ such thatl*(¢) = T'(q’). This means thag andq’ agree on all com-
plexes of length 1. By the brutal truncation and the condition of Definition 1.11 for
morphisms of determinants, it follows by induction with respect to length of com-
plexes thay = ¢’ on all complexes. O

CoRrOLLARY 2.34. BothT* andg are fully faithful.
LeMMA 2.35. There is an isomorphism of functas— g o 7.

Proof. Leth be adeterminanton@) g, letT° (k) = (f,, 1a), andlet(gs, g2) =
g(fn, ). Again we haveh (A) = gi1(A) for all complexes of length 1, and
hi(x) = gi(a) for all isomorphisms of such complexes. We use the brutal fil-
tration- - »— o2¥A »— o=*"1A »— ... »— A to construciy(A) = g(h)(A):
h1(A) — gi(A). It follows from Proposition 1.7 and general coherence that we
have commutative diagrams
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hi(@) ha(E) , ,
hi1(A) ——— hy(B) hi(A) ——— h1(A") ® hy(A")
q(A)j lqw) and q(A)J qu’)@qm”)

g1() g2(%) , ,
g1(A) —— g1(B) g1(A) — g1(A") ® g1(A")

for every isomorphisne: A — B and every short exact sequence
Y=A"— A —» A",
By definition of theu,, we have a commutative diagram

n(0) 225 ¢1(0)

h1(0)l J{gl(o)

11— 1

for every complexQ isomorphic to a complex of the form(C,), whereA is a
complex of length 1. This in particular includes all acyclic complexes of length 2.
Using good truncations, it follows by induction that the diagram just displayed
commutes for all acyclic complexa3, and this proves that = ¢ (k) is a mor-
phism of determinants. Thatis natural follows from Corollary 2.34. This proves
the lastlemma. Hence Proposition 2.25 and thus the main theorem are praved.

DErFINITION 2.36. In the rest of the paper we will denote the composition of the
functorsS” andg by C7 = g o §7: det(€iso) — det(CEyis).

3. Determinants, Homology, and Spectral Sequences

In this section,f is a determinant on €);s with values in a Picard categos.
We denote the restriction gf to £is, by f as well.

DeriniTION 3.1, For any admissible complex, we denote byC(i4) the map-
ping cone of the monomorphism: B(A) — Z(A). The morphisnt(A) is the
unique isomorphism that makes the following diagram commutative:

f(A) —— f(Z(A)) ® f(TB(A))

J/C(A)

f(Cla) — f(Z(A) ® f(TB(A)).

For any quasi-isomorphism: A — B of admissible complexes, we denote by
c(a) the induced morphisma'(i4) — C(ig), and we define the assignment=

(g1, g2) on the subcategory of admissible complexes as follows. For any short ex-
act sequenc®& = A’ ~— A —» A” of admissible complexes,
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g1(A) = f1(C(in)),
gi(@) = filc(a)),
22(2) = fa(c(A) ® c(A") o fo(£) o c(A) "

If H(A) isin C(£), we have a quasi-isomorphisfi(i,) — H(A) and we define
h(A) to be the compositiorf (A) — g(A) — f(H(A)).

ProrosiTioN 3.2. Except for the possibility that the admissible complex is not
an exact category, the paiig, g2) is a determinant and more importantlyis a
morphism of determinants.

Proof. By definition, ¢ satisfies the condition of Definition 1.11, so we need only
prove that is natural. We prove this by induction with respect to length. If a com-
plex A is of length 1 or of length 2 and if the differentiéls a monomorphism, then

A andC(i,) are naturally isomorphic and so there is nothing to prove ALle¢ an
admissible complex. Then, by the good filtration, we have a short exact sequence.
Letx = A’ — A —» A” of admissible complexes such that either (a) béth
andA” are strictly shorterthaa or (b) A is of length 2, A’ is of length 2 with the dif-
ferential a monomorphism, amt!’ is of length 1. For such a short exact sequence,
the sequenceB(A’) — Z(A) —» Z(A”) andB(A’) — B(A) —» B(A”) are

also short exact. Hence so is the sequen@e) = C(ia) > C(ig) —» C(iar),

and it follows from Corollaryl.10thatg,(X) = f2(C(X)). Leta: A — B be a
guasi-isomorphism of admissible complexes and consider the following diagram,
whereA’ = y<FA, B’ = y<¥B, A” = y=*A, andB” = y='B.

fA)® f(A") g(A) ® g(A")
) / f@hef@") o /gwgm“)
g
fl@) J 8(a)
f(B")® f(B") g(B") ® g(B")
f(B) g(B)

We have just observed that the right square is commutative bega(s¢ —
f2(C(X)) in this case. The left square commutes by naturality',ofthe back
square commutes by induction, and the top and bottom squares commute by defi-
nition. Hence the front square is commutative. O

ProrosiTiON 3.3. Letwa,a’: A — B be two quasi-isomorphisms of admissible
complexes. Ifthe induced morphisms in cohomolé¢y) = H(a'), thenf (o) =
f(a"). Moreover, ifH(A) and H(B) are objects ofC(£), then the following dia-
gram is commutative
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fy —19
h(A)l ‘h(B)
S(H(a))

f(H(A)) —— f(H(B)).

Proof. By the previous proposition we may assume thatnd B are of the form
C(i4) andC(ig). In this case, ifH(«) = H(a") thena anda’ are homotopic, so
f(x) = f(a’) by Proposition 2.12. IfH(A) and H(B) are objects of ), the
result follows because we have a commutative diagram of quasi-isomorphisms

A——— B

HA) 2% HB). O

In the following we consider the category B of finitely decreasingly filtered
complexes and morphisms respecting the filtrations. We denotgtthfiltered
subcomplex of acomplex by F?(A). The following is a convenient way of view-
ing spectral sequences from the standpoint of determinants.
DEerINITION 3.4. For any filtered compleA, therth derived filtration DF, is
DFrn(Am) — Ker(Fn+WH’(Am) N Aerl/F"Jr(erl)r(Aerl)),
and its successive quotients are
DF""Y(A) »— DF"(A) — DG"(A).
ProrosiTION 3.5. In the abelian categoryl, we have a canonical quasi-isomor-
phism
DG,(A) = @ DG'(A) — E,(A).
DerINITION 3.6.  For any filtered compleA, therth spectral filtrationSF, is
DE"™™/2amy for n —m even,
SFrn(Am) —
DFE 72 Amy - for m — n odd,
and its successive quotients are
SF"Y(A) »— SE"(A) —» SG(A).
ProposiTION 3.7.  The induced differentialg™™ : SG"(A™) — SG"(A™*1) sat-
isfyd"” = 0 whenn — m is even, and/""" is a monomorphism when— m is

odd. InA we have
Ef’q — Hl‘l+2rr1(SG:l(A))’

where the integerg, ¢, m, andn are related by
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(1)=(:"0 5)(0)

By the property of the differentials, it follows that if theh spectral filtration is
admissible then so are the complexXes’(A).

ProrosiTioN 3.8. Leta,a’: A — B be two morphisms of filtered complexes
such that the induced morphisifis(e) andE, («") are quasi-isomorphisms. Then
f(a) = f(a') if either:
(a) therthderived filtration is admissible . (A) and E, (B) are objects ofC(£),
and f(E,(«)) = f(E,(a')); or
(b) the (r + 1th spectral filtration is admissible and the induced morphisms in
cohomologyE, 1(a) = E,a(a’).
If the rth derived filtration is admissible and,(A) and E,(B) are objects of
C(&), lete, (A) denote the compositiof(4) — &), (DG (A)) — f(E.(A)).
Then, ifE, («) is a quasi-isomorphism, the following diagram is commutative

) —22 s p()

er(A)‘ J{m(m

FE A L2 f(E,(B)).

Proof. This is just Propositions 1.7, 3.3, 3.5, and 3.7. O

4. Multifunctors and Multideterminants

Let I be a finite set, and Ig€;},c; and F be categories. If all thé€; are equal,
we consider an automorphissnof I to be also an automorphism pf;_; &; via
U(A), = A(T’l(i)'

iel

DErFINITION 4.1.  Anorder invariantfunctor S from [, & to F is a functor
S: 0(I) — Func([];., &, F), whereO(I) is the category with the total order-
ings ofI as objects and with one and only one morphism between any two objects.

Note that any functor ofi[,_, &; is order invariant by simply letting the functor
on O(I) be constant. Ip: S — T is a morphism of order invariant functors, we
have for any ordering< a morphismp(<): S(<) — T(=<), and this induces an
isomorphism Mo(S, T) ~ Mor(S(<), T(=<)). By abuse of notation we will write
S: [lic; & — Finstead ofS: O(I) — Func([],., & F) whenS is order
invariant.

DEFINITION 4.2. Suppose all th€; are equal. Asymmetricfunctor S from
[1;c; & to F consists of a functoS: [[,., & — F together with natural
isomorphismsys(o): S — S o o, for each automorphism of I, satisfying
Ys(o1)(A) = Ys(0)(t(A)) o ¥s(r)(A) for any pair of automorphisms andz.
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An order invariant functos is symmetric if eacl$ (<) is symmetric, and the fol-
lowing diagram is commutative for evesyand any pair of orderings; and<5:

S(=<2,<1)

S(<1) —_— S(<2)

‘/IS(<1>(U)J/ Jlﬂsuz)(tf)

S(<1)o0 — S(<2)oo0.
S(<2,<1)00

ProrosiTioN 4.3. If {£;};c; and F are additive categories, then any order in-
variant additive multifuncto: [],_., & — F has an extension to an order in-
variant additive multifunctoC(S) on the category of boundé€dr bounded below
or abovg complexe€(S): [],.,; C(&) — C(F). Infact,Cis a functor and, for
everyi € I, we have a natural isomorphism: Co T; — T o C. Moreover,C(S)
maps quasi-isomorphisms to quasi-isomorphisms, asdsfsymmetric then so
is C(S).

Proof. We use the sign conventions of SGA 4 (XVII, Sec. 1; there are corrections
in SGA 4;11, but we don’t need them here). We denotespy Z' the function that
takes the value 0 except atwhere it takes the value 1. K € Ob([],., C(&))

is a multicomplex and ik € Z’, thenA* € [],_, &; is the object whoséth com-
ponent is given by A*), = A% andd¥(A): A* — A*tei is the map that is the
identity on(A*); fori # j andd} on (A*),. Similarly, we havef*: A* — B*

for any morphismy: A — B. With the integral functions

k(< ki)=Y ki and A(<y<2.k) =) kik;,
Jj=i ifl-]i
Jj=2i
the functor C is defined by the equations
CS.(A)" =) 5.(Ah,

|k|=m

CS.(H" =Y S(fH,

|k|=m

N Z d*(CS-(A)),

[kl=m

d"(CS(A)) = Y (=D*RDs (df(A)),

iel

pi(S)(A) =Y (=1 D1 4,

k

CS(<2, <1)(A") = ) (=D 2720 5(<5, <1)(A).
k

We leave the verification to the reader. O
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The next definition is a formal definition of a multideterminant. Let&hbe exact
categories, and let wbe SQ-classes of morphisms. Informally, a multidetermi-
nant on the product categofy; ., & w, with values in a Picard catego® is a
multifunctor that is a determinant for every choice bf— 1 frozen variables and
such that we obtain a certain commutative diagram for every pair of indiges
J. To state the definition formally, we need some notation.

For any subsek C I, the isomorphism

EvK Fund(l_[&'s P> — Funct(l_[&, Funct( H &, P))

iel ieK iel\K
is given by

Al foriek,

K ’ " __ R
Ev®(S)(A")(A") = S(A), where A; _{A;.’ foriel\ K.

Let p’, p, andp” be the projection§€;} — &; as in Definition 1.2, and let

Eiw; fori ek,

Ex =[] &k where &x; z{{gi}{wi] foriel\ K.

iel

For any subset¢ ¢ K andL c I and fors  {-/, -”}¥\/, we have the two projec-
tionSp;(’J: &y — Exandpy: & — Euny given by

A; € Ob({&;}) foriel\ K,
(k. (A)i = p*P(A) eObE;) forieK \J,
A; € Ob(&) forieJ;

A,EOb({gl}) foriEJ\L,
(ps(A))i = | p(A) €OB(&) foriel\(LUJ),
A; € Ob(&) forielL.

DEFINITION 4.4. A multideterminantf on the category; = [];.; &iw, With
values inP consists of a multifunctoy : £&; — P, together with natural isomor-
phisms
Jxkrifopr— @ fopkopk,
SE{~/,~"}K\J
on Funct&;, P) for each pair of subsets C K, satisfying the following con-
ditions.

(a) For eachA € Ob([T,.x &) with |K| = |I| — 1, we have thal f1, f>) =
(EVK £(A), EVK £, k(A)) is a determinant.

(b) The isomorphisnyk ;(A) depends only ok (A), and for any subsets C
K c L andA € £; we have a commutative diagram
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fr,1(A) )
fopi(A) &  fopkopg (A)

SE{'/,'”}K\J

fr,i(A) ® . JfL,K(pi;.](A))
\

sel, )

® fopept (A & ( ®\fopLopz,K<p,;,<A>>).
1€l YK

uel, sel, 1KV

REMARK 4.5. Sincefk ;(A) depends only ok (A), it follows that fx , is de-
termined byf; ;\(x\s); hence it suffices to have (b) satisfied forallc K C L
with |J| = [I| — 2.

DEeFINITION 4.6. A morphismof multideterminant®: f — g is a natural iso-
morphism of multifunctors with the property that, for all subséts K and for
all A € Ob(&;), the following diagram is commutative:

Sk, 1(A)

f(psA) =25 @ f(px(py ,(A))
se(, KN
P(PJ(A))‘/ ‘/ (/@)K\Jp(pK(Pé’j(A)))
2K, (A) }
g(pi(A) 5 ®  g(px(ph (A))

sel, K\

We denote by d¢f[],., &iw,. P) the category of multideterminants.

iel
ProrosITION 4.7. The category of multideterminants is a Picard category, and
for any multideterminantf in det(&;, P) and anyK c I, EVK(f) is a multi-
determinant o [, x &iw, with values indet( [T, ., x &iw;» P). In fact, we have

an AC tensor functor and an isomorphism of categories

EvK: det(l_[é,«wi, P> - de(l_[&wi, det( 1_[ Eiw;» P))

iel iek iel\K

THEOREM 4.8. The restriction functor

de[(l_[ C¢&; qiss P) — da(ngi is0s P)

iel iel

is an equivalence and also an AC tensor functor.

Proof. We construct an inverse functoPC' depending upon an inverse structure

o on P and a total orderingc on 1. We proceed by induction with respect|id,

and we denote the restriction efto any subset of by < as well. By the main
Theorem 2.3, Theorem 4.8 holds fét = 1. Let j be the maximum member &f

By the induction hypothesis and Proposition 4.7, we have a commutative diagram
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Hcgiqis, P))

det(l_[ C&igis, P) _BY dez(cgjqis, det(
i i#j

’7\ J«
ce res
\
res del(gj isos det( l_[ Cgl qis, P))

ij
7
(C7 %), (resi\(j)«
\
det(l_[ gi iso» P) Ev_‘”} del(gj is0» det(l_[& [Slel} P)) ’
i i#j

where C~ is an inverse to rgs;;. Again by Theorem 2.3, Cis an inverse to
res, and since composition of AC tensor functors yields an AC tensor functor, the
theorem follows. O

REMARK 4.9. For any paif<s, <2) of total orderings, both €=t and C’-~2 are
canonically isomorphic because they are inverses to the restriction. Hence we may
view C? as a functor of order invariant multideterminants.

The following is a generalization of [D, 4.14] that can be thought of as a formula
for the determinant of the Kronecker product of two matrices in terms of the de-
terminants of those matrices.

Let{&;};c; andF be exact categories, and letv{v;};,c; and w be SQ-classes of
morphisms in&;};c; and.F, respectively. LefP;};c; andQ be Picard categories,
letS: [, & — F beamultiexactfunctor sendingvtgandletl': [, , — O
be a multi-AC tensor functor, by which we mean a multifunctor that is an AC ten-
sor functor for any/| — 1 frozen variables and that satisfies the commutativity of
the obvious diagrams for each pair of indices.

LEMMA 4.10. Let{&}ier, F, {Vilicr, W, {Pi}icr, O, S, andT be as just defined.
If f = {fi}ies andg are determinants o#&;,, and F,, with values inP; and Q,
respectively, then the compositionis S andT o f are both multideterminants.

DEerFINITION 4.11.  With notation as in Lemma 4.10, &, T, v, w)-determinant
isatriple(f, g, n), wheref = { fi};c; andg are determinants af} ,, andF,, with
values inP; and Q (respectively) and whene: ¢ oS — T o f is an isomorphism
of multideterminants. A morphism df, 7, v, w)-determinants frongf, g, n) to
(f’, g',n’) is a pair of natural transformatiogs f — f’ andr: g — g’ com-
muting withn andn’. If S andT are order invariant, we say thef, g, n) is order
invariant if  is an isomorphism of order invariant functors.Sland7 are sym-
metric, we say thatf, g, n) is symmetric ifyp is an isomorphism of symmetric
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functors and if all of thef; are the same determinant. We denote the category of
(S, T, v, w)-determinants by deés, 7, v, w).

LeEmMA 4.12. With notation as in Lemma 4.18et(S, T, v, w) is a Picard cate-
gory with tensor product defined componentwise.

COROLLARY 4.13. The restriction functor
det(C(S), T, qis, gis) — det(S, T, iso, iso)

is an equivalence and also an AC tensor functor. Moreavgrg, n) is symmetric
if and only if req f, g, n) is.

ExampLE 4.14 [D]. In this example we let = {1, 2} be an index set, the stan-
dard ordering is<, the permutatiow is the transpositionil, 2), and&; = £, =
F is the exact category of locally free sheaves on a schénk®r any such sheaf
A, we letn, be the rank function. The Picard categdty= P, = Q is the cat-
egory of ZV-graded invertible sheaves dh An object in this category is a pair
X = (X, ny), whereX is an invertible sheaf ol andny is acontinuousntegral
function onV.

The order invariant and symmetric biexact funcfor[ [, _, & — Fis given by

S.(A)=A1®A; and S-(A)=S_(0(A) = A, ® A;
for any objectd = (A1, A2) € Ob([],.; &), and the morphism
S, <(A): S_(A) — S.(A)
is given stalkwise by
S> <(A)(@1® az) = §-(0)(A)(a1® az) = a2 @ as,

wherea; anda, are germs of sections ¢f; andA,, respectively.

The classical determinant def: — P is defined by detd) = (A" A, n4),
and the composition detS is an order invariant, symmetric bi-determinant.

The order invariant and symmetric functer [[,_, Pi — Q is given by

T_(X) = (X2™2 @ XP™ ny, +ny,) and T.(X) = T_(o(X))
for any objectX = (X1, X2) € Ob([],, P;). and the morphism
T. (X): T-(X) = T-(X)

is given stalkwise by

- Xy nxy (”Xl)("Xz) nxq X
To (X Qx1; @ Q2 | =D 2027 Qx2; @ Qxy, ;.
j=1 i=1 i=1 j=1
The functorT.. is a bi-AC tensor functor via the morphisms
T-2X{, X{, X2): T-(X{ ® X{. X2) — T-(X{, X2) ® T-(X{, X2)
and
T (X1, X5, X5): To(X1, X5 ® XJ) — To (X1, X3) @ T- (X1, X3),
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given on stalks by

nx, Ny +nyy nx, ny; nx, Ny +nyy

®(x1]®x21)® ® xz,r—>®xlj®®x2,®®x ® Q xzi

i=ny; +1
and

anZJrnX% nx,

X x1,;® ®(xé,i ® xg,i)
j=1 i
nx, ny,+nxy

> (—Dmsms (3 >®xl,®®le® ® x1,®®x

J=nx,+1

The reader can check that the diagram

T_(X]® X[, X5) ®T- ()'(1’® X/, XY)

T-(X], '2) ® T-(X{, X}) ® T-(X{, X}) ® T-(X{, X})
T.(X|® X[, X} ® X}) lmm
T.(X}, X2)®T (X{, X}) ® T-(X{, X}) ® T-(X{, X}

T-(X{, X, ® X)) ® T- (X X;® X5)

commutes, and if. 1 = T, andT. » = T. 1, thenT. _ is a morphism of bi-
AC tensor functors. If we denote the functor ddif,_, & — [],., P: given by
det(A;, Ap) = (det(A1), det(A)) by det as well, then the compositidho det is
also an order invariant and symmetric bi-determinant. We defingeto S —
T o det stalkwise by

; ) n(A2) n(A1) j n(A1) n(A2)
1 1
n<(A) A ap; ®az ;| = Q@ Na,;®Q A az ;
@i, ))eJ(A) j=1 i=1 i=1 j=1

whereJ(A) isthe ordered sdil, ..., n(A1)} x {1, ..., n(A2)} (with lexicographi-
cal ordering) andy.. (A) = n-(o(A)). The diagram

deto S. ——— deto S..
'7<J/ ﬂ>l
T. odet ——— T. odet

commutes because the pullback by the transpositig) — J(o(A)) of the lexi-
cographical ordering oi(o (A)) differs from the lexicographical ordering diiA)
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by a permutation of signatu(el)(ngl) (") The reader may check thats a mor-
phism of order invariant and symmetric bi-determinants. Therefde¢ det )

is an order invariant and symmetr§, 7, iso, iso)-determinant, and by Corol-
lary 4.13(det det n) has an essentially unique extension to an order invariant and
symmetric(C(S), T, gis, gis)-determinant.

Next we take a quick look at contravariant functors.

DerINITION 4.15.  Let€ andF be exact categories. For any contravariant func-
tor S: £ — &, we define the extended contravariant functér: €& — CE& by
the formulas in SGA 4 (XVI11.1.5.1):

[CS(A)] = A7,
[CS@]* =a*,
[dCS(A)]k — (—1)k+1S(dA_(k+1)).

LemMma 4.16. If S is exact, then so i€S. If T denotes the translation functor
and if C(«) denotes the mapping cone of the morphisrthen there are canonical
isomorphisms of functors

TloCS~CSoT,
TC(CS(a)) ~ CS(C(x)).

CoroLLARY 4.17. The restriction functor on the Picard category of contravariant
(CS, T, iso, is0)-determinants is an equivalence and also an AC tensor functor.

ExampLE 4.18 [D]. Let€ = FandP = Q be as in Example 4.14, and let the
functorsS: £ — FandT: P — Q be given by

S(A) = AY, S(a) =a,
T(X,m) = (X", m), T(ax) =a.

ThensS is a contravariant exact functdr,is a contravariant AC tensor functor, and
we have a natural isomorphism of contravariant determinants

n: deto § — T odet.

Hence(det det n) is an (S, T, iso, iso)-determinant, and by Corollary 4.17 the
canonical isomorphism for finite locally free sheay®%'(4Y) — (A™ A)v ex-
tends uniquely to complexes.

5. The Homotopy Formula

In this section the term§, C(£), P, ando are as in Section 2, anfl = (f1, f2)
is a determinant ofiis, with values inP.
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DerFiNiTION 5.1.  For complexedl, B and a mapx: A — B, we have the fol-
lowing objects and maps i

A+ — @Azi’

A" = @ A2i+l;

1
ot =@Pa?: At - BY,
i

o =@Pa? Am - B,
i

LeEMMA 5.2. Any zero-homotopic complex is split exa@@ee Definition 2.16.)

Proof. Let i be a homotopy for the complek, and leth’ = h — dhd. We leave
it to the reader to verify that & dh’ + h'd andh’? = 0. Hence we may assume
thath? = 0. The mapsp’ = d'~*h' andq’ = hi*'d’ are projections, and the
isomorphismsA’ — Z! @ Z** are given by the two maps’ anddiq’. O

ProrosiTiON 5.3. Let A be a homotopically trivial complex, and létbe a
homotopy forA. Then the mapi~ + h~: A~ — AT is an isomorphism, the
map f(d~ +h™): f(A") — f(A") does not depend on the choicegfand
fdt+ht)y=(fd +h )™t

Proof. By Lemma 5.2 A is split exact. The compositio@d* +h*T)(d~+h™) =

1+ ATk~ is an isomorphism because s~ is nilpotent. Also - hTh™ respects

the natural filtration and induces the identity on each quotigit!; hence, by
Proposition 1.7,f(d* + h*) f(d~ + h™) = 1;4-). If k" is another homotopy

for A, thenh’ — h is amorphismTA — A. We leave it to the reader to check
that any morphism of split exact complexes is homotopic to zero, so there is a
maps: T?A — A such thath’ — h = ds — sd. The two mapsi~ + #'~ and
L—s")(d™ + h)@Q+ s7) induce the same map d¢r — gr A+, and since
f@—s5T) =1a+yand f(1+ s7) = Lpa-), the proposition follows from Propo-
sition 1.7. O

DEerFINITION 5.4, Consider a paifcx, 8) of morphisms of complexeg: A —
Bandg: B — A. A pair (h, k) of mapsh: TA — A andk: TB — B will
be called an(«, B)-good pair of homotopied (i) they are homotopies (i.e.,
dh + hd = 1— Ba anddk + kd = 1 — af) and (ii) there exists a map
I: T?A — B such thatka — ah + dl — Id = 0. Symmetrically, we say that
(k, h) is (B, a)-good if b — Bk + dm — md = O for somem: T?B — A. We
say that(h, k) is agood pairif (h, k) is («, 8)-good andk, k) is (8, «)-good.

REMARK 5.5. Note that the relations just described simply say that the maps

(/’; _lh> TC(@) — C(a) and (Z i”k) TC(B) — C(B)

are homotopies fo€ () andC(B), respectively.
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ProrosiTION 5.6. Leta: A — B and 8: B — A be a pair of morphisms of
complexes, and lét: TA — A andk: TB — B be a pair of homotopies for the
pair «, 8. If we defineh; = h + S(ka — ah) andk; = a(hB — Bk), then both
pairs i1, k andh, k1 are good.

Proof. The goodness afi, k is readily checked by setting= kah — k%« and
m = hBk — h’p — Bk2. O

ProposITION 5.7. Leta: A — B be a morphism, leB: B — A be a homotopy
inverse, and let:: TA — A andk: TB — B be an(«, B)-good pair of homo-
topies. Then the map

( at d- +k~

C At - + -
d+ 4 nt _p- ).A ®B — B "®A

is an isomorphism, the map
at d-+k\. + _ i _
f<d++h+ -8 >f(A ®B7)—> f(BT®A)

does not depend upon the choiceffh, andk, and

B d +hT\ at d k)
f d++k+ —a~ - f d++h+ _IB* .

Proof. Let/: T?2A — B be as in Definition 5.4. In order to simplify the compu-
tations we use the following commutative diagram, where the vertical arrows are
shuffling morphisms:

at+1t  dm 4k ( Bt —d +h7)
—@t+nty B~ dt+kt o 41”

AT ® B~ BT® A AT ® B~

l () G l (5 ) +(55) l )
C(a) Cla)* Cla).

Consider the three compositions
d « kK I\ /((d « k1)
o —a)t s —n o —a)t\p —n
(1 0\ | (kK*+IB kI—1IhY
=\o 1) "\ gk=—ng gi+nz)-
d « kK I\\ ((d « kK 0\\
0o —a)t\pg —n 0o —a)t\ g —n

(1 o\ k*+1B8  —dl—1hY
=lo 1) T\gk=ng 2 ’
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d a), (k O T(d « (kLYY
0 —d B —h 0 —d B —h
1 0\ k? kl —1d\
=\lo 1) "\gk=—ng pi+n2)-
All these matrices respect the fine admissible filtratiod'am) ~ given byC(a)~ =

... ®B% 1@ A% @ B¥+1@ ... and induce the identity on each successive quo-
tient. It follows from this and from Proposition 1.5(c) that

i P ) + d=+k \\
(o N =0 )

+ o4t d- +k- -
= s(f(A_))<f< _Zﬁ—:- h*) ﬂt >)

T —d +h
=8(f(A‘))f<d+ﬂ+k+ “ o ))

B B+ d=+h-
=Mat 4kt —@ +1)

_ s B* d=+h~
“I\dT +kt —a~ )
The proposition now follows from Propositions 5.3 and 5.6. O

DEFINITION 5.8. Leta: A — B be ahomotopy equivalence. We denotefigy)
the morphism that makes the following diagram commutative (feseany ho-
motopy inverse, and andk is any(«, 8)-good pair of homotopies):

f(A*®B) —— f(AH) ® f(B7)
f( df':,ﬁ "_;"_)J Jf(a)

fBT@®AT) —— f(BY)® f(A).

THEOREM 5.9 (The Homotopy Formula).Let C°(f) be theo-extension of the
determinantf to C(£)qis. Then, for any homotopy equivalenee A — B, the
following diagram is commutative

FAN® F(B)® f(A)® f(B™) —22s (AN @ fo(A™) —— CU(f)(A)

f(ot)®l®1J ch)(m

FBY® F(A)® fFA)®f7(B) —22y f(BY)® f7(B") —— C™(f)(B).

Proof. We start with the cas8 = 0. In this caseA is split exact and, assuming
h? = 0, we have the commutative diagram
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dT+ht
AT ——— A

GO I G
ztez —% 7ozt

This and the properties of the inverse structmr@ee Definition A.16) shows that
we have a commutative diagram

_ fdt+ntHel _ _
FAD® (A7) fAD®fHA) — 1

| J |

FZNSFZISF (22T — 220 f(Z)Y@ f(ZH® (2@ f(Z) —— 1

J J |

CNDCH(NHTZ) — > C(NDRC(NTZ) ——— 1,

and this proves the theorem in the cdse- 0. The cased = 0 follows by taking
inverses.

For the special complex (€4) we have that 6: C(1,) — 0 is a homotopy
equivalence with homotop ‘;8), and from the theorem in the cage= 0 we
obtain the commutative diagram

Co(f)(A) @ CU(f)TA) ———  C2(f)(CA)

J JC”(.Z’)(OR)

FUAD) ® f9AT) ® f(AT) ® foat) T, g

We also have the commutative diagrams

Co(f)(A) @ CU(f)(TA) —— C2(f)(C))

C”(f)(d)@ll l

C(f)(B) ® C(fH(TA) —— C(fH(C(a))
and
f(Cl)™) —— f(AY)Q f(B™)

Jf’(oL) JS(/"(A‘ N fle)

f(C@T) —— f(B)® f(A7).
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These diagrams, together with the theorem in the chse 0, show that the

right vertical composition from top to bottom in the following diagram is the map
C°(f)(0F) and that the theorem follows if the whole diagram is commutative. The
top and bottom squares commute by definition, and the middle square commutes
by Theorem A.22.

CUMHAQC(fH(TA) 1

o({2.4)

FAHRF(BT)Rf(AT)Rf(BT)®f(AT)® f(AT) M FAHRF(BT)®f(BT)Qf(AT)
fl@elelelel £(f(A7)) fle) @181

FB®FA)® FUAI®f(B)® F(A)® fUAT) oty F(BV)@ f(A)® f(B)® f7(AT)

a({2.3)

Co(F)(B)®C(f)(TA) CoUN(C (@) U

A. Picard Categories

We recall the definition of an associative and commutative (AC) tensor category
P (see also [Ke; L; S]).

DerFINITION A.1.  An AC tensor categon? = (P, ®, ¢, ¥) consists of a cate-
gory P, a bifunctor®: P x P — P, and two natural isomorphisms,

(XY, Z): (XQY)®Z—~> X®(Y®2Z),
Y(X, V) XQY > Y®X,

that satisfy the following two axioms.
Pentagonal AxiomThe following diagram is commutative:

(X®Y)®Z)®W

el X

XQUY®Z)H)QW XQY)R(ZQW)

X@YQZ)OW) -4 X (Y e (ZoW)).
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Hexagonal AxiomThe following diagram is commutative:

XeY)®Z

YRl
%

X®¥eZz) Yox)®z

lw L

YRZ)®X Y® (X ® Z)

¢
1oy

Y ((Z®X).

REMARK A.2. The general coherence theorem is proved in [L]. It states that
all diagrams involving just thes and theyys commute. This means that, if

and J are disjoint finite sets and {fX;};c;us is an indexed set of objects &,

then it makes sense to talk about the “obje®);_, X; and the unique isomor-
phism induced by andy: @, Xi ® Q;c, Xi = Qic;uy Xi. For this rea-

son we will often drop parentheses and names of these canonical morphisms in
diagrams.

DEerINITION A.3. An AC tensor functorh = (hy, ho): (P, Q, ¢, ¢¥') —
(P, ®, ¢, ¥) consists of a functoh,: P — P’ and a natural isomorphism
ho(X,Y): hi(X ® Y) — hi(X) ® hi(Y) that together make the following two
diagrams commutative:

h2(X®'Y,Z) ho(X,Y)®1
nXQY)QZ) —— h(XQ'Y)Qhi(Z) ————— (hi(X)®h1(Y))®hi(Z)

Jhl(d’/) J/(ﬁ

ha(X,YR®'Z) 1®h2(Y,Z) .
nXe Y Z) — X)) ®Z) ————— hi(X)Q(hi(Y)®h1(Z));

ho(X,Y
mX @ Y) —2X00 hyX @ hy(Y)

Jhlwﬂ) ﬂ/f

ha(Y,X)
m(r e X) 2505 h(x) @ (hy(Y).

DEerFINITION A.4.  If f = (f1, f2) andg = (g1, g2) are AC tensor functors from
an AC tensor categorp’ to an AC tensor categor®, then an AC natural trans-
formationn: fi — g1 is an AC natural transformation if the following diagram is
commutative:
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AXeY) 22X px) @ A

JH(XQ@’Y) Jn(’ﬂ@n(y)

, 2(Y.X)
g1(Y @ X) — g1(X) ® (g1(Y).

DEerFINITION A.5.  If f = (f1, f2) andg = (g1, g2) are AC tensor functors from
an AC tensor category’ to an AC tensor categor®, then we define the tensor
productf ® g as follows:

(f ® )1(X) = fa(X) ® gu(X),
(f®82X,Y) =1y @D o (f2(X,Y) ® g2(X, V).

ProprosITION A.6. The AC tensor functorsfrom an AC tensor categor§’ to an
AC tensor category’) and the AC natural transformations form a category that
we denote byHom®(P’, P). The tensor product together withand v induce on
Hom®(P’, P) the structure of an AC tensor category.

Proof. It follows from the general coherence theorem thatndy induce natu-
ral transformations that satisfy both the pentagonal and the hexagonal axiom.

DEFINITION A.7. A unit (U, 8%, %) in a commutative tensor catego(p, ®,
¢, V) consists of an objed! together with two natural isomorphisms,

sEX):U®X — X,
BX): XU - X,

that satisfy the following axioms.
Unit Axioms.The following three diagrams are commutative:

XU X®Y)®U XeU)RY
%‘X) %‘m) %‘)@1
Y(X.U) X;  sxrU) XQ®Y; ¢xUY) XQY.
%(X) 4?(1/) 40)
URX X® Y ®U) XQU®Y)

REMARK A.8. Itis shownin [S, 2.4.1] that the left diagram is redundant and that
(U, U) = lygy. For any two unitsy andU’, there is a unique isomorphism
y(U',U): U — U’ such that, for anyX, we haves’®(X) o 1® y (U, U) =
8R(X). An objectU together with an isomorphisié: U ® U — U is called a
reduced unit.In [S, 2.2.5.1] it is shown that, for any reduced u(iit §), there

is a unigue uni(U, 8%, §%) such thas(U) = §*(U) = §¥(U). Furthermore, if

J C I are finite sets and ifX;};c; is an indexed set of objects &f such that
(X;, X; ® X; — X;)is aunitfor eacly € J, then we have a unique “cancellation
isomorphism’®);.; Xi — &;c; s Xi-
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For any unitlU, End(U) acts vias on any object ofP. In particular, EndU)
acts onU and endows End/) with two operations. The naturality éfand the
functoriality of ® show that the two operations are identical, that Ehdis a
commutative monoid, and that A@f) is an abelian group.

CoroLLARY A.9. If P and P’ are AC tensor categories anfl has units, then
any assignment — u1(X), X — 8(X): ua(X)Qui(X) — u(X) ofaunitinP
to every objecK of P’ defines a unique unit, §: u ® u — u) in Hom®(P’, P).

DerFINITIONA.10. Arightinverseo an objec in atensor categork consists of
an objectt and anisomorphism: X ® Y — U with U a unit. We say that an ob-
jectX of a tensor category® isinvertibleif a right inverse exists. For any right in-
versep: X®Y — U, we have an associated leftinvegsa/ (Y, X): Y ® X — U.

REMARKA.11. Foran invertible object, we derive (via¥ andp) isomorphisms
of monoids EndX) ~ End(X ® Y) ~ End(U), and these isomorphisms do not
depend on the choice éfandp.

From now on we shall consider only tensor categories that have units, and we pick
a particular unitd, 8%, s%).

DeriNiTION A.12.  For any invertible objecX, the automorphisny: X @ X —
X ® X induces an automorphism of order 2 of Ahtthat we calle (X).

ProposiTioN A.13. The assignment — ¢(X) is a function[Inv P] — Aut(2)
from isomorphism classes of invertible object®dab the automorphism group of
the identity object. Furthermore(l) =lande(X ® Y) = e(X)e(Y).
ProrosiTIONA.14. If p: X ® Y — 1is an isomorphism, then the composition

R -1 -1 L
Y((S(Y)) Y®l(l®p) YQX®Y y®l1 XRY®Y p®1 1®Y8(Y) Y

is e(Y)ly.

Proof. The proof can be seen from the following diagram:

1
Y@X®Y ve XQY®Y

Yo (XQY) — b XY V' xereyY

Jl@p J{p@l Jp@l

Yol id 19y —=M ey

| | |

s(¥)1
Y Yy —— Y. O
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DerINITIONA.15.  APicard categorys an AC tensor category with units and with
the properties that every objectis invertible and every morphismis an isomorphism.

DEFINITION A.16. Aninverse structure = (o1, o2, o3) on a Picard category
consists of an AC tensor funct@r,, o,): P — P and an AC natural isomorphism
03:.1d®o; — 1

REMARK A.17. Note that an inverse structure is simply an inverse to the iden-
tity functor in Hon®(P, P). Any two inverse structures are canonically isomor-
phic, and an inverse structure is uniquely determined by a choice of an inverse
o3: X ® 01(X) — 1for every objecX of P.

The rest of this section will be devoted to a theorem that is an elaboration of Propo-
sition A.14. We fix a Picard catego® and an inverse structueeon P. We will
make use of the notatioki = oy(X) ando(X): X ® X — 1

DeriniTION A.18.  We will call a pair of object$X, Y} of P aninverse coupléf
X=YorY =X°.

DEerFINITION A.19. Let{X;};c; be afinite indexed set of objects Bf and letS =
{{s1, 51}, {52, 85}, ..., {5k, s/ }} be a set of pairwise disjoint pairs of indexeslof
such that each pafiX;,, X/} is aninverse couple. By the naturality of all the maps
generated by, v, ands, it follows thatS determines a unique isomorphism

®X,‘ —_—> ® Xl',
iel iel\US

which we call thecontractiondefined byS and denote (S).

Consider again a finite indexed géf; };c; of objects ofP, and letS = {{s1, 51},

{s2, 55}, ..., {sk, sp}yandT = {{r, 11}, {t2, 13}, ..., {1, 1;.}} be two disjoint sets of
pairwise disjoint pairs of indexes défsuch that, for each each paifX;,, X/} =

{X:;, X;/}is aninverse couple. From these conditions we can conclude that (i) the
graph with verticess U T and edges the sétx, y} | x Ny # @} is bipartite and

(ii) the connected components € P(S U T) are either cycles or chains. We let

Co be the set of cycleg}; the odd chains, and, = C5 U CI the even chains.
The set of even chains both starts and ends in eRloeiT’. To each chain or cycle

¢ € C, there corresponds a unique inverse coyplé:), X °(e)}.

DEerFINITION A.20. Let{X;};c;, S, andT be as before. We say that a one-to-one
mappingB: CI — CJ is aperfect matchingf, for each chaire € C7, the in-
verse couple correspondingdds the same as the inverse couple corresponding to
B(e). For any perfect matching, we define the mapping: 71\ |JS — I\UT

as follows. Ifi € I\ (LUSUJT) then we letB(i) = i; if i € x € 0 € Cy then

we letB (i) be the unique index e | Jo \ | JT; if i e x e e € C} then we letB (i)

be the unique index € |J B(e) \ |J T for which X; = X;. Sincef is one-to-one
and sinceX; = Xji), we obtain an isomorphism that we give the same name:

B
® Xi EE— ® X,‘.
iel\US iel\UT
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Since for any objeck we haves(X) = ¢(X?), it follows that the mag is well-
definedonS U T.

DEerINITION A.21.  We define on the connected componentsSaf T as follows:
e(x) foranyxecif ceC; andtic =i (mod 4,
ele) = .
1 otherwise.
Finally, we defines(S, T) = [ [, £(0).

THEOREM A.22. With notation as in Definitions A.20 and A.21, for any perfect
matchingg, the following diagram commutes:

& X;
iel
o(S) o(T)

R X (8. 1P R X;.

ie\Us ien\Jr

Proof. By naturality we can reduce the general case to three special ones. The
first case is wherC = Cy = {c} andfc = 2k. We can further assume that
I=1{12..2k X;=Xforl<i<k X;=Xfork+1<i<2k §S=
{1k}, {2, k+1}, ..., {k, 2k}}, andT = {{2, k}, {3, k+1}, ..., {k, 2k—1}, {1, 2k}}.
Let 7 be the permutation defined byi) =i + 1forl<i <k —1andt(k) =1
Thent determines an isomorphisiin(t) of the tensor product, and the following
diagram commutes:

KX, 7, RX;

iel iel

U(S)l o(T) U(S)‘/

e(c)
1— 1.
The other cases are that of a single odd chain and that of two even chains; we leave
the proof of these cases to the reader. O

B. Letter from A. Grothendieck

Buffalo
May 19, 1973
Dear Finn Knudsen,

Mumford sent me your notes on the determinant of perfect complexes, asking
me to write you some comments, if | have any. Indeed | do have several—except
for the obvious one that it is nice to have written up with details at leasftull
construction of that damn functor! | did not enter into the technicalities of your
construction, which perhaps will allow [me] to get a better comprehension of the
main result itself. The main trouble with your presentation seems to me that the
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bare statement of the main result looks rather mysterious and not “natural” at all,
despite your claim on page 3b! The mysterious character is of course included in
the alambicated sign of definitidnl. Here two types of criticism come to mind:

1) The sign looks complicated—are there not simpler sign conventions for get-
ting a nice theory of détand its variance? It seems to me that Deligne wrote down
a system that really did look natural at every stage—however he never wrote down
the explicit construction, as far as | know, and the chap who had undertaken to do
so gave up in disgust after a year or two of letting the question lie around and rot!

2) Even granted that your conventions are as simple or simpler than other ones,
the very fact that they are so alambicated and technical calls for an elucidation,
somewhat of the type you give on page 3b with these That is, one would
like to definefirst what any theory of détshould be (with conventions of sign as
yet unspecified), stating say something likeraqueness theorefor every given
system of signs chosen for canonical isomorphisms, and moreagacterizing
those systems of sign conventions which allow for an existence theorem—uwhich
will include the existence of at least one such system of signs. If one has good in-
sightinto all of them, it will be a matter of taste and convenience for the individual
mathematician (or the situation he has to deal with in any instance) to make his
own choice!

A second pointis the introduction of such evidently superfluous assumptions like
working on Noetherian (!) schemes, whereas the construction is clearly so general
as to work, say, over any ringed space and even ringed topos—and of course it will
be needed in this generality, for instance on analytic spaces, or on schemes with
groups of automorphisms acting, etc. It’s just a question of some slight extra care
in the writing up. Itis clear in any case that the question reduces to definihg det
for strictly perfect complexes (i.e. which are free of finite type in every degree),
and for homotopy classes of homotopy equivalences between such complexes, as
well as for short exact sequences of such complexes. (NB! One may wish to deal,
more generally, in the lllusie spirit, with strictly perfect complexes filtered—by
a filtration which is finite but possibly not of level two—by subcomplexes with
strictly perfect quotients.) Now this allows [us] to restate the whole thing in a more
general setting, which could make the theory more transparent, namely:

An additive category (say free (or projective) modules of finite type over a
commutative ringA) is given, as well as a catego® which is a groupoid, en-
dowed with an operatio® together with associativity, unity and commutativ-
ity data, satisfying the usual compatibilities (see for instance Saavedra’s thesis
in Springer’s lecture notes) and with all objects “invertible”. In the example for
C, we take forP invertible Z-graded modules ovet, with tensor product, the
commutative lawL. ® L’ ~ L’ ® L involving the Koszul sign—1)%" whered
andd’ are the degrees df and L’ respectively. We are interested in functors
(or a given functor)f: (C,isom) — P, together with a functorial isomorphism
f(M+N) >~ f(M)® f(N), compatible with the associativity and commutativ-
ity data (cf. Saavedra for this notion ofga); for sintance, in the example chosen,
we takef (M) = det'(M), the determinant module whesestands for the degree
which we put on the determinant module (our convention will be to put the degree
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equal to the rank af7, which will imply that our functor is indeed compatible with

the commutativity data). It can be shown (this was done by a North Vietnamese
mathematician, Sinh Hoang Xuan) that givefindeed any associative and com-
mutative®- category would do), there exists a universal way of sendit@P as
above—in the case considered, this category can be called the category of “sta-
ble” projective modules oved, and its main invariants (isomorphism classes of
objects, and automorphisms of the unit object) are just the invariatit$)kand
K1(A) of myself and Dieudonné-Bass; but this existence of a universal situation
is irrelevant for the technical problem to come. Now consider the catekjory
K?(C), of bounded complexes 6f up to homotopy. Itis a triangulated categbry,
and as such we can define the notion @b-dunctor fromK into P; it’s first of

all a ®-functor for the additive structure & (the internal composition ok be-

ing ®), but with moreover an extra structure ... giving isomorphisrod) ~
gM') ® g(M") whenever we have an exact trianglé — M — M" — M’.

This should of course satisfy various conditions, such as functoriality with respect
to the triangle, case of split exact triangl®f = M’ ® M”), case of the trian-

gle obtained by completing a quasi-isomorphigém — M, and possibly also a
condition of compatibility in the case of an exact triangle of triangles. (I guess
Deligne wrote down the reasonable axioms some day; it may be more convenient
to work with the filteredK-categories of lllusie, using of course finite filtrations
that split in the present context). Of course if we have sugh & — P, taking

its “restriction” toC we getanf : C — P. The beautiful statement to prove would
then be that conversely, every givgrextends, uniquely up to isomorphism, to a

g, in other terms, that the restriction functor from the category’sto the cate-

gory of f’sis an equivalence. The whole care, for such a statement, will of course
be to give the right set of “sign conventions” for defining admissie(that is,
compatibilities between the two or three structures on the sgtvf)'s—which in

fact all can be reduced to giving the isomorphisms attached to exact triangles). In
this general context, the group of sighs is replaced by the subgroup of elements
of order 2 of the group K P) = Aut(1p) (which is always a commutative group).
The “sign map’n — (—1)" from the group of degrees to the group of signs is re-
placed here by a canonical mag#)(= group of isomorphism classesB) —
K(P), associating to everk in P the symmetry automorphism &f® L (viewed

as coming from an automorphism of the unit object by tensoring Witk L).

What puzzles me a little is that apparently, you have not been able to gefine

T Be careful that one must take the term “triangulated category” in a slightly more precise sense than
in Verdier’s notes, the “category of triangles” being something more precise than a mere category of
distinguished diagrams iki. We have a functor from the former to the latter, but it is not even a faith-
ful one. (lllusie’s treatment in terms of filtered complexes, in his Springer lecture notes, is a good
reference.) It is only with respect to the category of “true” triangles that the isomorphisfi ~
g(M") ® g(M") will be functorial. For instance, if we have amtomorphisnof a triangle, inducing
u, u’, andu” uponM, M’, andM”, then functoriality is expressed by the relation@et detu’ detu”

(which implies, replacing by id + tu with ¢ an indeterminate, that Tr= Tru’ + Tru”), but this
relation may becoméalseif we are not careful to take automorphisms of true triangles instead of
taking mere automorphisms of diagrams.
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terms intrinsic to the triangulated categdty= K”(C)—the signs you introduce
in 1.1 do depend on the actual complexes, not only on their homotopy classes. |
guess the whole trouble comes from the order in which we write any given ten-
sor product inP, in describing de{ M) we had to choose such an order rather
arbitrarily, and it is passing from one such to another that involves “signs”.

If C is anabeliancategory, there should be a variant of the previous theory,
putting in relations on th@-functorsf : C — P together with the extra structure
of isomorphismsf(M) >~ f(M') ® f(M") for all short exact sequences-8
M — M — M” — 0 satisfying a few axioms, ang-functorsg: D*(C) —
‘P. There should also be higher dimensional analogues involisghat aren-
categories instead of mere 1-categories, and hence involving (implicitly at least)
the higher K-invariants KC) (i > 0). But of course, first of all the case of the
relation betweed@ and K?(C) in the simplest case should be elucidated!

I am finishing this letter at the forum where | have no typewriter. | hope you
can read the handwriting!

Best wishes,

A. Grothendieck
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