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Determinant Functors on Exact Categories
and Their Extensions to Categories

of Bounded Complexes

Finn F. Knudsen

Introduction

In this paper I revisit a theme unsatisfactorily treated in [KM]. The methods used
here are more natural and more general. The theorem we prove was suggested to
me by Grothendieck in a letter dated May 19, 1973 (see Appendix B), and it states
that the category of determinants on the derived category of an exact category is
equivalent via restriction to the category of determinants on the exact category
itself.

Here is how the problem comes about [KM]. Consider the following category.
The objects are bounded complexes of locally free finite quasi-coherent sheaves
of OX-modules on a fixed scheme (site)X. The morphism Mor(A,B) of two
such complexes is the group of global sections of the sheaf of germs of homo-
topy classes of homomorphisms fromA to B. If we assign to every complex the
invertible sheaf

f(A) =
(⊗
i∈Z

max∧
A2i

)
⊗
(⊗
i∈Z

max∧
A2i+1

)−1

,

then the problem is to assign to every quasi-isomorphismα ∈Mor(A,B) an iso-
morphismf(α) : f(A)→ f(B) in such a way thatf becomes a functor and such
thatf = ∧max in case of a complex consisting of a single locally free sheaf sup-
ported in degree 0. The existence of such anf follows immediately from the
theorem. The theorem is quite general and depends (a) on certain properties of
projective modules over acommutativering and short exact sequences of such,
and (b) on certain properties of tensor products of modules of rank 1.

The appropriate notions are that of an exact category (see [Q, Sec. 2]) and that
of a commutative Picard category. The reader not familiar with the notion of an
exact category is advised to have in mind the category of finitely generatedpro-
jectivemodules over a commutative ring, where exact sequences are what they
are. An admissible monomorphism is an injection whose cokernel is projective,
and similarly an admissible epimorphism is a surjection with projective kernel. Of
course, in this particular case all surjections are admissible.
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The axioms and some important results about commutative Picard categories
are given in Appendix A. In particular we find the notion of aninverse structure
(see Definition A.16) quite useful. Such a structure always exists and is unique up
to unique isomorphism.

In Section 1 we define the notion of a determinant and state some fundamental
properties (cf. [D]).

In Section 2, we state and prove the main theorem. Even though we give an
explicit construction of the determinant of a quasi-isomorphism, the verification
of its properties is usually done by induction with respect to length of complexes.
The good complexes for induction are theadmissiblecomplexes (see Definition
2.13). Unfortunately, in some silly exact categories there are acyclic complexes
that are not admissible. Fortunately, by [TT, A.7.16b], for every acyclic complex
A there exists asplit exact admissible complexE supported in the same degrees
asA and such thatA⊕E is admissible and acyclic; this is sufficient for the proof
to go through. In the case of projective modules, every acyclic complex is admis-
sible (in fact, split-exact), so most readers should disregard this technicality.

In Section 3 we establish, under certain conditions, natural isomorphisms be-
tween (a) the determinant of a complex and that of its cohomology and (b) the
determinant of a filtered complex and that of therth term of its associated spectral
sequence.

In Section 4 we generalize the main theorem tomultideterminantsand prove
a result suggested to me by Pierre Deligne. In Section 5, we give a formula for
the determinant of a homotopy equivalence in terms of agood pairof homotopies
(see Definition 5.4). It is then possible to compare our construction with that of
Ranicki [R].

I am happy to thank the Research Council of Norway for financial support, the
people of the Department of Mathematics at the University of Michigan for a very
good year of algebraic geometry, Pierre Deligne for having read an early version
of the manuscript and for suggesting to me to extend [D, 4.14] to complexes, and
to the referee, who did a very thorough job and made numerous improvements—
including the very natural “ε-free” proof of the crucial Proposition 2.25. Thanks
also to Kalevi Suominen for pointing out to me some weaknesses in the proof oc-
curring in [KM]. Special thanks to Lisa, who bears with me when I don’t always
listen.

1. Definitions and First Properties

In order to fix the definition of a determinant functor on an exact category, and on
the exact category of bounded complexes of an exact category, we will consider
certain special subcategories of exact categories (see also [Q; TT, Apx. A]).

Definition 1.1. LetE be an exact category. We call a class w of morphisms an
SQ-classif it satisfies the following axioms.

SQ 1 Every isomorphism is in w.
SQ 2 If any two ofα, β, andβα are in w, then so is the third.
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SQ 3 Ifα ′, α, andα ′′ are morphisms of short exact sequences and if any two of
them are in w, then so is the third.

Let E be an exact category, w a SQ-class of morphisms, andP a Picard category.
We will use the following notation:Ew is the subcategory determined by w, and
{E}w is the category of short exact sequences and morphisms in w3. We have three
functorsp ′, p, p ′′ : {E}w → Ew defined bypi(A′ // // A // // A′′) = Ai for i ∈
{·′, ·, ·′′ }, and likewise for morphisms.

Definition1.2. Apredeterminantf onEw with values inP consists of a functor
f1: Ew → P together with a natural isomorphismf2 : f1Bp→ f1Bp ′ ⊗ f1Bp ′′.
Remark 1.3. For any 0-objectZ of E, the sequenceZ // // Z // // Z is a short
exact one. Applyingf2 to this sequence givesf1(Z) the structure of a reduced
unit and so, by Remark A.8,f1(Z) is a unit.

Definition 1.4. A predeterminantf onEw with values inP is adeterminantif
the following three conditions are fulfilled.

(i) Compatibility. For any objectA, if 6 = (A A // // 0) then the mor-
phismsf2(6) andδRf1(0)

(f1(A)) are inverse to each other:

f1(A)

f2(6)

''
f1(A)⊗ f1(0).

δR
f1(0)

(f1(A))

gg

(ii) Associativity.For any short exact sequence of short exact sequences and
for any exact square (as in the left-hand diagram), the right-hand diagram is com-
mutative:

A // // B // //

��

��

C ′
��

��

A // //// //// //// //

����

C // //

����

B ′

����

0 // //// //// //// // A′ A′ ;

f1(C)
f2 //

f2

��

f1(A)⊗ f1(B
′)

1⊗f2

��

f1(B)⊗ f1(A
′)

f2⊗1
// f1(A)⊗ f1(C

′)⊗ f1(A
′) .

(iii) Commutativity.The two short exact sequences on the left give rise to the
commutative diagram on the right:

61= A //

( 1
0

)
////

( 1
0

)
////

( 1
0

)
////

( 1
0

)
// A⊕ B (0 1)

// //
(0 1)

// //
(0 1)

// //
(0 1)

// // B,

62 = B //

( 0
1

)
////

( 0
1

)
////

( 0
1

)
////

( 0
1

)
// A⊕ B (1 0)

// //
(1 0)

// //
(1 0)

// //
(1 0)

// // A;

f1(A⊕ B)
f2(61)

��

f1(A⊕ B)
f2(61)

��

f1(A)⊗ f1(B)
ψ

// f1(B)⊗ f1(A) .
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Proposition 1.5.

(a) If α : A→ B is an isomorphism, then

δR B (f2(A
α−→ B 0)) = [f1(α)]

−1

and

δL B (f2(0 A
α−→ B)) = f1(α).

(b) If we considerEw as an AC(associative and commutative) tensor category
with⊕ as its tensor functor and consider the isomorphism

( 0 1
1 0

)
: A⊕ B →

B ⊕A for its commutation, then the functorf1 together with the natural iso-
morphismf2 : f1(A ⊕ B) → f1(A) ⊗ f1(B) makes the pairf1, f2 an AC
tensor functor of AC tensor categories.

(c) For anyA, we havef1(−1A) = ε(f1(A)) considered as an automorphism
of 1.

Proof. The proofs of (a) and (b) follow directly from functoriality, compatibility,
and commutativity. Now (c) follows from (b) and the commutative diagram

A

(1
1

)
//

(1
1

)
//

(1
1

)
//

(1
1

)
// A⊕ A( 0 1

1 0

)
��

(1 −1)
//

(1 −1)
//

(1 −1)
//

(1 −1)
// A

−1

��

A

(1
1

)
//

(1
1

)
//

(1
1

)
//

(1
1

)
// A⊕ A (1 −1)

//
(1 −1)

//
(1 −1)

//
(1 −1)

// A .

Definition 1.6. By anadmissiblefiltration we shall mean a finite sequence of
admissible monomorphisms 0= A0 // // A1 // // · · · // // An = C.

If 0 = A0 // // A1 // // · · · // // An = C and 0 = A′0 // // A′1 // // · · ·
// // A′n = C ′ are admissible filtrations andα : C → C ′ is a morphism, then

we will say thatα respectsthe filtrations if the induced mapsAi → C ′ factor
throughA′ i .

The proofs of the next two propositions are outlined in [D].Actually, he first proves
Corollary1.10 andthen Proposition 1.9 by induction. The next proposition follows
from associativity by induction.

Proposition 1.7. Let 0 = A0 // // A1 // // · · · // // An = C be an admissible
filtration, and letAi−1 // // Ai // // C i be short exact sequences inE . Then, by
repeated use off2, we can construct an isomorphismf1(C)→⊗n

i=1f1(C
i).

Moreover, if 0 = A′0 // // A′1 // // · · · // // A′n = C ′ is an admissible fil-
tration, A′ i−1 // // A′ i // // C ′ i are short exact sequences, andα is a morphism
C → C ′ that respects the filtrations and inducesw-morphismsαi : C i → C ′ i
for eachi (i ≤ 1 ≤ n), thenα is a w-morphism and the following diagram is
commutative:
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f1(C)

��

f1(α) // f1(C
′)

��
n⊗
i=1
f1(C

i)

⊗
n
i=1f1(α

i )
//
n⊗
i=1
f1(C

′ i ) .

Definition 1.8. We call two filtrations 0= A0 // // A1 // // · · · // // An = F

and 0= B0 // // B1 // // · · · // // Bn = F compatibleif the lattice generated by
the i(A)s and thei(B)s in the Gabriel–Quillen embeddingi : E → A is admissi-
ble (see [G]).

Proposition 1.9. Let 0 = A0 // // A1 // // · · · // // Am = F and 0 = B0 // //

B1 // // · · · // // Bn = F be compatible filtrations. LetAi−1 // // Ai // // C i and
Bj−1 // // Bj // // Dj be short exact sequences and, for eachi andj, let

Bj−1+ (Ai ∩ Bj)
Bj−1+ (Ai−1∩ Bj) ≈ E

i,j ≈ Ai−1+ (Bj ∩ Ai)
Ai−1+ (Bj−1∩ Ai)

be the butterfly isomorphisms. Then theEi,j are the successive quotients of the
two extreme admissible filtrations

0 // // · · · // // Bj−1+ (Ai−1∩ Bj) // // Bj−1+ (Ai ∩ Bj) // // · · · // // C,

0 // // · · · // // Ai−1+ (Bj−1∩ Ai) // // Ai−1+ (Bj ∩ Ai) // // · · · // // C,

and the following diagram is commutative:

m⊗
i=1
f1(C

i)

��

f1(F )oo //
n⊗
j=1
f1(D

j )

��m⊗
i=1

n⊗
j=1
f1(E

i,j ) //
n⊗
j=1

m⊗
i=1
f1(E

i,j ) .

Corollary 1.10. For any exact square as shown in the first diagram, the second
diagram is commutative:

A′ // //

��

��

B ′ // //

��

��

C ′
��

��

A // //

����

B // //

����

C

����

A′′ // // B ′′ // // C ′′;
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f1(A)⊗ f1(C) // f1(A
′)⊗ f1(A

′′)⊗ f1(C
′)⊗ f1(C

′′)

1⊗ψ⊗1

��

f1(B)

OO

��

f1(B
′)⊗ f1(B

′′) // f1(A
′)⊗ f1(C

′)⊗ f1(A
′′)⊗ f1(C

′′) .

Proof. Since exact categories are closed under extensions, the two filtrations
A′ // // B ′ // // B andA′ // // A // // B are compatible. The extremal filtrations
areA′ // // B ′ // // A+B ′ // // B andA′ // // A // // A+B ′ // // B, with succes-
sive quotientsA′, C ′, A′′, C ′′ andA′, A′′, C ′, C ′′, respectively.

Definition 1.11. A morphismof determinantsq : f → g is a natural isomor-
phismq : f1→ g1 such that, for every short exact sequence6 = A′ // // A // // A′′,
the following diagram is commutative:

f1(A)

q(A)

��

f2(6) // f1(A
′)⊗ f1(A

′′)

q(A′ )⊗q(A′′ )
��

g1(A)
g2(6) // g1(A

′)⊗ g1(A
′′) .

Definition1.12. For anydeterminantsf, g, h, any morphismα : A→ B in Ew,

and any short exact sequence6 = A′ // // A // // A′′, we define:

(f ⊗ g)1(A) = f1(A)⊗ g1(A),

(f ⊗ g)1(α) = f1(α)⊗ g1(α),

(f ⊗ g)2(6) = (1⊗ ψ ⊗1) B (f1(6)⊗ g1(6)),

φ(f, g, h)(A) = φ(f1(A), g1(A), h1(A)),

ψ(f, g)(A) = ψ(f1(A), g1(A)).

Proposition 1.13. The determinants on a categoryEw with values in a Picard
categoryP, together with morphisms of determinants, form a category that we
denote bydet(Ew, P ). The tensor product together withφ andψ (as defined pre-
viously) induce ondet(Ew, P ) the structure of a Picard category.

Proof. It follows from the general coherence theorem that (a)φ(f, g, h) and
ψ(f, g) are morphisms of determinants and (b)φ andψ are natural and sat-
isfy both the pentagonal and the hexagonal axiom.

In the rest of this section,E andE ′ will denote exact categories, w and w′ will de-
note SQ-classes of morphisms inE andE ′ respectively, andP andP ′ will denote
Picard categories.
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Definition1.14. Wedenote by Ex(Ew, E ′w ′) the category of covariant exact func-
torsF : E → E ′ with the property thatF(α) ∈ w ′ for all α ∈ w. Morphisms are
natural transformations. We will denote by ew′ the class of natural transforma-
tionsη : F → G with the property thatη(A)∈w ′ for all objectsA of E .
Proposition 1.15. The categoryEx(Ew, E ′w ′) is an exact category, andew′ is an
SQ-class of morphisms.

Proof. We leave the proof to the reader.

The next two propositions follow from the general coherence Theorem A.2.

Proposition 1.16. Composition induces a determinant, thetautologicaldeter-
minant ∗ : Ex(Ew, E ′w ′)ew′ → Hom⊗(det(E ′w ′ , P ),det(Ew, P )).

Proposition 1.17. Composition induces an AC tensor functor

∗ : Hom⊗(P ′, P )→ Hom⊗(det(Ew, P
′),det(Ew, P )).

Corollary 1.18. Any inverse structureσ onP pulls back via the tautological
functor ∗ : Hom⊗(P, P ) → Hom⊗(det(Ew, P ),det(Ew, P )) to an inverse struc-
ture σ∗. Because there can be no confusion, we will drop the asterisks in the in-
duced inverse structure. We then have

(f σ )1(A) = (f σ∗)1(A) = (f1(A))
σ ,

(f σ )2(6) = (f σ∗)2(6) = σ2(f1(A
′), f1(A

′′)) B (f2(A))
σ ,

σ3(f )(A) = σ3∗(f )(A) = σ3(f1(A)).

Remark 1.19. Leti : E → A denote the Gabriel–Quillen embedding ofE into
the abelian categoryA. The functori is fully faithful, exact, and reflects exactness
(see also [TT, A.7]).

We consider the full subcategoryE ′ of A of objectsA with the property that
there exists an objectA′ ∈ E such thatA⊕A′ ∈ E . The categoryE ′ might be called
thestabilizationof E, and we leave it to the reader to check thatE ′ is an exact cat-
egory. Moreover,E ′ satisfies [TT, Axiom A.1.5], which states that any morphism
t for which there exists a morphisms such thatts = 1 is an admissible epimor-
phism. It follows from [TT, A.7.16b] that every morphism inE ′ that is also an
epimorphism inA is admissible.

If w is an SQ-class of morphisms, then we say that a morphismα : A→ B be-
longs to the class w′ if there exists an objectE in E such that (a) bothA⊕E and
A′ ⊕E belong toE and (b) the morphismα⊕1E belongs to w. We leave it to the
reader to check that ifα belongs to w′ thenα ⊕ 1E belongs to w for all suchE
and that the class w′ is an SQ-class of morphisms. Moreover, the restriction func-
tor det(E ′w ′ , P )→ det(Ew, P ) is an equivalence of categories. For this reason we
will assume from now on that every morphism inE that is an epimorphism inA
is admissible.
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2. The Main Theorem

In this section,E is an exact category and C(E ) denotes the exact category of
bounded complexes of objects inE . We considerE as the full subcategory of C(E )
consisting of complexes supported only in degree 0;P is a Picard category with
a fixed inverse structureσ. All determinants considered will have values inP, so
for short we will write det(Ew) instead of det(Ew, P ).

Definition 2.1. A quasi-isomorphismin C(E ) is a morphism whose image in
C(A) induces an isomorphism in cohomology. The morphism class of quasi-
isomorphisms (resp., isomorphisms) will be denoted by qis (resp., iso).

Remark 2.2. By the long exact sequence in cohomology associated to a short
exact sequence, it follows that qis is an SQ-class of morphisms.

We now state the main theorem. It is a consequence of Lemma 2.22 and Proposi-
tion 2.25.

Theorem 2.3 (MainTheorem). The restriction functordet(C(E )qis)→ det(E iso)

is an equivalence and an AC tensor functor.

Definition 2.4. A complexA isacyclicif i(A) has vanishing cohomology inA.
Definition 2.5. For any complexA, we denote byA[1] = TA the complex de-
fined byTAi = Ai+1 anddTA = −dA. Note thatT is an exact functor.

Definition 2.6. Letα : A → B be a morphism of complexes. Themapping
coneof α is the complex C(α), given by

C(α)i = Bi ⊕ Ai+1,

dC(α)
i =

(
d i αi+1

0 −d i+1

)
.

Proposition 2.7. We have the short exact sequences

B //

( 1
0

)
// C(α)

(0 1)
// // A[1] (1)

and

A //

(
1
0
α

)
// C(−1A ⊕ B)

(−α 0 1
0 1 0

)
// // C(α) , (2)

and a commutative diagram

A //

(
1
0
α

)
//

α

$$IIIIIIIIIIIII C(−1A)⊕ B
(0 0 1)

����

B .

(3)



Determinant Functors on Exact Categories 415

Corollary 2.8. A morphismα is a quasi-isomorphism if and only if its map-
ping coneC(α) is acyclic, and in this case both the horizontal and the vertical
morphisms in diagram(3) are quasi-isomorphisms.

Definition 2.9. For any complexA, we denote byA⊗ I the mapping cone of
the antidiagonal

−1 = ( 1
−1

)
: A→ A⊕ A,

and by∂0 and∂1 we denote the maps

∂0 =
(

1
0
0

)
: A→ A⊗ I and ∂1 =

(
0
1
0

)
: A→ A⊗ I.

Definition 2.10. Two morphismsα0, α1 : A → B will be calledhomotopic,
and a maph : TA → B will be called ahomotopyfrom α0 to α1, if α0 − α1 =
dh+ hd.
Proposition 2.11.

(a) The mapsum= ( 1 1 0) : A ⊗ I → A is a quasi-isomorphism, and it is an
equalizer of the homotopic quasi-isomorphisms∂0 and ∂1.

(b) If h : TA → B is a homotopy fromα0 to α1 and if h̃ = (α0, α1, h) then, for
all i ∈ {0,1}, the following diagram is a commutative diagram of morphisms
of complexes:

A⊗ I

h̃

����

A
99

∂i
99rrrrrrrr

&&

αi
&&LLLLLLLLL

B .

Corollary 2.12. Given a functorf from C(E )qis to a categoryQ all of whose
morphisms are invertible, it follows thatf factors throughD(E )qis. This means
thatf(α0) = f(α1) for any two homotopic quasi-isomorphismsα0 andα1.

Proof. Since sum∂0 = sum∂1, it follows by cancellation thatf(∂0) = f(∂1).

Hencef(α0) = f(h̃∂0) = f(h̃)f(∂0) = f(h̃)f(∂1) = f(h̃∂1) = f(α1).

Definition 2.13. We will say that a complexA is admissibleif theZi andBi are
isomorphic to objects ofE . By Remark1.19, every acyclic complex is admissible.

Definition 2.14. For any admissible complexA, the complexZ = Z(A) is the
complex given byZi = ker(d iA) andd iZ = 0 for all i. We define similarly the
complexB = B(A), and we have the short exact sequenceZ // // A

d // // B[1].

Definition 2.15. We will say that a morphism in C(E ) is admissibleif its map-
ping cone is admissible. By Remark1.19, everyquasi-isomorphism is admissible.
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Definition 2.16. A complexA is calledsplit exactif there exists an isomor-
phismA→ C(1Z) that makes the following diagram commutative:

Z // // A // //

��

Z[1]

Z // // C(1Z) // // Z[1] .

Definition 2.17 (The Brutal Truncation). For every integerk and every com-
plexA, we denote byσ≥kA thekth upper brutally truncatedsubcomplex ofA. It
is the complex that remains when the objects in degreesj < k are killed. Simi-
larly, we denote byσ<kA thekth lower brutally truncatedquotient complex ofA.
It is the complex that remains when the objects in degreesj ≥ k are killed. We de-
note by6k(A) thekth brutal truncation sequenceof A, the short exact sequence
σ≥kA // // A // // σ<kA.

Definition 2.18 (The Good Truncation). For every integerk and every admis-
sible complexA, we denote byγ <kA the kth lower well truncatedsubcomplex
of A. It is the complex that remains when the objects in degreesj ≥ k are killed
andAk−1 is replaced by ker(d k−1). Similarly, we denote byγ ≥kA thekth upper
well truncatedquotient complex ofA. It is the complex obtained by augmenting
σ≥kA with the map im(d k−1)→ Ak. We denote by0k(A)thekth good truncation
sequenceof A, the short exact sequenceγ <kA // // A // // γ ≥kA.

Lemma 2.19. The brutal truncation is a functor6k : C(E )→ {C(E )},and it maps
isomorphisms to isomorphisms. The good truncation is a functor0k : C(E )adm→
{C(E )adm},and it maps quasi-isomorphisms to quasi-isomorphisms.(Note: “adm”
denotes admissible.)

Definition 2.20. An S-determinanton Ew is a sequence(fn, µn)n∈Z, where
eachfn is a determinant onEw and eachµn is an isomorphism of determinants
fn ⊗ fn−1→ 1.

Definition 2.21. A morphism of S-determinantsq : (fn, µn) → (f ′n, µ′n)
is a sequence of morphisms of determinantsqn : fn → f ′n such thatµn =
µ′n B (qn ⊗ qn−1) for all n ∈ Z. We denote the category of S-determinants by
Sdet(Ew).

Lemma 2.22. The forgetful functorSdet(Ew)→ det(Ew) is an equivalence.

Proof. For any determinantf onEw, we defineS σ(f ) = (fn, µn) by

fn =
{
f σ for n odd,

f for n even;

µn =
{
σ B ψ for n odd,

σ for n even.
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It follows from Proposition1.17thatS σ(f ) is an S-determinant, and the categories
are equivalent by Remark A.17.

Definition 2.23. For any determinantf on CEqis, we define the S-determinant
T •(f ) = (fn, µn)onE iso byfn(A) = f(A[−n]), fn(6) = f(6[−n]),andµn(A)
via

f(A[−n])⊗ f(A[−n+1])
f −1

2−−→ f(C(1A[−n]))
f(0)−−→ f(0) −−→ 1.

Note thatfn corresponds to restrictingf to complexes supported only in degreen.

Definition 2.24. For any S-determinant(fn, µn) on E iso, we define the two
mapsg(fn, µn) = (g1, g2) on CEqis as follows.

(a) For a complexA, we defineg1(A) =⊗(fn)1(A
n) andg1(0) = 1.

(b) For a short exact sequence6, we defineg2(6) via⊗
fn(A

n)

⊗
(fn)2(6

n)−−−−−−−→⊗
(fn(A

′n)⊗ fn(A′′n)) −−→⊗
fn(A

′n)⊗⊗ fn(A
′′n).

(c) For an acyclic complexQ, we defineg1(0) : g1(Q)→ 1 viag2 of the short
exact sequenceZ(Q) // // Q

d // // TZ(Q) and the isomorphism⊗
fn(Z

n)⊗⊗ fn(Z
n+1) −−→⊗

(fn(Z
n)⊗ fn−1(Z

n))

⊗
µn(Z

n)−−−−−→ 1.

(d) For a quasi-isomorphism that is an admissible epimorphismQ // // A
α // // B,

we defineg1(α) as the composition

g1(A)
g2−−→ g1(Q)⊗ g1(B)

g1(0)⊗1−−−−→ 1⊗ g1(B) −−→ g1(B).

(d∗) For a quasi-isomorphism that is an admissible monomorphismA // α // B // //

Q, we defineg1 as the inverse of the composition

g1(B)
g2−−→ g1(A)⊗ g1(Q)

1⊗g1(0)−−−−→ g1(A)⊗1−−→ g1(A).

(e) For an arbitrary quasi-isomorphismA
α−→ B, we use the factorization of

Proposition 2.7,A //
α2 // C(1A)⊕ B α1 // // B, and define

g1(α) = g1(α1)g1(α2).

(f ) For a morphismqn : (fn, µn)→ (f ′n, µ′n), we defineg(q) : g1→ g ′1 by

g(q)(A) =⊗ qn(A
n).

Proposition 2.25. The mapsT • andg are functors, and they establish an equiv-
alence of categoriesdet(CEqis) andSdet(E iso).

We will prove the proposition through a series of lemmas.

Lemma 2.26. On the full exact subcategory of acyclic complexes, we have that
g is well-defined, is a determinant, and factors through therigid subcategory
Unit(P ) (see [S, 2.2.5.1]).
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Proof. We apply Proposition1.10 to the exact square

Z ′ // //

��

��

Z // //

��

��

Z ′′
��

��

Q′ // //

����

Q // //

����

Q′′

����

TZ ′ // // TZ // // TZ ′′ .

The lemma then follows because theµn are morphisms of determinants.

Lemma 2.27. For a composition of admissible epimorphismsA
α // // B

β // // C,

we haveg1(βα) = g1(β)g1(α).

Proof. We apply Proposition1.10, Lemma 2.26, and Remark A.8 to the exact
square

Q′
��

��

Q′ // //

��

��

0
��

��

Q // //

����

A // //

����

C

Q′′ // // B // // C .

Lemma 2.28. For a composition of admissible monomorphismsA // α // B // β // C,

we haveg1(βα) = g1(β)g1(α).

Proof. The dual construction of the previous proof.

Lemma 2.29. The two possible definitions forg1 on isomorphisms agree and are
given byg1(α) =⊗(fn)1(α

n).

Proof. This is Proposition 1.5(a) applied to thefn.

Lemma 2.30. For two factorizationsA // α // C
β // // B and A // α

′′
// C ′′ β

′′
// // B

with βα = β ′′α ′′, we haveg1(β)g1(α) = g1(β
′′)g1(α

′′).

Proof. Since the two factorizations can be covered by the fiber product ofC and
C ′′ overB and since fiber products with at least one epimorphism exists in exact
categories, we can reduce the lemma to the case of

C

γ

����

β

"" ""EEEEEEEEE

A
<<

α

<<yyyyyyyyy

""

α ′′
""EEEEEEEEE B

C ′′ .

β ′′

<< <<yyyyyyyyy
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After applyingg, the right triangle commutes by Lemma 2.27. To see that the left
triangle is commutative, we apply Proposition1.10,Lemma 2.26, and Remark A.8
to the exact square

0 // //

��

��

Q′
��

��

Q′
��

��

A // // C // //

����

Q

����

A // // C ′′ // // Q′′ .

Lemma 2.31. For a compositionA
α−→ B

β−→ C, g1(βα) = g1(β)g1(α).

Proof. The lemma follows by Lemmas 2.29 and 2.27 applied to the commutative
diagram

A //

(
1
0
α

)
//

α

((QQQQQQQQQQQQQQQQQQQQQQQ C(−1A)⊕ B

(0 0 1)

����

//


1 0 0
0 1 0
0 0 1
0 0 0
0 0 β


// C(−1A)⊕ C(−1B)⊕ C(

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
����

B //

(
1
0
β

)
//

β

((QQQQQQQQQQQQQQQQQQQQQQ C(−1B)⊕ C

(0 0 1)

����

C

and Corollary1.10applied to the exact square

C(−1A)
��

��

C(−1A) // //

��

��

0
��

��

C(−1A)⊕ B // //

����

C(−1A)⊕ C(−1B)⊕ C // //

����

C(β)

B // // C(−1B)⊕ C // // C(β) .

Lemma 2.32. For any morphismqn : (fn, µn)→ (f ′n, µ′n), g(q) is a morphism
of determinants(g1, g2)→ (g ′1, g ′2). In fact,g is an AC tensor functor.

Proof. For any short exact sequence6 = A′ // // A // // A′′ we have, by general
coherence and since eachqn is natural, a commutative diagram
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g1(A)
g2(6) //

g(q)(A)

��

g1(A
′)⊗ g1(A

′′)

g(q)(A′ )⊗g(q)(A′′ )
��

g ′1(A)
g ′2(6) // g ′1(A′)⊗ g ′1(A′′) .

(∗)

Consider a quasi-isomorphismα : A → B. We need to prove that the following
diagram is commutative:

g1(A)
g1(α) //

g(q)(A)

��

g1(B)

g(q)(B)

��

g ′1(A)
g ′1(α) // g ′1(B) .

(∗∗)

WhenB is acyclic andA = 0, commutativity follows because eachqn is a
morphism of determinants—and dually forA acyclic andB = 0. This, to-
gether with Lemma 2.26, shows commutativity for all quasi-isomorphisms of
acyclic complexes. The diagram(∗) then shows that(∗∗) is commutative for
quasi-isomorphisms that are admissible epimorphsms or monomorphisms; by
Lemma 2.31,g(q) is a morphism of determinants. Thatg is an AC tensor functor
follows from general coherence.

Lemma 2.33. The compositionT • B g is the identity, andg is faithful.

Proof. Let (f ′n, µ′n) = (T • B g)(fn, µn). For any objectA of E,
(fn)

′
1(A) = T ∗−n(g1(A)) = g1(A[−n]) = (fn)1(A).

Similarly, we see that(fn)′2 = (fn)2. Hence by Proposition 1.5(a),(fn)′1 = (fn)1
for all isomorphisms. Finally,µ′n = µn because bothT • andg are AC tensor
functors.

Let g andg ′ be determinants on C(E )qis, and letq andq ′ be two morphisms
g → g ′ such thatT •(q) = T •(q ′). This means thatq andq ′ agree on all com-
plexes of length 1. By the brutal truncation and the condition of Definition 1.11 for
morphisms of determinants, it follows by induction with respect to length of com-
plexes thatq = q ′ on all complexes.

Corollary 2.34. BothT • andg are fully faithful.

Lemma 2.35. There is an isomorphism of functorsid→ g B T •.

Proof. Leth be a determinant on C(E )qis, letT •(h) = (fn, µn), and let(g1, g2) =
g(fn, µn). Again we haveh1(A) = g1(A) for all complexes of length 1, and
h1(α) = g1(α) for all isomorphisms of such complexes. We use the brutal fil-
tration · · · // // σ≥kA // // σ≥k−1A // // · · · // // A to constructq(A) = q(h)(A):
h1(A) → g1(A). It follows from Proposition 1.7 and general coherence that we
have commutative diagrams
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h1(A)
h1(α) //

q(A)

��

h1(B)

q(B)

��

g1(A)
g1(α) // g1(B)

and

h1(A)
h2(6) //

q(A)

��

h1(A
′)⊗ h1(A

′)

q(A′ )⊗q(A′′ )
��

g1(A)
g2(6) // g1(A

′)⊗ g1(A
′)

for every isomorphismα : A→ B and every short exact sequence

6 = A′ // // A // // A′′.

By definition of theµn we have a commutative diagram

h1(Q)
q(Q)

//

h1(0)

��

g1(Q)

g1(0)

��

1 // 1

for every complexQ isomorphic to a complex of the form C(1A), whereA is a
complex of length 1. This in particular includes all acyclic complexes of length 2.
Using good truncations, it follows by induction that the diagram just displayed
commutes for all acyclic complexesQ, and this proves thatq = q(h) is a mor-
phism of determinants. Thatq is natural follows from Corollary 2.34. This proves
the last lemma. Hence Proposition 2.25 and thus the main theorem are proved.

Definition 2.36. In the rest of the paper we will denote the composition of the
functorsS σ andg by Cσ = g B S σ : det(E iso)→ det(CEqis).

3. Determinants, Homology, and Spectral Sequences

In this section,f is a determinant on C(E )qis with values in a Picard categoryP.
We denote the restriction off to E iso by f as well.

Definition 3.1. For any admissible complexA, we denote byC(iA) the map-
ping cone of the monomorphismiA : B(A)→ Z(A). The morphismc(A) is the
unique isomorphism that makes the following diagram commutative:

f(A)

c(A)

��

// f(Z(A))⊗ f(TB(A))

f(C(iA)) // f(Z(A))⊗ f(TB(A)) .
For any quasi-isomorphismα : A → B of admissible complexes, we denote by
c(α) the induced morphismC(iA) → C(iB), and we define the assignmentg =
(g1, g2) on the subcategory of admissible complexes as follows. For any short ex-
act sequence6 = A′ // // A // // A′′ of admissible complexes,
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g1(A) = f1(C(iA)),

g1(α) = f1(c(α)),

g2(6) = f2(c(A
′)⊗ c(A′′)) B f2(6) B c(A)−1.

If H(A) is in C(E ), we have a quasi-isomorphismC(iA)→ H(A) and we define
h(A) to be the compositionf(A)→ g(A)→ f(H(A)).

Proposition 3.2. Except for the possibility that the admissible complex is not
an exact category, the pair(g1, g2) is a determinant and more importantly,c is a
morphism of determinants.

Proof. By definition,c satisfies the condition of Definition 1.11, so we need only
prove thatc is natural. We prove this by induction with respect to length. If a com-
plexA is of length1or of length 2 and if the differentiald is a monomorphism, then
A andC(iA) are naturally isomorphic and so there is nothing to prove. LetA be an
admissible complex. Then, by the good filtration, we have a short exact sequence.
Let 6 = A′ // // A // // A′′ of admissible complexes such that either (a) bothA′
andA′′ are strictly shorter thanAor (b)A is of length 2,A′ is of length 2 with the dif-
ferential a monomorphism, andA′′ is of length 1. For such a short exact sequence,
the sequencesZ(A′) // // Z(A) // // Z(A′′) andB(A′) // // B(A) // // B(A′′) are
also short exact. Hence so is the sequenceC(6) = C(iA′) // // C(iA) // // C(iA′′),
and it follows from Corollary1.10thatg2(6) = f2(C(6)). Let α : A→ B be a
quasi-isomorphism of admissible complexes and consider the following diagram,
whereA′ = γ <kA, B ′ = γ <kB, A′′ = γ ≥kA, andB ′′ = γ ≥kB.

f(A′)⊗ f(A′′)

f(α ′ )⊗f(α ′′ )

��

// g(A′)⊗ g(A′′)

g(α ′ )⊗g(α ′′ )

��

f(A)

66llllllllllllll

f(α)

��

// g(A)

g(α)

��

66mmmmmmmmmmmmmm

f(B ′)⊗ f(B ′′) // g(B ′)⊗ g(B ′′)

f(B)

66llllllllllllll
// g(B)

66mmmmmmmmmmmmmm

We have just observed that the right square is commutative becauseg2(6) =
f2(C(6)) in this case. The left square commutes by naturality off2, the back
square commutes by induction, and the top and bottom squares commute by defi-
nition. Hence the front square is commutative.

Proposition 3.3. Let α, α ′ : A→ B be two quasi-isomorphisms of admissible
complexes. If the induced morphisms in cohomologyH(α) = H(α ′), thenf(α) =
f(α ′). Moreover, ifH(A) andH(B) are objects ofC(E ), then the following dia-
gram is commutative:
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f(A)

h(A)

��

f(α)
// f(B)

h(B)

��

f(H(A))
f(H(α))

// f(H(B)) .

Proof. By the previous proposition we may assume thatA andB are of the form
C(iA) andC(iB). In this case, ifH(α) = H(α ′) thenα andα ′ are homotopic, so
f(α) = f(α ′) by Proposition 2.12. IfH(A) andH(B) are objects of C(E ), the
result follows because we have a commutative diagram of quasi-isomorphisms

A

��

α // B

��

H(A)
H(α)

// H(B) .

In the following we consider the category FC(E ) of finitely decreasingly filtered
complexes and morphisms respecting the filtrations. We denote thepth filtered
subcomplex of a complexA byFp(A). The following is a convenient way of view-
ing spectral sequences from the standpoint of determinants.

Definition 3.4. For any filtered complexA, therth derived filtrationDFr is

DF n
r (A

m) = Ker(F n+mr(Am)→ Am+1/F n+(m+1)r(Am+1)),

and its successive quotients are

DF n+1
r (A) // // DF n

r (A)
// // DGn

r (A).

Proposition 3.5. In the abelian categoryA,we have a canonical quasi-isomor-
phism

DGr(A) =⊕DGn
r (A)→ Er(A).

Definition 3.6. For any filtered complexA, therth spectral filtrationSFr is

SF n
r (A

m) =
{
DF

((n−m)/2)
r (Am) for n−m even,

DF
((n−m+1)/2)
r−1 (Am) for m− n odd,

and its successive quotients are

SF n+1
r (A) // // SF n

r (A)
// // SGn

r (A).

Proposition 3.7. The induced differentialsd n,mr : SGn
r (A

m)→ SGn
r (A

m+1) sat-
isfy d n,mr = 0 whenn − m is even, andd n,mr is a monomorphism whenn − m is
odd. InA we have

Ep,qr = Hn+2m(SGn
r (A)),

where the integersp, q, m, andn are related by
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p

q

)
=
(

r 2r − 1
1− r 3− 2r

)(
n

m

)
.

By the property of the differentials, it follows that if therth spectral filtration is
admissible then so are the complexesSGn

r (A).

Proposition 3.8. Let α, α ′ : A → B be two morphisms of filtered complexes
such that the induced morphismsEr(α) andEr(α ′) are quasi-isomorphisms. Then
f(α) = f(α ′) if either:

(a) therth derived filtration is admissible,Er(A) andEr(B) are objects ofC(E ),
andf(Er(α)) = f(Er(α ′)); or

(b) the (r + 1)th spectral filtration is admissible and the induced morphisms in
cohomologyEr+1(α) = Er+1(α

′).
If the rth derived filtration is admissible andEr(A) andEr(B) are objects of
C(E ), let er(A) denote the compositionf(A)→⊗

m f(DG
m
r (A))→ f(Er(A)).

Then, ifEr(α) is a quasi-isomorphism, the following diagram is commutative:

f(A)

er (A)

��

f(α)
// f(B)

er (B)

��

f(Er(A))
f(Er (α)) // f(Er(B)) .

Proof. This is just Propositions 1.7, 3.3, 3.5, and 3.7.

4. Multifunctors and Multideterminants

Let I be a finite set, and let{Ei}i∈I andF be categories. If all theEi are equal,
we consider an automorphismσ of I to be also an automorphism of

∏
i∈I Ei via

σ(A)i = Aσ−1(i).

Definition 4.1. An order invariant functor S from
∏

i∈I Ei to F is a functor
S : O(I )→ Funct

(∏
i∈I Ei ,F

)
, whereO(I ) is the category with the total order-

ings ofI as objects and with one and only one morphism between any two objects.

Note that any functor on
∏

i∈I Ei is order invariant by simply letting the functor
onO(I ) be constant. Ifρ : S → T is a morphism of order invariant functors, we
have for any ordering≺ a morphismρ(≺) : S(≺) → T(≺), and this induces an
isomorphism Mor(S, T ) ≈ Mor(S(≺), T (≺)). By abuse of notation we will write
S :

∏
i∈I Ei → F instead ofS : O(I ) → Funct

(∏
i∈I Ei ,F

)
whenS is order

invariant.

Definition 4.2. Suppose all theEi are equal. Asymmetricfunctor S from∏
i∈I Ei to F consists of a functorS :

∏
i∈I Ei → F together with natural

isomorphismsψS(σ) : S → S B σ, for each automorphismσ of I, satisfying
ψS(στ)(A)= ψS(σ)(τ (A)) B ψS(τ)(A) for any pair of automorphismsσ andτ.
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An order invariant functorS is symmetric if eachS(≺) is symmetric, and the fol-
lowing diagram is commutative for everyσ and any pair of orderings≺1 and≺2:

S(≺1)

ψS(≺1)(σ)

��

S(≺2,≺1) // S(≺2)

ψS(≺2)(σ)

��

S(≺1) B σ
S(≺2,≺1)Bσ

// S(≺2) B σ .

Proposition 4.3. If {Ei}i∈I andF are additive categories, then any order in-
variant additive multifunctorS :

∏
i∈I Ei → F has an extension to an order in-

variant additive multifunctorC(S) on the category of bounded(or bounded below
or above) complexesC(S) :

∏
i∈I C(Ei )→ C(F ). In fact,C is a functor and, for

everyi ∈ I, we have a natural isomorphismρi : C B Ti → T BC. Moreover,C(S)
maps quasi-isomorphisms to quasi-isomorphisms, and ifS is symmetric then so
is C(S).

Proof. We use the sign conventions of SGA 4 (XVII, Sec. 1; there are corrections
in SGA 41

4, but we don’t need them here). We denote byεi ∈ZI the function that
takes the value 0 except ati, where it takes the value 1. IfA ∈ Ob

(∏
i∈I C(Ei )

)
is a multicomplex and ifk ∈ ZI , thenAk ∈∏i∈I Ei is the object whoseith com-
ponent is given by(Ak)i = Akii andd ki (A) : A

k → Ak+εi is the map that is the
identity on(Ak)j for i 6= j andd kAi on (Ak)i . Similarly, we havef k : Ak → Bk

for any morphismf : A→ B. With the integral functions

κ(≺, k, i) =
∑
j≺i

ki and λ(≺1,≺2, k) =
∑
i≺1j
j≺2i

kikj,

the functor C is defined by the equations

CS≺(A)m =
∑
|k|=m

S≺(Ak),

CS≺(f )m =
∑
|k|=m

S≺(f k),

dmCS≺(A) =
∑
|k|=m

d k(CS≺(A)),

d k(CS≺(A)) =
∑
i∈I
(−1)κ(≺,k,i)S≺(d ki (A)),

ρi(S)(A) =
∑
k

(−1)κ(≺,k,i)1S(Ak),

CS(≺2,≺1)(A
k) =

∑
k

(−1)λ(≺1,≺2,k)S(≺2,≺1)(A).

We leave the verification to the reader.
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The next definition is a formal definition of a multideterminant. Let theEi be exact
categories, and let wi be SQ-classes of morphisms. Informally, a multidetermi-
nant on the product category

∏
i∈I Ei wi with values in a Picard categoryP is a

multifunctor that is a determinant for every choice of|I | −1 frozen variables and
such that we obtain a certain commutative diagram for every pair of indicesi 6=
j. To state the definition formally, we need some notation.

For any subsetK ⊆ I, the isomorphism

EvK : Funct

(∏
i∈I
Ei , P

)
→ Funct

(∏
i∈K
Ei ,Funct

( ∏
i∈I \K

Ei , P
))

is given by

EvK(S)(A′)(A′′) = S(A), where Ai =
{
A′i for i ∈K,
A′′i for i ∈ I \K.

Let p ′, p, andp ′′ be the projections{Ei} → Ei as in Definition 1.2, and let

EK =
∏
i∈I
EK,i , where EK,i =

{ Ei wi for i ∈K,
{Ei}{wi } for i ∈ I \K.

For any subsetsJ ⊂ K andL ⊂ I and fors ∈ {·′, ·′′ }K \J , we have the two projec-
tionspsK,J : EJ → EK andpJ : EL→ EL∪I \J given by

(psK,J(A))i =


Ai ∈Ob({Ei}) for i ∈ I \K,
ps(i)(Ai)∈Ob(Ei ) for i ∈K \ J,
Ai ∈Ob(Ei ) for i ∈ J ;

(pJ(A))i =


Ai ∈Ob({Ei}) for i ∈ J \ L,
p(Ai)∈Ob(Ei ) for i ∈ I \ (L ∪ J ),
Ai ∈Ob(Ei ) for i ∈L.

Definition 4.4. A multideterminantf on the categoryEI = ∏
i∈I Ei wi with

values inP consists of a multifunctorf : EI → P, together with natural isomor-
phisms

fK,J : f B pJ → ⊗
s∈{·′,·′′ }K \J

f B pK B psK,J

on Funct(EJ , P ) for each pair of subsetsJ ⊂ K, satisfying the following con-
ditions.

(a) For eachA ∈ Ob
(∏

i∈K Ei
)

with |K| = |I | − 1, we have that(f1, f2) =
(EvKf(A),EvKfI,K(A)) is a determinant.

(b) The isomorphismfK,J(A) depends only onpK(A), and for any subsetsJ ⊂
K ⊂ L andA∈ EJ we have a commutative diagram
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f BpJ(A) fK,J (A)
//

fL,J (A)

��

⊗
s∈{·′,·′′ }K \J

f BpK BpsK,J(A)
⊗

s∈{·′,·′′}K\J
fL,K(p

s
K,J (A))

��⊗
u∈{·′,·′′ }L\J

f BpL BpuL,J(A) ∼ //
⊗

s∈{·′,·′′ }K \J

( ⊗
t∈{·′,·′′ }L\K

f BpL BptL,K(psK,J(A))
)

.

Remark 4.5. SincefK,J(A) depends only onpK(A), it follows thatfK,J is de-
termined byfI,I \(K\J ); hence it suffices to have (b) satisfied for allJ ⊂ K ⊂ L
with |J | = |I | − 2.

Definition 4.6. A morphismof multideterminantsρ : f → g is a natural iso-
morphism of multifunctors with the property that, for all subsetsJ ⊂ K and for
all A∈Ob(EJ ), the following diagram is commutative:

f(pJ(A))
fK,J (A)

//

ρ(pJ(A))

��

⊗
s∈{·′,·′′ }K \J

f(pK(p
s
K,J(A)))

⊗
s∈{·′,·′′}K\J

ρ(pK(p
s
K,J (A)))

��

g(pJ(A))
gK,J (A)

//
⊗

s∈{·′,·′′ }K \J
g(pK(p

s
K,J(A)))

We denote by det
(∏

i∈I Ei wi , P
)

the category of multideterminants.

Proposition 4.7. The category of multideterminants is a Picard category, and
for any multideterminantf in det(EI , P ) and anyK ⊂ I, EvK(f ) is a multi-
determinant on

∏
i∈K Ei wi with values indet

(∏
i∈I \K Ei wi , P

)
. In fact, we have

an AC tensor functor and an isomorphism of categories

EvK : det

(∏
i∈I
Ei wi , P

)
→ det

(∏
i∈K
Ei wi ,det

( ∏
i∈I \K

Ei wi , P

))
.

Theorem 4.8. The restriction functor

det

(∏
i∈I

CEi qis, P

)
→ det

(∏
i∈I
Ei iso, P

)
is an equivalence and also an AC tensor functor.

Proof. We construct an inverse functor Cσ,≺ depending upon an inverse structure
σ onP and a total ordering≺ on I. We proceed by induction with respect to|I |,
and we denote the restriction of≺ to any subset ofI by ≺ as well. By the main
Theorem 2.3, Theorem 4.8 holds for|I | = 1. Let j be the maximum member ofI.
By the induction hypothesis and Proposition 4.7, we have a commutative diagram
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det

(∏
i

CEi qis, P

)
Ev{j} //

resI

��

det

(
CEj qis,det

(∏
i 6=j

CEi qis, P

))

resj

��

det

(
Ej iso,det

(∏
i 6=j

CEi qis, P

))

(resI \{j})∗

��

Cσ

JJ

det

(∏
i

Ei iso, P

)
Ev{j} // det

(
Ej iso,det

(∏
i 6=j
Ei iso, P

))
,

(Cσ,≺)∗

JJ

where Cσ,≺ is an inverse to resI \{j}. Again by Theorem 2.3, Cσ is an inverse to
resj, and since composition of AC tensor functors yields an AC tensor functor, the
theorem follows.

Remark 4.9. For any pair(≺1,≺2) of total orderings, both Cσ,≺1 and Cσ,≺2 are
canonically isomorphic because they are inverses to the restriction. Hence we may
view Cσ as a functor of order invariant multideterminants.

The following is a generalization of [D, 4.14] that can be thought of as a formula
for the determinant of the Kronecker product of two matrices in terms of the de-
terminants of those matrices.

Let{Ei}i∈I andF be exact categories, and let v= {vi}i∈I and w be SQ-classes of
morphisms in{Ei}i∈I andF, respectively. Let{Pi}i∈I andQ be Picard categories,
letS :

∏
i Ei → F be a multiexact functor sending v to w, and letT :

∏
i Pi → Q

be a multi-AC tensor functor, by which we mean a multifunctor that is an AC ten-
sor functor for any|I | −1 frozen variables and that satisfies the commutativity of
the obvious diagrams for each pair of indices.

Lemma 4.10. Let {Ei}i∈I ,F, {vi}i∈I ,w, {Pi}i∈I , Q, S, andT be as just defined.
If f = {fi}i∈I andg are determinants onEi vi andFw with values inPi andQ,
respectively, then the compositionsg B S andT B f are both multideterminants.

Definition 4.11. With notation as in Lemma 4.10, an〈S, T, v,w〉-determinant
is a triple(f, g, η),wheref = {fi}i∈I andg are determinants onEi vi andFw with
values inPi andQ (respectively) and whereη : g B S → T B f is an isomorphism
of multideterminants. A morphism of〈S, T, v,w〉-determinants from(f, g, η) to
(f ′, g ′, η ′) is a pair of natural transformationsq : f → f ′ andr : g → g ′ com-
muting withη andη ′. If S andT are order invariant, we say that(f, g, η) is order
invariant if η is an isomorphism of order invariant functors. IfS andT are sym-
metric, we say that(f, g, η) is symmetric ifη is an isomorphism of symmetric
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functors and if all of thefi are the same determinant. We denote the category of
〈S, T, v,w〉-determinants by det〈S, T, v,w〉.
Lemma 4.12. With notation as in Lemma 4.10,det〈S, T, v,w〉 is a Picard cate-
gory with tensor product defined componentwise.

Corollary 4.13. The restriction functor

det〈C(S), T,qis,qis〉 → det〈S, T, iso, iso〉
is an equivalence and also an AC tensor functor. Moreover,(f, g, η) is symmetric
if and only if res(f, g, η) is.

Example 4.14 [D]. In this example we letI = {1,2} be an index set, the stan-
dard ordering is<, the permutationσ is the transposition(1,2), andE1 = E2 =
F is the exact category of locally free sheaves on a schemeV. For any such sheaf
A, we letnA be the rank function. The Picard categoryP1 = P2 = Q is the cat-
egory ofZV -graded invertible sheaves onV. An object in this category is a pair
X̄ = 〈X, nX〉, whereX is an invertible sheaf onV andnX is acontinuousintegral
function onV.

The order invariant and symmetric biexact functorS :
∏

i∈I Ei → F is given by

S<(A) = A1⊗ A2 and S>(A) = S<(σ(A)) = A2⊗ A1

for any objectA = (A1, A2)∈Ob
(∏

i∈I Ei
)
, and the morphism

S>,<(A) : S<(A)→ S>(A)

is given stalkwise by

S>,<(A)(a1⊗ a2) = S>(σ)(A)(a1⊗ a2) = a2⊗ a1,

wherea1 anda2 are germs of sections ofA1 andA2, respectively.
The classical determinant det :F → P is defined by det(A) = 〈∧nA A, nA

〉
,

and the composition detB S is an order invariant, symmetric bi-determinant.
The order invariant and symmetric functorT :

∏
i∈I Pi → Q is given by

T<(X̄) = 〈X
⊗
nX2

1 ⊗X
⊗
nX1

2 , nX1 + nX2〉 and T>(X̄) = T<(σ(X̄))
for any objectX̄ = (X̄1, X̄2)∈Ob

(∏
i∈I Pi

)
, and the morphism

T>,<(X̄) : T<(X̄)→ T>(X̄)

is given stalkwise by

T>,<(X̄)

( nX2⊗
j=1
x1,j ⊗

nX1⊗
i=1
x2,i

)
= (−1)(

nX1
2 )(

nX2
2 )

nX1⊗
i=1
x2,i ⊗

nX2⊗
j=1
x1,j .

The functorT< is a bi-AC tensor functor via the morphisms

T<, 2(X̄
′
1, X̄

′′
1 , X̄2) : T<(X̄

′
1⊗ X̄ ′′1 , X̄2)→ T<(X̄

′
1, X̄2)⊗ T<(X̄ ′′1 , X̄2)

and

T<,1(X̄1, X̄
′
2, X̄

′′
2 ) : T<(X̄1, X̄

′
2⊗ X̄ ′′2 )→ T>(X̄1, X̄

′
2)⊗ T>(X̄1, X̄

′′
2 ),
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given on stalks by

nX2⊗
j=1
(x ′1,j ⊗ x ′′2,j )⊗

nX′1+nX′′1⊗
i=1

x2,i 7→
nX2⊗
j=1
x ′1,j ⊗

nX′1⊗
i=1
x2,i ⊗

nX2⊗
j=1
x ′′1,j ⊗

nX′1+nX′′1⊗
i=nX′1+1

x2,i

and
nX′2+nX′′2⊗
j=1

x1,j ⊗
nX1⊗
i=1
(x ′2,i ⊗ x ′′2,i )

7→ (−1)nX′2nX′′2(
nX1

2 )
nX′2⊗
j=1
x1,j ⊗

nX1⊗
i=1
x ′2,i ⊗

nX′2+nX′′2⊗
j=nX′2+1

x1,j ⊗
nX1⊗
i=1
x ′′2,i .

The reader can check that the diagram

T<(X̄
′
1⊗ X̄ ′′1 , X̄ ′2)⊗ T<(X̄ ′1⊗ X̄ ′′1 , X̄ ′′2 )

''OOOOOOOOOOOOO

T<(X̄
′
1, X̄

′
2)⊗ T<(X̄ ′′1 , X̄ ′2)⊗ T<(X̄ ′1, X̄ ′′2 )⊗ T<(X̄ ′′1 , X̄ ′′2 )

1⊗ψ⊗1
��

T<(X̄
′
1⊗ X̄ ′′1 , X̄ ′2⊗ X̄ ′′2 )

BB������������

��
999999999999
T<(X̄

′
1, X̄

′
2)⊗ T<(X̄ ′1, X̄ ′′2 )⊗ T<(X̄ ′′1 , X̄ ′2)⊗ T<(X̄ ′′1 , X̄ ′′2 )

T<(X̄
′
1, X̄

′
2⊗ X̄ ′′2 )⊗ T<(X̄ ′′1 , X̄ ′2⊗ X̄ ′′2 )

77ooooooooooooo

commutes, and ifT>,1 = T<,2 andT>,2 = T<,1, thenT>,< is a morphism of bi-
AC tensor functors. If we denote the functor det :

∏
i∈I Ei →

∏
i∈I Pi given by

det(A1, A2) = (det(A1),det(A2)) by det as well, then the compositionT B det is
also an order invariant and symmetric bi-determinant. We defineη : detB S →
T B det stalkwise by

η<(A)

( ∧
(i,j)∈J(A)

a
j

1,i ⊗ ai2,j
)
=

n(A2)⊗
j=1

n(A1)∧
i=1

a
j

1,i ⊗
n(A1)⊗
i=1

n(A2)∧
j=1

ai2,j,

whereJ(A) is the ordered set{1, . . . , n(A1)} × {1, . . . , n(A2)} (with lexicographi-
cal ordering) andη>(A) = η<(σ(A)). The diagram

detB S< //

η<

��

detB S>
η>

��

T< B det // T> B det

commutes because the pullback by the transpositionJ(A)→ J(σ(A)) of the lexi-
cographical ordering onJ(σ(A))differs from the lexicographical ordering onJ(A)
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by a permutation of signature(−1)(
nA1

2 )(
nA2

2 ). The reader may check thatη is a mor-
phism of order invariant and symmetric bi-determinants. Therefore(det,det, η)
is an order invariant and symmetric〈S, T, iso, iso〉-determinant, and by Corol-
lary 4.13(det,det, η) has an essentially unique extension to an order invariant and
symmetric〈C(S), T,qis,qis〉-determinant.

Next we take a quick look at contravariant functors.

Definition 4.15. LetE andF be exact categories. For any contravariant func-
tor S : E → E, we define the extended contravariant functor CS : CE → CE by
the formulas in SGA 4 (XVII,1.1.5.1):

[CS(A)]k = A−k,
[CS(α)]k = α−k,
[dCS(A)]

k = (−1)k+1S(d
−(k+1)
A ).

Lemma 4.16. If S is exact, then so isCS. If T denotes the translation functor
and ifC(α) denotes the mapping cone of the morphismα, then there are canonical
isomorphisms of functors

T −1 B CS ≈ CS B T,
TC(CS(α)) ≈ CS(C(α)).

Corollary 4.17. The restriction functor on the Picard category of contravariant
〈CS, T, iso, iso〉-determinants is an equivalence and also an AC tensor functor.

Example 4.18 [D]. LetE = F andP = Q be as in Example 4.14, and let the
functorsS : E → F andT : P → Q be given by

S(A) = A∨, S(α) = α∨,
T 〈X,m〉 = 〈X∨, m〉, T (α) = α∨.

ThenS is a contravariant exact functor,T is a contravariant AC tensor functor, and
we have a natural isomorphism of contravariant determinants

η : detB S → T B det.

Hence(det,det, η) is an 〈S, T, iso, iso〉-determinant, and by Corollary 4.17 the
canonical isomorphism for finite locally free sheaves

∧nA(A∨) → (∧nA A
)∨

ex-
tends uniquely to complexes.

5. The Homotopy Formula

In this section the termsE, C(E ), P, andσ are as in Section 2, andf = (f1, f2)

is a determinant onE iso with values inP.
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Definition 5.1. For complexesA,B and a mapα : A → B, we have the fol-
lowing objects and maps inE :

A+ =⊕
i

A2i ,

A− =⊕
i

A2i+1;
α+ =⊕

i

α2i : A+ → B+,

α− =⊕
i

α2i+1: A− → B−.

Lemma 5.2. Any zero-homotopic complex is split exact.(See Definition 2.16.)

Proof. Let h be a homotopy for the complexA, and leth′ = h− dh3d. We leave
it to the reader to verify that 1= dh′ + h′d andh′2 = 0. Hence we may assume
thath2 = 0. The mapspi = d i−1hi andq i = hi+1d i are projections, and the
isomorphismsAi → Zi ⊕ Zi+1 are given by the two mapspi andd iq i .

Proposition 5.3. Let A be a homotopically trivial complex, and leth be a
homotopy forA. Then the mapd− + h− : A− → A+ is an isomorphism, the
mapf(d− + h−) : f(A−) → f(A+) does not depend on the choice ofh, and
f(d+ + h+) = (f(d− + h−))−1.

Proof. By Lemma 5.2,A is split exact. The composition(d+ +h+)(d− +h−) =
1+ h+h− is an isomorphism becauseh+h− is nilpotent. Also 1+ h+h− respects
the natural filtration and induces the identity on each quotientA2n+1; hence, by
Proposition 1.7,f(d+ + h+)f(d− + h−) = 1f(A− ). If h′ is another homotopy
for A, thenh′ − h is a morphismTA → A. We leave it to the reader to check
that any morphism of split exact complexes is homotopic to zero, so there is a
map s : T 2A → A such thath′ − h = ds − sd. The two mapsd− + h′− and
(1− s+)(d− + h−)(1+ s−) induce the same map grA− → grA+, and since
f(1− s+) = 1f(A+ ) andf(1+ s−) = 1f(A− ), the proposition follows from Propo-
sition 1.7.

Definition 5.4. Consider a pair(α, β) of morphisms of complexesα : A →
B andβ : B → A. A pair (h, k) of mapsh : TA → A andk : TB → B will
be called an(α, β)-good pair of homotopiesif (i) they are homotopies (i.e.,
dh + hd = 1 − βα and dk + kd = 1 − αβ) and (ii) there exists a map
l : T 2A → B such thatkα − αh + dl − ld = 0. Symmetrically, we say that
(k, h) is (β, α)-good if hβ − βk + dm − md = 0 for somem : T 2B → A. We
say that(h, k) is agood pair if (h, k) is (α, β)-good and(k, h) is (β, α)-good.

Remark 5.5. Note that the relations just described simply say that the maps(
k l

β −h
)

: TC(α)→ C(α) and

(
h m

α −k
)

: TC(β)→ C(β)

are homotopies forC(α) andC(β), respectively.
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Proposition 5.6. Let α : A → B and β : B → A be a pair of morphisms of
complexes, and leth : TA→ A andk : TB → B be a pair of homotopies for the
pair α, β. If we defineh1 = h + β(kα − αh) andk1 = α(hβ − βk), then both
pairsh1, k andh, k1 are good.

Proof. The goodness ofh1, k is readily checked by settingl = kαh − k2α and
m = hβk − h2β − βk2.

Proposition 5.7. Let α : A→ B be a morphism, letβ : B → A be a homotopy
inverse, and leth : TA → A andk : TB → B be an(α, β)-good pair of homo-
topies. Then the map(

α+ d− + k−
d+ + h+ −β−

)
: A+ ⊕ B− → B+ ⊕ A−

is an isomorphism, the map

f

(
α+ d− + k−

d+ + h+ −β−
)

: f(A+ ⊕ B−)→ f(B+ ⊕ A−)

does not depend upon the choice ofβ, h, andk, and

f

(
β+ d− + h−

d+ + k+ −α−
)
=
(
f

(
α+ d− + k−

d+ + h+ −β−
))−1

.

Proof. Let l : T 2A→ B be as in Definition 5.4. In order to simplify the compu-
tations we use the following commutative diagram, where the vertical arrows are
shuffling morphisms:

A+ ⊕ B−

��

(
α+ + l+ d− + k−
−(d+ +h+ ) β−

)
// B+ ⊕ A−

��

(
β+ −(d− +h− )

d+ + k+ α− + l−
)

// A+ ⊕ B−

��

C(α)−
(
d α

0 −d
)−+( k l

β −h
)−

// C(α)+
(
d α

0 −d
)++( k l

β −h
)+

// C(α)− .

Consider the three compositions((
d α

0 −d
)
+
(
k l

β −h
))+((

d α

0 −d
)
+
(
k l

β −h
))−

=
(

1 0
0 1

)−
+
(
k2 + lβ kl − lh
βk − hβ βl + h2

)−
,

((
d α

0 −d
)
+
(
k l

β −h
))+((

d α

0 −d
)
+
(
k 0
β −h

))−
=
(

1 0
0 1

)−
+
(
k2 + lβ −dl − lh
βk − hβ h2

)−
,
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d α

0 −d
)
+
(
k 0
β −h

))+((
d α

0 −d
)
+
(
k l

β −h
))−

=
(

1 0
0 1

)−
+
(

k2 kl − ld
βk − hβ βl + h2

)−
.

All these matrices respect the fine admissible filtration onC(α)− given byC(α)− =
· · · ⊕B2i−1⊕A2i ⊕B2i+1⊕ · · · and induce the identity on each successive quo-
tient. It follows from this and from Proposition 1.5(c) that(
f

(
α+ d− + k−

d+ + h+ −β−
))−1

= ε(f(A−))
(
f

(
α+ d− + k−

−(d+ + h+) β−
))−1

= ε(f(A−))
(
f

(
α+ + l+ d− + k−
−(d+ + h+) β−

))−1

= ε(f(A−))f
(

β+ −(d− + h−)
d+ + k+ α− + l−

)
= f

(
β+ d− + h−

d+ + k+ −(α− + l−)
)

= f
(

β+ d− + h−
d+ + k+ −α−

)
.

The proposition now follows from Propositions 5.3 and 5.6.

Definition 5.8. Letα : A→ B be a homotopy equivalence. We denote byf̃ (α)

the morphism that makes the following diagram commutative (hereβ is any ho-
motopy inverse, andh andk is any(α, β)-good pair of homotopies):

f(A+ ⊕ B−)

f

(
α+ d− + k−

d+ +h+ −β−
)

��

// f(A+)⊗ f(B−)

f̃(α)

��

f(B+ ⊕ A−) // f(B+)⊗ f(A−) .

Theorem 5.9 (The Homotopy Formula).Let Cσ(f ) be theσ -extension of the
determinantf to C(E )qis. Then, for any homotopy equivalenceα : A → B, the
following diagram is commutative:

f(A+ )⊗f(B− )⊗f σ(A− )⊗f σ(B− )

f̃(α)⊗1⊗1

��

σ({2,4})
// f(A+ )⊗f σ(A− ) // Cσ(f )(A)

Cσ(f )(α)

��

f(B+ )⊗f(A− )⊗f σ(A− )⊗f σ(B− ) σ({2,3})
// f(B+ )⊗f σ(B− ) // Cσ(f )(B) .

Proof. We start with the caseB = 0. In this caseA is split exact and, assuming
h2 = 0, we have the commutative diagram
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A+(
d−h+
d+

)
��

d+ +h+
// A−(

d+h−
d−

)
��

Z+ ⊕ Z−
(

0 1
1 0

)
// Z− ⊕ Z+ .

This and the properties of the inverse structureσ (see Definition A.16) shows that
we have a commutative diagram

f(A+)⊗f σ(A−)

��

f(d+ +h+ )⊗1
// f(A−)⊗f σ(A−)

��

// 1

��

f(Z+)⊗f(Z−)⊗f σ(Z−)⊗f σ(Z+)

��

ψ⊗1⊗1
// f(Z−)⊗f(Z+)⊗f σ(Z−)⊗f σ(Z+)

��

// 1

��

Cσ(f )(Z)⊗Cσ(f )(TZ) // Cσ(f )(Z)⊗Cσ(f )(TZ) // 1,

and this proves the theorem in the caseB = 0. The caseA = 0 follows by taking
inverses.

For the special complex C(1A) we have that 0R : C(1A) → 0 is a homotopy
equivalence with homotopy

( 0 0
1 0

)
, and from the theorem in the caseB = 0 we

obtain the commutative diagram

Cσ(f )(A)⊗ Cσ(f )(TA)

��

// Cσ(f )(C(1A))

Cσ(f )(0R)

��

f(A+)⊗ f σ(A−)⊗ f(A−)⊗ f σ(A+) σ({1,4},{2,3})
// 1.

We also have the commutative diagrams

Cσ(f )(A)⊗ Cσ(f )(TA)

Cσ(f )(α)⊗1

��

// Cσ(f )(C(1A))

��

Cσ(f )(B)⊗ Cσ(f )(TA) // Cσ(f )(C(α))

and

f(C(α)−)

f̃(0L)

��

// f(A+)⊗ f(B−)

ε(f(A− ))f̃ (α)
��

f(C(α)+) // f(B+)⊗ f(A−) .
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These diagrams, together with the theorem in the caseA = 0, show that the
right vertical composition from top to bottom in the following diagram is the map
Cσ(f )(0L) and that the theorem follows if the whole diagram is commutative. The
top and bottom squares commute by definition, and the middle square commutes
by Theorem A.22.

Cσ(f )(A)⊗Cσ(f )(TA) // 1

f(A+)⊗f(B−)⊗f σ(A−)⊗f σ(B−)⊗f(A−)⊗f σ(A+)

f̃(α)⊗1⊗1⊗1⊗1

��

σ({2,4})

OO

σ({3,5})
// f(A+)⊗f(B−)⊗f σ(B−)⊗f σ(A+)

OO

ε(f(A− ))f̃ (α)⊗1⊗1

��

f(B+)⊗f(A−)⊗f σ(A−)⊗f σ(B−)⊗f(A−)⊗f σ(A+)

σ({2,3})

��

σ({2,3})
// f(B+)⊗f(A−)⊗f σ(B−)⊗f σ(A+)

��

Cσ(f )(B)⊗Cσ(f )(TA) // Cσ(f )(C(α))

A. Picard Categories

We recall the definition of an associative and commutative (AC) tensor category
P (see also [Ke; L; S]).

Definition A.1. An AC tensor categoryP = (P,⊗, φ, ψ) consists of a cate-
goryP, a bifunctor⊗ : P × P → P, and two natural isomorphisms,

φ(X, Y,Z) : (X ⊗Y )⊗ Z→ X ⊗ (Y ⊗ Z),
ψ(X, Y ) : X ⊗Y → Y ⊗X,

that satisfy the following two axioms.
Pentagonal Axiom.The following diagram is commutative:

((X ⊗Y )⊗ Z)⊗W
φ⊗1

xxqqqqqqqqqqq
φ

&&LLLLLLLLLLL

(X ⊗ (Y ⊗ Z))⊗W

φ

��
((((((((((

(X ⊗Y )⊗ (Z ⊗W)

φ

­­����������

X ⊗ ((Y ⊗ Z)⊗W) 1⊗φ
// X ⊗ (Y ⊗ (Z ⊗W)) .
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Hexagonal Axiom.The following diagram is commutative:

(X ⊗Y )⊗ Z

φwwpppppppp ψ⊗1

''NNNNNNNN

X ⊗ (Y ⊗ Z)
ψ

��

(Y ⊗X)⊗ Z
φ

��

(Y ⊗ Z)⊗X
φ

''NNNNNNNN
Y ⊗ (X ⊗ Z)

1⊗ψwwpppppppp

Y ⊗ (Z ⊗X) .

Remark A.2. The general coherence theorem is proved in [L]. It states that
all diagrams involving just theφs and theψs commute. This means that, ifI
andJ are disjoint finite sets and if{Xi}i∈I∪J is an indexed set of objects ofP,
then it makes sense to talk about the “object”

⊗
i∈I Xi and the unique isomor-

phism induced byφ andψ :
⊗

i∈I Xi ⊗
⊗

i∈J Xi →
⊗

i∈I∪J Xi. For this rea-
son we will often drop parentheses and names of these canonical morphisms in
diagrams.

Definition A.3. An AC tensor functorh = (h1, h2) : (P ′,⊗′, φ ′, ψ ′) →
(P,⊗, φ, ψ) consists of a functorh1 : P → P ′ and a natural isomorphism
h2(X, Y ) : h1(X ⊗′ Y ) → h1(X) ⊗ h1(Y ) that together make the following two
diagrams commutative:

h1((X⊗′ Y )⊗′Z)
h2(X⊗′Y,Z) //

h1(φ
′ )

��

h1(X⊗′ Y )⊗h1(Z)
h2(X,Y )⊗1

// (h1(X)⊗h1(Y ))⊗h1(Z)

φ

��

h1(X⊗′ (Y ⊗′Z))
h2(X,Y⊗′Z) // h1(X)⊗h1(Y ⊗′Z)

1⊗h2(Y,Z) // h1(X)⊗(h1(Y )⊗h1(Z)) ;

h1(X ⊗′ Y ) h2(X,Y ) //

h1(ψ
′ )

��

h1(X ⊗ h1(Y )

ψ

��

h1(Y ⊗′ X) h2(Y,X) // h1(X)⊗ (h1(Y ) .

Definition A.4. If f = (f1, f2) andg = (g1, g2) are AC tensor functors from
an AC tensor categoryP ′ to an AC tensor categoryP, then an AC natural trans-
formationη : f1→ g1 is an AC natural transformation if the following diagram is
commutative:
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f1(X⊗′ Y ) f2(X,Y ) //

η(X⊗′Y )
��

f1(X)⊗ f1(Y )

η(X)⊗η(Y )
��

g1(Y ⊗′ X) g2(Y,X) // g1(X)⊗ (g1(Y ) .

Definition A.5. If f = (f1, f2) andg = (g1, g2) are AC tensor functors from
an AC tensor categoryP ′ to an AC tensor categoryP, then we define the tensor
productf ⊗ g as follows:

(f ⊗ g)1(X) = f1(X)⊗ g1(X),

(f ⊗ g)2(X, Y ) = (1⊗ ψ ′ ⊗1) B (f2(X, Y )⊗ g2(X, Y )).

Proposition A.6. The AC tensor functors( from an AC tensor categoryP ′ to an
AC tensor categoryP) and the AC natural transformations form a category that
we denote byHom⊗(P ′, P ). The tensor product together withφ andψ induce on
Hom⊗(P ′, P ) the structure of an AC tensor category.

Proof. It follows from the general coherence theorem thatφ andψ induce natu-
ral transformations that satisfy both the pentagonal and the hexagonal axiom.

Definition A.7. A unit (U, δL, δR) in a commutative tensor category(P,⊗,
φ, ψ) consists of an objectU together with two natural isomorphisms,

δL(X) : U ⊗X→ X,

δR(X) : X ⊗ U → X,

that satisfy the following axioms.
Unit Axioms.The following three diagrams are commutative:

X ⊗ U

ψ(X,U)

��

δR(X)

##FFFFFFF

X ;

U ⊗X
δL(X)

;;xxxxxxx

(X ⊗Y )⊗ U

φ(X,Y,U)

��

δR(X⊗Y )
$$IIIIIII

X ⊗Y ;

X ⊗ (Y ⊗ U)
1⊗δR(Y )

::uuuuuuu

(X ⊗ U)⊗Y

φ(X,U,Y )

��

δR(X)⊗1

$$IIIIIII

X ⊗Y .

X ⊗ (U ⊗Y )
1⊗δL(Y )

::uuuuuuu

Remark A.8. It is shown in [S, 2.4.1] that the left diagram is redundant and that
ψ(U,U) = 1U⊗U . For any two unitsU andU ′, there is a unique isomorphism
γ (U ′, U) : U → U ′ such that, for anyX, we haveδ ′R(X) B 1⊗ γ (U ′, U) =
δR(X). An objectU together with an isomorphismδ : U ⊗ U → U is called a
reduced unit.In [S, 2.2.5.1] it is shown that, for any reduced unit(U, δ), there
is a unique unit(U, δL, δR) such thatδ(U) = δL(U) = δR(U). Furthermore, if
J ⊆ I are finite sets and if{Xi}i∈I is an indexed set of objects ofP such that
(Xj,Xj ⊗Xj → Xj) is a unit for eachj ∈ J, then we have a unique “cancellation
isomorphism”

⊗
i∈I Xi →

⊗
i∈I \J Xi.
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For any unitU, End(U) acts viaδ on any object ofP. In particular, End(U)
acts onU and endows End(U) with two operations. The naturality ofδ and the
functoriality of⊗ show that the two operations are identical, that End(U) is a
commutative monoid, and that Aut(U) is an abelian group.

Corollary A.9. If P andP ′ are AC tensor categories andP has units, then
any assignmentX 7→ u1(X), X 7→ δ(X) : u1(X)⊗u1(X)→ u1(X) of a unit inP
to every objectX ofP ′ defines a unique unit(u, δ : u⊗ u→ u) in Hom⊗(P ′, P ).

DefinitionA.10. A right inverseto an objectX in a tensor categoryP consists of
an objectY and an isomorphismρ : X⊗Y → U withU a unit. We say that an ob-
jectX of a tensor categoryP is invertibleif a right inverse exists. For any right in-
verseρ : X⊗Y → U,we have an associated left inverseρBψ(Y,X) : Y ⊗X→ U.

Remark A.11. For an invertible objectX,we derive (viaY andρ) isomorphisms
of monoids End(X) ≈ End(X ⊗ Y ) ≈ End(U), and these isomorphisms do not
depend on the choice ofY andρ.

From now on we shall consider only tensor categories that have units, and we pick
a particular unit(1, δL, δR).

Definition A.12. For any invertible objectX, the automorphismψ : X⊗X→
X ⊗X induces an automorphism of order 2 of Aut(1) that we callε(X).

Proposition A.13. The assignmentX 7→ ε(X) is a function[Inv P ] → Aut(1)
from isomorphism classes of invertible objects ofP to the automorphism group of
the identity object. Furthermore,ε(1) = 1 and ε(X ⊗Y ) = ε(X)ε(Y ).
Proposition A.14. If ρ : X ⊗Y → 1 is an isomorphism, then the composition

Y
(δR(Y ))−1−−−−−→ Y ⊗ 1

(1⊗ρ)−1−−−−→ Y ⊗X ⊗Y ψ⊗1−−→ X ⊗Y ⊗Y ρ⊗1−−→ 1⊗Y δL(Y )−−−→ Y

is ε(Y )1Y .

Proof. The proof can be seen from the following diagram:

Y ⊗X ⊗Y ψ⊗1
// X ⊗Y ⊗Y

Y ⊗ (X ⊗Y ) ψ
//

1⊗ρ
��

(X ⊗Y )⊗Y 1⊗ψ
//

ρ⊗1

��

X ⊗Y ⊗Y
ρ⊗1

��

Y ⊗1
ψ

//

��

1⊗Y 1⊗ε(Y )1
//

��

1⊗Y

��

Y Y
ε(Y )1

// Y .
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DefinitionA.15. APicard categoryis anAC tensor category with units and with
the properties that every object is invertible and every morphism is an isomorphism.

Definition A.16. An inverse structureσ = (σ1, σ2, σ3) on a Picard categoryP
consists of anAC tensor functor(σ1, σ2) : P → P and anAC natural isomorphism
σ3 : id⊗ σ1→ 1.

Remark A.17. Note that an inverse structure is simply an inverse to the iden-
tity functor in Hom⊗(P, P ). Any two inverse structures are canonically isomor-
phic, and an inverse structure is uniquely determined by a choice of an inverse
σ3 : X ⊗ σ1(X)→ 1 for every objectX of P.

The rest of this section will be devoted to a theorem that is an elaboration of Propo-
sition A.14. We fix a Picard categoryP and an inverse structureσ onP. We will
make use of the notationXσ = σ1(X) andσ(X) : X ⊗Xσ → 1.

Definition A.18. We will call a pair of objects{X, Y } of P aninverse coupleif
X = Y σ or Y = Xσ .

Definition A.19. Let{Xi}i∈I be a finite indexed set of objects ofP, and letS =
{{s1, s ′1}, {s2, s

′
2}, . . . , {sk, s ′k }} be a set of pairwise disjoint pairs of indexes ofI

such that each pair{Xsi , Xs′i } is an inverse couple. By the naturality of all the maps
generated byφ, ψ, andδ, it follows thatS determines a unique isomorphism⊗

i∈I
Xi −−−→ ⊗

i∈I \⋃ S

Xi,

which we call thecontractiondefined byS and denoteσ(S).

Consider again a finite indexed set{Xi}i∈I of objects ofP, and letS = {{s1, s ′1},{s2, s
′
2}, . . . , {sk, s ′k }} andT = {{t1, t ′1}, {t2, t ′2}, . . . , {tk, t ′k }} be two disjoint sets of

pairwise disjoint pairs of indexes ofI such that, for eachi, each pair{Xsi , Xs ′i } ={Xti , Xt ′i } is an inverse couple. From these conditions we can conclude that (i) the
graph with verticesS ∪ T and edges the set{{x, y} | x ∩ y 6= ∅} is bipartite and
(ii) the connected componentsC ⊆ P(S ∪ T ) are either cycles or chains. We let
C0 be the set of cycles,C1 the odd chains, andC2 = CS

2 ∪ CT2 the even chains.
The set of even chains both starts and ends in eitherS orT . To each chain or cycle
c ∈C, there corresponds a unique inverse couple{X(c),Xσ(e)}.
Definition A.20. Let{Xi}i∈I , S, andT be as before. We say that a one-to-one
mappingβ : CT2 → CS

2 is a perfect matchingif, for each chaine ∈ CT2 , the in-
verse couple corresponding toe is the same as the inverse couple corresponding to
β(e). For any perfect matchingβ, we define the mapping̃β : I \⋃ S → I \⋃ T

as follows. Ifi ∈ I \ (⋃ S ∪⋃ T
)

then we letβ̃(i) = i; if i ∈ x ∈ o ∈ C1 then
we letβ̃(i) be the unique indexj ∈⋃ o \⋃ T ; if i ∈ x ∈ e ∈CT2 then we letβ̃(i)
be the unique indexj ∈⋃β(e) \⋃ T for whichXi = Xj . Sinceβ̃ is one-to-one
and sinceXi = Xβ̃(i), we obtain an isomorphism that we give the same name:⊗

i∈I \⋃ S

Xi
β̃−−−→ ⊗

i∈I \⋃ T

Xi.
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Since for any objectX we haveε(X) = ε(Xσ ), it follows that the mapε is well-
defined onS ∪ T .
Definition A.21. We defineε on the connected components ofS∪T as follows:

ε(c) =
{
ε(x) for any x ∈ c if c ∈Ci and]c ≡ i (mod 4),

1 otherwise.

Finally, we defineε(S, T ) =∏c∈C ε(c).

Theorem A.22. With notation as in Definitions A.20 and A.21, for any perfect
matchingβ, the following diagram commutes:⊗

i∈I
Xi

σ(S)

{{xxxxxxxx
σ(T )

##GGGGGGGG

⊗
i∈I \⋃ S

Xi
ε(S,T )β̃ //

⊗
i∈I \⋃ T

Xi .

Proof. By naturality we can reduce the general case to three special ones. The
first case is whenC = C0 = {c} and ]c = 2k. We can further assume that
I = {1,2, . . . ,2k}, Xi = X for 1 ≤ i ≤ k, Xi = Xσ for k + 1 ≤ i ≤ 2k, S =
{{1, k}, {2, k+1}, . . . , {k,2k}},andT = {{2, k}, {3, k+1}, . . . , {k,2k−1}, {1,2k}}.
Let τ be the permutation defined byτ(i) = i +1 for 1≤ i ≤ k −1 andτ(k) = 1.
Thenτ determines an isomorphismψ(τ) of the tensor product, and the following
diagram commutes: ⊗

i∈I
Xi

ψ(τ)
//

σ(S)

��

σ(T )

""FFFFFFFFFFFF

⊗
i∈I
Xi

σ(S)

��

1
ε(c)

// 1.

The other cases are that of a single odd chain and that of two even chains; we leave
the proof of these cases to the reader.

B. Letter from A. Grothendieck

Buffalo
May 19, 1973

Dear Finn Knudsen,
Mumford sent me your notes on the determinant of perfect complexes, asking

me to write you some comments, if I have any. Indeed I do have several—except
for the obvious one that it is nice to have written up with details at leastonefull
construction of that damn functor! I did not enter into the technicalities of your
construction, which perhaps will allow [me] to get a better comprehension of the
main result itself. The main trouble with your presentation seems to me that the
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bare statement of the main result looks rather mysterious and not “natural” at all,
despite your claim on page 3b! The mysterious character is of course included in
the alambicated sign of definition1.1. Here two types of criticism come to mind:

1) The sign looks complicated—are there not simpler sign conventions for get-
ting a nice theory of det∗ and its variance? It seems to me that Deligne wrote down
a system that really did look natural at every stage—however he never wrote down
the explicit construction, as far as I know, and the chap who had undertaken to do
so gave up in disgust after a year or two of letting the question lie around and rot!

2) Even granted that your conventions are as simple or simpler than other ones,
the very fact that they are so alambicated and technical calls for an elucidation,
somewhat of the type you give on page 3b with thoseεi ’s. That is, one would
like to definefirst what any theory of det∗ should be (with conventions of sign as
yet unspecified), stating say something like auniqueness theoremfor every given
system of signs chosen for canonical isomorphisms, and moreovercharacterizing
those systems of sign conventions which allow for an existence theorem—which
will include the existence of at least one such system of signs. If one has good in-
sight into all of them, it will be a matter of taste and convenience for the individual
mathematician (or the situation he has to deal with in any instance) to make his
own choice!

A second point is the introduction of such evidently superfluous assumptions like
working on Noetherian (!) schemes, whereas the construction is clearly so general
as to work, say, over any ringed space and even ringed topos—and of course it will
be needed in this generality, for instance on analytic spaces, or on schemes with
groups of automorphisms acting, etc. It’s just a question of some slight extra care
in the writing up. It is clear in any case that the question reduces to defining det∗
for strictly perfect complexes (i.e. which are free of finite type in every degree),
and for homotopy classes of homotopy equivalences between such complexes, as
well as for short exact sequences of such complexes. (NB! One may wish to deal,
more generally, in the Illusie spirit, with strictly perfect complexes filtered—by
a filtration which is finite but possibly not of level two—by subcomplexes with
strictly perfect quotients.) Now this allows [us] to restate the whole thing in a more
general setting, which could make the theory more transparent, namely:

An additive categoryC (say free (or projective) modules of finite type over a
commutative ringA) is given, as well as a categoryP which is a groupoid, en-
dowed with an operation⊗ together with associativity, unity and commutativ-
ity data, satisfying the usual compatibilities (see for instance Saavedra’s thesis
in Springer’s lecture notes) and with all objects “invertible”. In the example for
C, we take forP invertibleZ-graded modules overA, with tensor product, the
commutative lawL ⊗ L′ ' L′ ⊗ L involving the Koszul sign(−1)dd

′
whered

andd ′ are the degrees ofL andL′ respectively. We are interested in functors
(or a given functor)f : (C, isom) → P, together with a functorial isomorphism
f(M +N) ' f(M)⊗ f(N ), compatible with the associativity and commutativ-
ity data (cf. Saavedra for this notion of a⊗); for sintance, in the example chosen,
we takef(M) = det∗(M), the determinant module where∗ stands for the degree
which we put on the determinant module (our convention will be to put the degree
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equal to the rank ofM,which will imply that our functor is indeed compatible with
the commutativity data). It can be shown (this was done by a North Vietnamese
mathematician, Sinh Hoang Xuan) that givenC (indeed any associative and com-
mutative⊗-category would do), there exists a universal way of sendingC toP as
above—in the case considered, this category can be called the category of “sta-
ble” projective modules overA, and its main invariants (isomorphism classes of
objects, and automorphisms of the unit object) are just the invariants K0(A) and
K1(A) of myself and Dieudonné-Bass; but this existence of a universal situation
is irrelevant for the technical problem to come. Now consider the categoryK =
K b(C ), of bounded complexes ofC, up to homotopy. It is a triangulated category,†

and as such we can define the notion of a⊗-functor fromK into P; it’s first of
all a⊗-functor for the additive structure ofK (the internal composition ofK be-
ing ⊗), but with moreover an extra structure . . . giving isomorphismsg(M) '
g(M ′) ⊗ g(M ′′) whenever we have an exact triangleM ′ → M → M ′′ → M ′.
This should of course satisfy various conditions, such as functoriality with respect
to the triangle, case of split exact triangle(M = M ′ ⊗ M ′′), case of the trian-
gle obtained by completing a quasi-isomorphismM ′ → M, and possibly also a
condition of compatibility in the case of an exact triangle of triangles. (I guess
Deligne wrote down the reasonable axioms some day; it may be more convenient
to work with the filteredK-categories of Illusie, using of course finite filtrations
that split in the present context). Of course if we have such ag : K → P, taking
its “restriction” toC we get anf : C → P. The beautiful statement to prove would
then be that conversely, every givenf extends, uniquely up to isomorphism, to a
g, in other terms, that the restriction functor from the category ofg’s to the cate-
gory off ’s is an equivalence. The whole care, for such a statement, will of course
be to give the right set of “sign conventions” for defining admissibleg’s (that is,
compatibilities between the two or three structures on the set ofg(M)’s—which in
fact all can be reduced to giving the isomorphisms attached to exact triangles). In
this general context, the group of signs±1 is replaced by the subgroup of elements
of order 2 of the group K1(P) = Aut(1P) (which is always a commutative group).
The “sign map”n→ (−1)n from the group of degrees to the group of signs is re-
placed here by a canonical map K0(P)(= group of isomorphism classes ofP)→
K1(P), associating to everyL inP the symmetry automorphism ofL⊗L (viewed
as coming from an automorphism of the unit object by tensoring withL ⊗ L).
What puzzles me a little is that apparently, you have not been able to defineg in

† Be careful that one must take the term “triangulated category” in a slightly more precise sense than
in Verdier’s notes, the “category of triangles” being something more precise than a mere category of
distinguished diagrams inK. We have a functor from the former to the latter, but it is not even a faith-
ful one. (Illusie’s treatment in terms of filtered complexes, in his Springer lecture notes, is a good
reference.) It is only with respect to the category of “true” triangles that the isomorphismg(M) '
g(M ′ )⊗ g(M ′′ ) will be functorial. For instance, if we have anautomorphismof a triangle, inducing
u, u′, andu′′ uponM,M ′, andM ′′, then functoriality is expressed by the relation detu = detu′ detu′′
(which implies, replacingu by id+ tu with t an indeterminate, that Tru = Tr u′ + Tr u′′ ), but this
relation may becomefalse if we are not careful to take automorphisms of true triangles instead of
taking mere automorphisms of diagrams.
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terms intrinsic to the triangulated categoryK = K b(C )—the signs you introduce
in 1.1 do depend on the actual complexes, not only on their homotopy classes. I
guess the whole trouble comes from the order in which we write any given ten-
sor product inP, in describing det∗(M •) we had to choose such an order rather
arbitrarily, and it is passing from one such to another that involves “signs”.

If C is anabeliancategory, there should be a variant of the previous theory,
putting in relations on the⊗-functorsf : C → P together with the extra structure
of isomorphismsf(M) ' f(M ′) ⊗ f(M ′′) for all short exact sequences 0→
M ′ → M → M ′′ → 0 satisfying a few axioms, and⊗-functorsg : Db(C ) →
P. There should also be higher dimensional analogues involvingP ’s that aren-
categories instead of mere 1-categories, and hence involving (implicitly at least)
the higher K-invariants Ki(C ) (i ≥ 0). But of course, first of all the case of the
relation betweenC and Kb(C ) in the simplest case should be elucidated!

I am finishing this letter at the forum where I have no typewriter. I hope you
can read the handwriting!

Best wishes,
A. Grothendieck
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