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Quotients of Divisorial Toric Varieties

Annette A’Campo-Neuen & Jürgen Hausen

Introduction

A frequently occurring question in algebraic geometry is whether an algebraic
group actionG × X → X admits a categorical quotient—that is, a regular map
X → Y that is universal with respect toG-invariant regular mapsX → Z. For
example, moduli functors are often co-represented by categorical quotients. In
general, it is a difficult problem to decide whether a categorical quotient exists.
Some counterexamples for actions of the multiplicative groupC∗ are presented
in [4].

As these examples show, difficulties already arise with subtorus actions on toric
varieties. Such actions have been investigated by several authors, mainly focus-
ing on the much more restrictive concept of a good quotient (see e.g. [13; 16; 21]).
The description of toric varieties in terms of rational fans relates the problem of
constructing quotients to problems of combinatorial convexity. Hence the class of
toric varieties serves as a testing ground for more general ideas.

LetX be a toric variety and letH be a subtorus of the big torus ofX. Our ap-
proach to categorical quotients for the induced action ofH onX is to consider
the problem in suitable subcategories. A first step is to construct a quotient in the
category of toric varieties itself: in [2], we showed that there always exists atoric
quotient

p : X→ X/tqH.

This is a toric morphism that is universal with respect toH -invariant toric mor-
phisms. The essential part of the proof is an explicit algorithm in terms of com-
binatorial data. The toric quotient is a canonical starting point for quotients in
further categories. For example, in [3] we gave an explicit method to decide by
means of the toric quotient when a subtorus action on a quasiprojective toric vari-
ety admits a categorical quotient in the category of quasiprojective varieties.

In this paper we give a considerable generalization of the results of [3]; namely,
we solve the analogous problem in the category of divisorial varieties. Recall that
an irreducible varietyX is calleddivisorial if every pointx ∈ X has an affine
neighborhood of the formX \ Supp(D) with an effective Cartier divisorD onX
(see e.g. [10] and [8, II.2.2]).

Received January 19, 2001. Revision received December 21, 2001.

101



102 Annette A’Campo-Neuen & Jürgen Hausen

The class of divisorial varieties contains the quasiprojective varieties as well as
all Q-factorial varieties. It has nice functorial properties (see [10]), and, more-
over, often provides a natural framework to extend statements known to hold for
quasiprojective varieties on the one hand and for smooth varieties on the other.

A connection to toric geometry is provided by the embedding results of [14]: A
variety is divisorial if and only if it admits a closed embedding into a smooth toric
prevarietyZ having an affine diagonal mapZ→ Z×Z. The equivariant version
of this statement implies in particular that a toric variety is divisorial if and only
if it has enough invariant effective Cartier divisors in the sense of Kajiwara [15];
see Section 1.

Now, given a divisorial toric varietyX and a subtorusH of the big torus ofX,
when does the action ofH onX admit a categorical quotient in the category of
divisorial varieties? As mentioned, we start with the toric quotient

p : X→ X/tqH.

A first problem is that in general the toric quotient spaceX/tqH is not a divi-
sorial variety. To deal with this effect, we construct atoric divisorial reduction.
This is a toric morphism

q : X/tqH → (X/tqH )
tdr,

which is universal with respect to toric morphisms to divisorial toric varieties.
The question then is: How do these toric constructions behave in the essentially
larger category of arbitrary divisorial varieties? Our main result gives the follow-
ing answer (see Corollary 6.3).

Theorem. The action ofH onX admits a categorical quotient in the category
of divisorial varieties if and only if the compositionq B p is surjective. Moreover,
in the latter case,q B p is the desired categorical quotient.

The paper is organized as follows. In Section 1 we discuss divisoriality in the con-
text ofG-varieties and provide some general statements used in the subsequent
constructions. Sections 2 and 3 are devoted to the construction of the toric diviso-
rial reduction. This is done in the language of combinatorial convexity. The main
tool is convex support maps that extend the notion of a convex support function
on a fan.

Generalizing the corresponding well-known statement on projectivity and sup-
port functions, we show that divisoriality of a given toric variety is characterized
by the existence of a strictly convex support map on its fan. Moreover, we relate
convex support maps to toric morphisms to divisorial toric varieties. This allows
the construction of the toric divisorial reduction. Finally, we present some exam-
ples in Section 3.

In Sections 4 and 5 we prepare the proof of the main results. The essential task
is to reduce arbitraryH -invariant regular maps toH -invariant toric morphisms.
This is done by the decomposition lemma (presented in Section 5): Given an
H -invariant regular mapf : X→ Y to a divisorial variety, we construct a decom-
positionf = h B g with anH -invariant toric morphismg followed by a rational
maph defined nearg(X).
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The ingredients for the proof of this decomposition lemma are the aforemen-
tioned embedding ofY into a certain smooth toric prevarietyZ provided by [14]
and the following lifting result (presented in Section 4): There exist quasiaffine
toric varietiesX̃ andZ̃ “above”X andZ, respectively, such that the mapf ad-
mits a lifting f̃ : X̃ → Z̃. In essence, this reduces the decomposition problem to
the case of quasiaffine toric varieties.

In Section 6 we give statements and proofs of the main results. Finally, in Sec-
tion 7 we formulate an open problem on categorical quotients for subtorus actions
on toric varieties.

1. Divisorial G-Varieties

Throughout the entire paper, we work over a fixed, algebraically closed fieldK.
Hence, a prevariety is a reduced irreducible scheme of finite type overK, and a
variety is a separated prevariety. We say that a prevarietyX is of affine intersec-
tion if its diagonal morphismX→ X ×X is affine. The word “point” refers to a
closed point.

As usual, when we speak of aG-(pre)variety, whereG is an algebraic group, we
mean an algebraic (pre)varietyX together with aG-action given by a regular map
G×X→ X. See [5; 12] for the basic notions on toric varieties and prevarieties.

In this section, we provide some general facts on group actions on divisorial
varieties. Following Borelli [10], we call a prevarietyX divisorial if every point
x ∈X has an affine open neighborhood of the formU = X \ Supp(D) with an
effective Cartier divisorD onX.

Remark 1.1.

(i) Quasiprojective varieties are divisorial.
(ii) Locally closed subspaces of divisorial prevarieties are divisorial.

(iii) Every divisorial prevarietyX is of affine intersection.
(iv) EveryQ-factorial prevariety of affine intersection is divisorial.

A geometric quotientfor the action of a reductive groupG on a varietyX is an
affine regular mapp : X→ Y such that the fibers ofp are precisely theG-orbits
and the canonical homomorphismOY → p∗(OX)G is bijective. The analogous
notion in the setting of prevarieties (i.e., for possibly nonseparatedX andY ) is
called ageometric prequotient.

In the sequel, we shall make use of the following characterization of divisorial-
ity in terms of geometric quotients and closed embeddings (see [14, Thm. 3.1]).

Theorem 1.2. A varietyX is divisorial if and only if one of the following state-
ments holds.

(i) X is a geometric quotient of a quasiaffine variety by a free algebraic torus
action.

(ii) X admits a closed embedding into a smooth toric prevariety of affine inter-
section.

Here a torus action is calledfreeif every orbit map is a locally closed embedding.
This theorem has the following equivariant version (see [14, Thm. 3.4]).
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Theorem 1.3. LetX be a normal divisorialT-variety, whereT is an algebraic
torus acting effectively.

(i) There is a quasiaffine varietŷX with a regular action of a torusT ×H such
thatH acts freely with aT-equivariant geometric quotient̂X→ X.

(ii) There is aT-equivariant closed embeddingX → Z into a smooth toric pre-
varietyZ of affine intersection, whereT acts as a subtorus of the big torus.

A first consequence is that divisorial varieties with torus actions always have many
invariant effective Cartier divisors. This means that a toric variety is divisorial if
and only if it hasenough invariant effective Cartier divisorsin the sense defined
by Kajiwara [15].

Proposition 1.4. LetT be an algebraic torus, and letX be a normal algebraic
T-varietyX. ThenX is divisorial if and only if there existT-invariant effective
Cartier divisorsD1, . . . , Dr onX such that the setsX \ Supp(Di) are affine and
coverX.

Proof. We may assume thatT acts effectively. LetX be divisorial. By Theo-
rem 1.3, there is aT-equivariant closed embedding ofX into a smooth toric pre-
varietyZ of affine intersection, whereT acts as a subtorus of the big torus. Hence
X inherits the desired property fromZ. The reverse implication is trivial.

As the example of the rational nodal curve with standardK∗-action shows, the as-
sumption of normality is essential in the statement of Proposition 1.4. Our next
result states that divisoriality is inherited by geometric quotients for torus actions.

Proposition 1.5. Let T be an algebraic torus, and suppose thatX is a normal
T-variety with geometric quotientp : X → Y. ThenX is divisorial if and only if
Y is divisorial.

Proof. We may assume that the torusT acts effectively onX. If the quotient va-
riety Y is divisorial, then we obtain the desired effective Cartier divisors onX

by pulling back suitable divisors fromY. Conversely, suppose thatX is diviso-
rial. Then, by Theorem 1.3, we may assume in the proof thatX is a quasiaffine
T-variety.

Given y ∈ Y, we have to find an affine open neighborhood ofy that is the
complement of the support of an effective Cartier divisor onY. Choosing anyT-
equivariant affine closure ofX, we find a functionf ∈O(X), homogeneous with
respect to some characterχf ∈ X(T ), such that forD := div(f ) theT-invariant
setU := X \V(f ) = X \Supp(D) is an affine neighborhood of the fiberp−1(y).

By T-closedness ofp : X→ Y, the setV := p(U) is an open neighborhood of
y ∈ Y. Moreover, as a geometric quotient space of the affineT-varietyU, the setV
is again affine. Thus, to prove the assertion, we need only show thatp(Supp(D))
is the support of an effective Cartier divisorE onY. We construct local equations
for such anE.

First we claim that every pointz ∈ Y has an affine neighborhoodVz ⊂ Y such
that, onUz := p−1(Vz), there is an invertible functionhz ∈O(Uz) that is homoge-
neous with respect to some positive multiplemzχf . To check this, start with any
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affine neighborhoodVz ⊂ Y of z and choose a pointx ∈p−1(z). Consider the sub-
latticeN ⊂ X(T ) of characters occurring as weights of homogeneous functions
g ∈O(Uz) with g(x) = 1.

The sublatticeN is of full rank in X(T ); otherwise, we find a nontrivial 1-
parameter subgroupλ : K∗ → T such thatχ Bλ = 1 holds for allχ ∈N. It follows
thatλ(K∗) is contained in the isotropy groupTx. On the other hand, theT-action
onUz is effective and closed. HenceTx is finite, a contradiction. ThusN is of full
rank. In particular, some positive multiplemzχf lies inN and our claim follows.

Now coverY by finitely manyVz as in our claim. Then we may assume that
all the invertible functionshz ∈O(Uz) are homogeneous with respect to the same
multiplemχf . Every functiongz := f m/hz is T-invariant, is regular onUz, and
vanishes precisely on Supp(D)∩Uz. Since it isT-invariant,gz may be viewed as
a regular function onVz = p(Uz), where its zero set is just

p(Supp(D) ∩ Uz) = p(Supp(D)) ∩ Vz.
Since everygz/gz ′ is an invertible regular function onVz ∩ Vz ′ it follows that the
gz are local equations for the desired Cartier divisorE onY.

As Kajiwara has shown (see [15, Thm. 1.9]), every toric varietyX with enough
invariant effective Cartier divisors arises as a geometric quotient of a quasiaffine
toric varietyX̂ by an algebraic subgroup of the big torus ofX̂. In view of the pre-
ceding results, we can enhance Kajiwara’s statement as follows.

Corollary 1.6. A toric varietyX is divisorial if and only if there is a quasiaffine
toric varietyX̂ and a toric morphismp : X̂ → X such thatker(p) is a subtorus
of the big torus ofX̂ andp is a geometric quotient for the action ofker(p) on X̂.

Proof. If X is divisorial, then Theorem 1.3 gives the desired quotient presentation.
The converse follows from Proposition 1.5.

Finally, we consider translates of divisorial open subsets with respect to an action
of a connected group. If the complement of the subset is small enough, then the
union of such translates is again divisorial.

Lemma 1.7. LetG be a connected linear algebraic group, and letX be a normal
G-variety. If U ⊂ X is a divisorial open subset withcodim(X \ U) ≥ 2, then
alsoG ·U is divisorial.

Proof. We may assume thatX = G ·U holds. LetDU
1 , . . . , D

U
r be Cartier divi-

sors onU such that the setsUi := U \ Supp(DU
i ) form an affine cover ofU. By

closing components, eachDU
i extends to a Weil divisorDi onX.

We claim thatX \SuppDi = Ui. To see this, letAi := X \Ui. SinceUi is affine,
Ai is of pure codimension 1. Clearly Supp(DU

i ) ⊂ Ai and hence Supp(Di) ⊂ Ai.
Thus Supp(Di) is a union of irreducible components ofAi. Moreover, we have

X \ U = X \ (Ui ∪ Supp(DU
i )) = Ai \ Supp(DU

i ).

SinceX \ U has codimension at least 2, it follows that the intersection of each
irreducible componentA′i ofAi with Supp(DU

i ) is dense inA′i . This impliesAi =
Supp(Di) and our claim is proved. In particular, we have
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X = G ·U = G ·
r⋃
i=1

X \ Supp(Di) =
r⋃
i=1

⋃
g∈G

X \ Supp(g ·Di).

Thus it suffices to show that, for eachDi, some multiple is Cartier onX. This
is done as follows. The restrictionD ′i ofDi to the regular locusX ′ ⊂ X is Cartier.
SinceX ′ isG-invariant, we may applyG-linearization; that is, replacingDi with
a suitable multiple we achieve thatODi′ is aG-sheaf (see e.g.[17, Prop. 2.4]).

We claim that this structure of aG-sheaf extends canonically toODi . For an
open setV ⊂ X let V ′ := V ∩ X ′. Given a sections ∈ ODi(V ), we define its
translatesg ·s as follows. Translate the restrictions ′ ∈ODi(V ′) to a sectiong ·s ′ ∈
ODi(g ·V ′) and then extendg ·s ′ to the desired sectiong ·s ∈ODi(g ·V ).

Using theG-sheaf structure onODi , we see that locallyODi is generated by a
single function. That meansDi is a Cartier divisor.

2. Support Maps

Projectivity of a given toric variety is characterized by the existence of a strictly
convex support function on its fan (see e.g. [12]). Generalizing the notion of a sup-
port function, we here introduce the concept of a support map on a fan and define
convexity properties for such maps. The main result of this section states that, for
a given fan, existence of a strictly convex support map is equivalent to divisoriality
of the associated toric variety.

For a latticeN, we denote the associated rational vector space byNQ. A cone
inN is a polyhedral (not necessarily strictly) convex coneσ ⊂ NQ. A quasifanin
N is a finite set3 of cones inN such that forσ ∈3, every face ofσ belongs to
3, and forσ, σ ′ ∈3, the intersectionσ ∩ σ ′ is a face of bothσ andσ ′. A fan is a
quasifan containing only strictly convex cones.

Thesupportof a quasifan3 is the union of all its cones and is denoted by|3|.
A map of quasifans3 in a latticeN and3′ in a latticeN ′ is a lattice homomor-
phismN → N ′ such that the associated linear mapNQ→ N ′Q maps the cones of
3 into cones of3′.

For the definition of support maps, fix a latticeN and a quasifan1 in N. We
say that a mapNQ→ Q k is linear on a subsetA ⊂ NQ if its restriction toA is the
restriction of a linear map.

Definition 2.1. A support mapon1 is a maph : |1| → Q k that is linear on
every coneσ ∈1.
For a support maph : |1| → Q k, let γ be the cone inN̂ := N × Zk generated
by the graph0h of h, and letF(γ ) denote the quasifan consisting of all faces of
γ. Thefilled graphof h is the minimal subquasifan3h of F(γ ) with 0h ⊂ |3h|.
Thus,3h is generated by the conesδ ≺ γ whose relative interiorδ◦ meets0h.

Definition 2.2. The support maph : |1| → Q k is calledconvexif the projec-
tion P : N̂Q→ NQ is injective on the support|3h|.
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This notion of convexity includes the classical concept of a convex support func-
tion on a complete fan as defined, for example, in [12, p. 67].

Remark 2.3. Leth : |1| → Q be a support map on a fan1. If there are linear
formsuσ (σ ∈1) onN such that for any pairσ, τ ∈1 we have

h|σ = uσ |σ and h|τ ≤ uσ |τ ,
thenh is a convex support map on1. Conversely, if1 is complete andh is convex
thenh or−h satisfies these conditions.

On noncomplete fans, the concept of convexity for a support function via the in-
equalities of Remark 2.3 is more restrictive than our concept.

Example 2.4. (See Figure 1.) Consider the fan1 in Z2 generated by the two
maximal cones

σ1 := cone((1,0), (1,−1)), σ2 := cone((0,1), (1,1))

and the support maph : |1| → Q determined by

h(v1, v2) :=
{

2v1+ 2v2 if (v1, v2)∈ σ1,

−v1+ v2 if (v1, v2)∈ σ2.

Thenh is convex: The convex hullγ of the graph0h is a strictly convex cone with
four rays, namely,

γ = cone((1,0,2), (1,−1,0), (0,1,1), (1,1,0)).

Moreover, the maximal cones of3h are precisely the two faces ofγ aboveσ1 and
σ2, respectively.

Figure 1
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However, neither the functionh nor the function−h satisfies the inequalities of
Remark 2.3, because

h((0,1)) = 1< 2 and h((1,−1)) = 0> −2.

In order to define the notion of strict convexity, we must note some observations
on convex support maps. The first one is as follows.

Lemma 2.5. If the support maph : |1| → Q k is convex, then the projected cones
P(δ), δ ∈3h, form a quasifan6h in the latticeN.

Proof. The projectionP is injective on any givenδ ∈3h and hence induces a bi-
jection between the faces ofδ and the faces ofP(δ). Moreover, givenδ1, δ2 ∈3h,

injectivity of P on |3h| implies

P(δ1) ∩ P(δ2) = P(δ1∩ δ2).

Sinceδ1∩ δ2 is a face of bothδi, it follows thatP(δ1∩ δ2) is a common face of
P(δ1) andP(δ2).

If h : |1| → Q k is a convex support map, then we call6h thequasifan associated
to h. We need the following properties of this quasifan.

Lemma 2.6. Let6h be the quasifan associated to a convex support maph : |1| →
Q k. Then:

(i) every cone of1 is contained in a cone of6h;
(ii) every coneσ ∈6h is generated by the conesτ ∈1 with τ ⊂ σ.
Definition 2.7. We say that a convex support maph : |1| → Q k is strictly con-
vexif its associated quasifan6h equals1.

Using Remark 2.3, one may verify that, on a complete fan1, our notion of strict
convexity for a support maph : |1| → Q concides with the usual one (as defined
in [12, p. 67]). Again, for noncomplete fans the notions differ, as our Example 2.4
shows.

Example 2.8. The convex support maph : |1| → Q of Example 2.4 isstrictly
convex.

We now come to the announced main result of this section—namely, the character-
ization of divisoriality of a toric variety via existence of a strictly convex support
map.

Proposition 2.9. For a fan1 in a latticeN, the following statements are equiv-
alent:

(i) 1 admits a strictly convex support map;
(ii) the toric varietyX associated to1 is divisorial.
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In the proof of this statement, we make use of the following well-known charac-
terization of existence of geometric quotients for subtorus actions in terms of fans
(see e.g. [13, Thm. 5.1]).

Proposition 2.10. Let1̂ be a fan in a latticeN̂ with associated toric varietŷX,
let P : N̂ → N be a surjective lattice homomorphism, and letH be the subtorus
of the big torus ofX̂ corresponding toker(P ). Then the following statements are
equivalent:

(i) P is injective on the support|1̂|;
(ii) the action ofH on X̂ has a geometric quotient.

If one of these statements holds, then the quotient varietyX̂/H is the toric variety
determined by the fan{P(σ); σ ∈ 1̂} in N.
Proof of Proposition 2.9.Assume first that the fan1 admits a strictly convex sup-
port maph : |1| → Q k. Then, since1 = 6h, all cones of6h are strictly convex.
As before, letN̂ := N × Zk. By convexity ofh, the projectionP : N̂Q → NQ is
an injection on|3h|. In particular, all cones of3h are strictly convex. That means
that3h is a fan.

The toric varietyX̂ associated to3h is quasiaffine, and the projectionP : N̂ →
N gives rise to a toric morphismp : X̂→ X. According to Proposition 2.10, this
toric morphismp is a geometric quotient for the subtorus action onX̂ correspond-
ing to ker(P ) ⊂ N̂. Thus, Corollary 1.6 yields thatX is divisorial.

Suppose now that the toric varietyX determined by the fan1 is divisorial. By
Corollary 1.6, there is a quasiaffine toric varietyX̂ and a toric morphismp : X̂→
X such thatH := ker(p) is a subtorus of the big torus of̂X andp is a geometric
quotient for the action ofH on X̂.

Let p : X̂ → X arise from a mapP : N̂ → N of fans1̂ and1. SinceH =
ker(p) is connected, the mapP is surjective and we obtain a sectionN → N̂ for
P. We may therefore assume thatN̂ = N × Zk holds and thatP is the projec-
tion onto the first factor. By Proposition 2.10, the projectionP is injective on|1̂|.
Thus, for eacĥσ ∈ 1̂, the restriction

P |σ̂ : σ̂ 7→ σ := P(σ̂)
admits a uniquely determined linear inverse of the formgσ = (idNQ , hσ ). The
mapshσ : σ → Q k patch together to a support maph on1. By construction,
3h = 1̂ and6h = 1, soh is the desired strictly convex support map on1.

In the remainder of this section we show that convex support maps in a canonical
way define toric morphisms to divisorial toric varieties. Let1 be a fan in a lattice
N, and leth : |1| → Q k be a convex support map.

There is a universal method to construct a fan from the associated quasifan6h:
Letσmin ∈6h denote its minimal cone. This is a linear subspace ofNQ. LetN0 :=
σmin ∩N, setNh := N/N0, and denote the projection byFh : N → Nh. Thequo-
tient fanof 6h is the fan
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1h := {Fh(σ); σ ∈6h}.
The projectionFh : N → Nh is a map of the quasifans6h and1h. Moreover,Fh
is universal in the sense that every map of quasifans from6h to a fan1′ factors
uniquely throughFh.

Now, letX andXh denote the toric varieties associated to the fans1 and1h,

respectively. Our precise statement is as follows.

Proposition 2.11. The toric varietyXh is divisorial, and the projectionFh in-
duces a toric morphismfh : X→ Xh.

Proof. By Lemma 2.6(i) and the universal property of the quotient fan1h, the
projectionFh : N → Nh is a map of the fans1 and1h and hence induces a toric
morphismfh : X → Xh. Thus we need only show thatXh is divisorial. In view
of Proposition 2.9, we look for a strictly convex support map on1h.

The first step is to construct a strictly convex support mapg on the quasifan6h

associated toh. Consider a coneσ ∈ 6h. Then, denoting (as before) the projec-
tion byP : N̂ → N, we haveσ = P(δ) for some coneδ ∈3h.

By convexity ofh, the restrictionP : δ→ σ has an inverse of the form(id, gσ ).
The mapsgσ patch together to a support mapg on6h, andg extendsh. Moreover,
0g equals3h and hence the quasifan associated tog coincides with6h.

Note that6g = 6h does not change if we add a global linear function tog. So
we may assume that the support functiong vanishes on the minimal cone of6g.
But then we can push downg to a strictly convex support function on the quotient
fan1h.

3. Toric Divisorial Reduction

Fix a toric varietyX. In [3], we presented a universal way to reduceX to a quasipro-
jective toric variety. In this section we give an analogous construction that reduces
to divisorial toric varieties.

Definition 3.1. A toric divisorial reductionof X is a toric morphismr : X →
X tdr to a divisorial toric varietyX tdr such that every toric morphismf : X → Z

to a divisorial toric varietyZ has a unique factorizationf = f̃ B r with a toric
morphismf̃ : X tdr→ Z.

Theorem 3.2. Every toric variety admits a toric divisorial reduction.

The proof will be given shortly. We first need the following statement on the pull-
back of a convex support map.

Lemma 3.3. LetF : N → N ′ be a map of fans1 and1′ in latticesN andN ′,
respectively. Ifh′ : |1′| → Q k is a convex support map on1′, thenh := h′ BF is a
convex support map on1 andF is a map of the associated quasifans6h and6h′ .

Proof. Clearlyh is a support map on1. To prove convexity ofh,we consider the
filled graphs3h,3h′ and the map
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F̂ := F × idZk : N × Zk → N ′ × Zk.
We claim thatF̂ is a map of the quasifans3h and3h′ . To verify this, note first
that F̂ maps the graph0h to 0h′ . Let δ ∈3h. We need to show that the minimal
faceδ ′ of conv(0h′) containingF̂(δ) belongs to3h′ . Let

G := id|1| × h, G′ := id|1′| × h′.
By definition of3h, the relative interiorδ◦ of δ contains a point of the graph ofh,
that is, a point of the formG(v) for somev ∈ |1|. By the choice ofδ ′ this means
F̂(G(v))∈ (δ ′)◦. On the other hand, by the definitions ofG, G′, andF̂ , we have

F̂(G(v)) = G′(F(v))∈0h′ .
Hence0h′ ∩ (δ ′)◦ 6= ∅. This impliesδ ′ ∈3h′ , and our claim is proved.

For convexity ofh,we must show that the projectionP : N ×Zk → N is injec-
tive on|3h|. Supposewi = (vi, ti)∈ |3h| are two points such thatP(w1) equals
P(w2), which means thatv1= v2. Then we have

P ′(F̂(w1)) = P ′(F̂(w2)),

whereP ′ : N ′ × Zk → N ′ is the projection. SincêF is a map of the quasifans
3h and3h′ and sinceP ′ is injective on|3h′ |, it follows thatF̂(w1) = F̂(w2). In
particular, we havet1= t2 and thusw1= w2.

Finally, the fact thatF is a map of the quasifans6h′ and6h follows immedi-
ately from the fact that̂F is a map of the quasifans3h′ and3h.

Proof of Theorem 3.2.LetX be a toric variety arising from a fan1 in a latticeN.
First we show that any given toric morphismf : X → Z from X to a divisorial
varietyZ factors uniquely through one of the toric morphismsfh arising from a
convex support map on1 as in Proposition 2.11.

To see this, consider the map of fansF : 1→ 1′ associated to the given toric
morphismf and choose a strictly convex support maph′ on1′. Lemma 3.3 tells us
that, by pulling backh′ viaF,we obtain a convex support maph on1. Moreover,
F defines a map of quasifans from6h to6h′ = 1′.

The map of fansF now factors as a map of fans through the projectionFh : N →
Nh; that is,F induces a map from the quotient fan1h of6h to1′. Obviously, the
corresponding toric morphism is the desired factorization off : X → Z through
fh : X→ Xh.

Now let us take a closer look at the toric morphismsfh : X→ Xh arising from
convex support maps. Recall that the morphismfh is already determined by the
quasifan6h associated toh. By Lemma 2.6(ii), each such quasifan has the prop-
erty that all cones are generated by cones of1. Consequently there exist only
finitely many of such quasifans, say61, . . . , 6r .

Let fi : X → Yi denote the toric morphisms to divisorial toric varieties deter-
mined by6i, and consider their productf := f1× · · · × fr . Let Y denote the
closure of the imagef(X) in Y1× · · · × Yr . The normalizationỸ of Y is again a
divisorial toric variety, andf lifts to a toric morphism toỸ. In Ỹ we choose the
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smallest open toric subvarietyY ′ containing the image off and, restrictingf, we
obtain a toric morphismr : X→ Y ′.

By construction, for everyi we have a unique factorization offi throughr:
namely,fi = pri B r, where pri : Y ′ → Yi denotes the restriction of the projection
on theith factor. This proves thatr is the desired toric divisorial reduction.

We conclude this section with some examples. Note that any 2-dimensional toric
variety is simplicial and hence divisorial. Hence the minimal dimension for inter-
esting examples is 3.

Example 3.4. If a toric variety does not admit nontrivial effective Cartier divi-
sors (see e.g. [12, p. 25]), then its toric divisorial reduction is a point.

Example 3.5. (See Figure 2.) Consider the following eight vectors inQ3:

v1 := (2,2,1), v2 := (−2,2,1), v3 := (−2,−2,1), v4 := (2,−2,1),

v5 := (1,1,1), v6 := (−1,1,1), v7 := (−1,−1,1), v8 := (2/3,1/3,1).

Let1 denote the fan inZ3 with maximal cones

σ1 := cone(v1, v2, v5, v6), σ2 := cone(v2, v3, v6, v7),

σ3 := cone(v3, v4, v7, v8), σ4 := cone(v1, v4, v5, v8),

σ5 := cone(v5, v6, v7, v8).

Figure 2 Intersection of1 with the planex3 = 1

The identity onZ3 defines a map of fans from1 to the fan of facesF(σ) of the
coneσ := cone(v1, v2, v3, v4). We claim that the corresponding toric morphism
r : X1→ Xσ is the toric divisorial reduction ofX1.

To see this, consider a convex support maph : |1| → Q k and its associated
quasifan6h. Lemma 2.6 implies that we have only two possibilities: either6h =
F(σ) or6h = 1. Thus, to verify our claim, we need only exclude the latter pos-
sibility; that is, we must show thath cannot be strictly convex.

Otherwise, letδ5 ∈3h be the maximal cone aboveσ5 and choose a linear form
λ : NQ×Q k → Q that is nonnegative onγ := conv(0h) and fulfillsδ5 = γ ∩λ⊥.
Pulling backλ via idN ×h,we obtain a nonnegative support functiong on1 van-
ishing precisely onσ5. Note that

g(v1) = g(v2) = g(v3).
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Moreover, we have the relations

v4 = 17v3− 28v7+12v8, v4 = 5v1−16v5+12v8.

Applying g, we obtain 17g(v3) = 5g(v1). This contradictsg(v1) = g(v3), soh
cannot be strictly convex and thus our claim is proved.

Example 3.6. (See Figure 3.) We describe a toric variety with a nonsurjective
toric divisorial reduction. Similarly to the preceding example, consider the vectors

v1 := (2,2,1,0), v2 := (−2,2,1,0), v3 := (−2,−2,1,0),

v4 := (2,−2,1,0), v5 := (1,1,1,0), v6 := (−1,1,1,0),

v7 := (−1,−1,1,0), v8 := (2/3,1/3,1,0)

in Q4. Furthermore, lete4 be the fourth canonical base vector. Let1 denote the
fan inZ4 with maximal cones

σ1 := cone(v1, v2, v5, v6), σ2 := cone(v2, v3, v6, v7),

σ3 := cone(v3, v4, v7, v8), σ4 := cone(v1, v4, v5, v8),

σ5 := cone(v5, v6, v7, v8), σ6 := cone(v5, v6, e4).

Figure 3 Intersection of1 with the hyperplanex3 = 1

The identity onZ4 defines a map of fans from1 to the fan of facesF(σ) of the
coneσ := cone(v1, v2, v3, v4, e4). We claim that the corresponding toric mor-
phismr : X1 → Xσ is the toric divisorial reduction ofX1. Note that this map is
not surjective.

Let us verify the claim. Ifh is a convex support map then it follows that|6h| ⊂
σ. The restriction ofh to the support of the subfan1′ of1 generated by the cones
σ1, . . . , σ5 defines a convex support maph′ of 1′. So by the previous example,
6h′ = F(σ ′), whereσ ′ denotes the cone generated byv1, . . . , v4.

Now Lemma 3.3 implies that the smallest coneτ in 6h containingσ5 also con-
tains all ofσ ′. That means (by Lemma 2.6) that eitherτ = σ ′ or τ = σ. In any
case, sinceσ ′ is a face ofσ we obtainσ ′ ∈6h.
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Next consider the smallest coneτ ′ ∈6h containingσ6. We havev5, v6 ∈ σ6, so
the coneτ ′ meetsσ ′ in its relative interior. Since6h is a quasifan, we can con-
clude thatσ ′ is in fact a face ofτ ′. Becausee4 ∈ τ this impliesτ ′ = σ, and we
obtain6h = F(σ).

4. A Lifting Lemma

Here we relate regular maps between divisorial toric prevarieties to regular maps
between quasiaffine toric varieties. For maps of projective spaces, the following
example is a classical observation.

Example 4.1. Letf : Pn → Pm be a regular map of projective spaces. Thenf

is of the form

[z0, . . . , zn] 7→ [f0(z0, . . . , zn), . . . , fm(z0, . . . , zn)]

with homogeneous polynomialsfi that are pairwise of the same degree. In other
words, there is a lifting

Kn+1 \ {0} f̂ //

��

Km+1 \ {0}

��
Pn

f // Pm.

The main result of this section is the following generalization of the previous lift-
ing statement.

Lemma 4.2. Let f : X1→ X2 be a regular map of divisorial toric prevarieties
such thatf(X1) intersects the big torus ofX2. Then there exists a commutative
diagram

X̂1

f̂ //

q1

��

X̂2

q2

��
X1

f // X2,

whereX̂1, X̂2 are quasiaffine toric varieties,qi : X̂i → Xi are geometric prequo-
tients for free subtorus actions on̂Xi, and f̂ : X̂1→ X̂2 is a regular map.

Proof. We use the ideas and methods presented in [14, Sec. 2]. Choose effec-
tive Ti-invariant Cartier divisorsDi

1, . . . , D
i
ri

on Xi such that the complements
Xi \ Supp(Di

j ) form an affine cover ofXi. LetWi ⊂ CDiv(Xi) denote the sub-
group generated byDi

1, . . . , D
i
ri
. The pullback viaf gives rise to a group homo-

morphism
ψ : W2→ CDiv(X1), D 7→ f ∗(D).
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EnlargeW1 by adding the imageψ(W2). Note that the line bundles determined
by the divisors ofWi areTi-linearizable (see[17, p. 67,Remark]). We shall regard
ψ in the sequel as a homomorphism fromW2 toW1. Consider theOXi -algebras

A i :=
⊕
D∈Wi

OD(Xi)

and their associated relative spectraX̂i := Spec(A i ). By [14, Remark 2.1], the in-
clusionOXi ⊂ A i gives rise to a geometric prequotientqi : X̂i → Xi for the free
action of the algebraic torusHi := Spec(K[Wi ]) onX̂i induced by theWi-grading
of A i .

SinceW1 andW2 define ample groups of line bundles in the sense of [14,
Def. 2.2], eachX̂i is in fact a quasiaffine variety. Moreover, by [14, Prop. 2.3], the
varietyX̂i carries a regular action of the algebraic torusTi commuting with the ac-
tion ofHi such thatqi : X̂i → Xi becomesTi-equivariant. It follows that̂Xi is a
toric variety with big torusT̂i = Ti ×Hi.

We still have to construct the liftinĝf : X̂1→ X̂2. Toward this end, note that for
every affine open subsetU ⊂ X2 we may obtain a homomorphism ofWi-graded
algebras by setting

A2(U)→ A1(f
−1(U)), OD(U)3 h 7→ f ∗(h)∈Oψ(D)(U) (D ∈W2).

Note that, on the homogeneous componentA2(U)0, this is just the comorphism
of the mapf. By definition ofX̂i and the mapsqi : X̂i → Xi, each of the preced-
ing homomorphisms gives rise to a lifting

f̂U : q−1
1 (f

−1(U))→ q−1
2 (U)

of the restrictionf : f −1(U)→ U. By construction, the mapŝfU patch together
to the desired liftingf̂ : X̂1→ X2 of f : X1→ X2.

The following observation will be needed later to obtain equivariance properties
for the lifting f̂ : X̂1→ X̂2 constructed in Lemma 4.2.

Lemma 4.3. For i = 1,2, let Ti be algebraic tori and letYi be irreducibleTi-
varieties such thatT2 acts freely onY2. If f : Y1 → Y2 is regular and maps the
orbits ofT1 into orbits ofT2, then there is a homomorphismϕ : T1→ T2 such that
f(t ·x) = ϕ(t) ·f(x) holds for all (t, x)∈ T1× Y1.

Proof. By Sumihiro’s theorem [20, Cor. 2], we may assume thatY2 is affine. Thus,
there is an algebraic quotientY2 → Y for the action ofT2 on Y2. SinceT2 acts
freely, the quotient mapY2→ Y is equivariantly locally trivial. Thus, shrinkingY,
we may even assume thatY2 = T2× Y holds. In particular, one hasf = (f1, f2)

with regular mapsf1: Y1→ T2 andf2 : Y1→ Y. So, we obtain a regular map

8 : T1× Y1→ T2, (t, x) 7→ f1(t ·x)f1(x)
−1.

For fixedx ∈ Y1, the mapt 7→ 8(t, x) maps the neutral element ofT1 to the
neutral element ofT2 and thus is necessarily a homomorphism of the toriT1 and
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T2. By rigidity of tori [9, III.8.10], the map8 does not depend onx. Hence, there
is a homomorphismϕ : T1 → T2 with 8(t, x) = ϕ(t) for all (t, x) ∈ T1× Y1.

Clearly,ϕ is as desired.

A different aspect of the lifting problem is discussed extensively in [7]: Given two
quotient presentationŝXi → Xi of toric varieties in the sense of [6] and a regular
mapf : X1→ X2, when can this map be lifted to a regular mapF : X̂1→ X̂2?

5. Decomposition of Regular Maps

LetX be a toric variety with big torusT and consider the action of a closed sub-
groupH ⊂ T on X. Here we provide the key for relatingH -invariant regular
mapsX→ Y toH -invariant toric morphisms.

Lemma 5.1. Letf : X→ Y be anH -invariant regular map to a divisorial vari-
etyY. Then there exists a dominantH -invariant toric morphismg : X→ X ′ to a
divisorial toric varietyX ′, an open subsetU ⊂ X ′ with g(X) ⊂ U, and a regular
maph : U → Y such thatf = h B g.
Proof. First we reduce the problem to the case whereH is connected. Suppose
thatg : X → X ′ andh : U → Y satisfy the assertion for the identity component
H 0 ofH. Theng induces an action of the finite abelian group0 := H/H 0 onX ′.
Let p : X ′ → X ′′ be the geometric quotient for this action. Note thatp is a toric
morphism. Using Corollary 1.6, we see that the varietyX ′′ is again divisorial.

By appropriate shrinking, we achieve thatU is0-invariant. Sincep is geomet-
ric, p(U) is open inX ′′ and the restrictionp : U → p(U) is again a geometric
quotient for the action of0. Sinceh is 0-invariant, we haveh = h′ B p for some
regular maph′ : p(U)→ Y. It follows thatf = h′ B (p B g) is the desired decom-
position. Consequently, it suffices to give the proof for connectedH.

The next simplification provides the link to the toric setting. As mentioned be-
fore, we can realizeY as a closed subvariety of a smooth toric prevarietyZ of
affine intersection (see Theorem 1.2). LetZ ′ ⊂ Z denote the minimal orbit clo-
sure of the big torus ofZ such thatf(X) ⊂ Z ′ holds. ThenZ ′ is again a smooth
toric prevariety of affine intersection, but inZ ′ the imagef(X) intersects the big
torus.

For the moment, regardf as a map fromX toZ ′ and suppose thatg : X→ X ′
andh : U → Z ′ satisfy the assertion forf : X → Z ′. Taking closures inU and
Z ′ (respectively), we obtain

h(U) ⊂ h(g(X)) ⊂ h(g(X)) = f(X) ⊂ Y.
This means thath is, in fact, a map fromU toY. ThusX ′, g, h, andU also pro-

vide the desired data for the originalf : X→ Y. Consequently, we can assume in
the sequel thatY is a smooth toric prevariety of affine intersection and thatf(X)

intersects the big torus ofY. But then, according to Lemma 4.2, there is a commu-
tative diagram
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X̂
f̂ //

p

��

Ŷ

q

��
X

f // Y ,

whereX̂, Ŷ are quasiaffine toric varieties and where the vertical maps are geomet-
ric prequotients for free actions of subtoriHX andHY of the big tori ofX̂ andŶ,
respectively. We may even assume thatX̂ = X holds.

LetH ′ := p−1(H ) and suppose that theH ′-invariant regular mapf ′ := f B p
admits a decomposition of the formf ′ = h′ B g ′ with a dominantH ′-invariant
toric morphismg ′ : X̂ → X ′ and a regular maph′ : U → Y defined on an open
neighborhoodU of the image ofg ′.

Then, by the universal property ofp, there is a toric morphismg : X→ X ′ with
g ′ = g B p. Clearly this morphism is dominant. Moreover, sincep is surjective,
g isH -invariant andg(X) ⊂ U holds. Consequently,f = h′ B g is a decomposi-
tion as desired. Hence it suffices to prove the assertion for the case whenX̂ = X
andHX = 1 hold andp is the identity map.

Now we consider the regular map̂f : X → Ŷ as a map from anH -variety to
anHY -variety. Becauseq B f̂ = f isH -invariant, everyH -orbit is mapped byf̂
into a fiber ofq. On the other hand, the fibers ofq are precisely theHY -orbits. We
can therefore apply Lemma 4.3 and conclude thatf̂ isH -equivariant with respect
to a homomorphismH → HY .

Choosing a locally closed toric embeddingŶ ⊂ Ks , we obtain a homomor-
phismHY → Ks , and the induced map̂f : X → Ks is H -equivariant with re-
spect to the homomorphismH → HY → Ks. Hence the components of̂f are
H -homogeneous regular functions. By writing the components off̂ as linear com-
binations of character functions of the big torusT ⊂ X and using the summands
to define a toric morphismg ′ : X → Kr , we obtain a decomposition of̂f in the
form f̂ = s B g ′, with a linear maps : Kr → Ks. Note thatg ′ induces an action
of H onKr, makings : Kr → Ks into anH -equivariant map.

LetW be the normalization of the closure ofg ′(X) in Kr . ThenW is an affine
toric variety with big torusg ′(T ). We can liftg ′ to a dominant toric morphism
ĝ : X→ W and pull backs to a regular map̂s : W → Ks. Both ĝ andŝ are again
equivariant for the inducedH -action onW. The setV := ŝ−1(Ŷ ) is H -invariant
and open inW. Moreover, we havêg(X) ⊂ V. So far, we are in the following
situation:

V
ŝ //

Ŷ

q

��
X

ĝ

OO

f // Y .

Sinceŝ : W → Ks is an affine map, its restriction̂s : V → Ŷ is also affine.
Thusq B ŝ : V → Y is an affineH -invariant regular map. Existence of an affine
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H -invariant mapV → Y already implies existence of a good quotientp : V →
V//H for the action ofH (see e.g. [19, Prop. 3.12]), so we obtain the following
commutative diagram of regular maps:

V
p // V//H

h

��
X

ĝ

OO

f // Y .

Note thatg := p B ĝ:X→ V//H isH -invariant and thatV//H is divisorial, be-
causeY is divisorial andh is an affine morphism, so the decompositionf = h B g
is almost what we need. To complete the proof it suffices to show that we can em-
bedV//H as an open subset into a divisorial toric varietyX ′ such thatg, when
viewed as a morphism fromX toX ′, is toric.

For this last step we argue as follows. Note that we constructedV as an openH -
invariant subset of the toric varietyW. In [21], Świȩcicka showed that “maximal”
open subsets with a good quotient by a given subtorus in a toric variety are in fact
toric subvarieties.

More precisely, according to [21, Cor. 2.4],V is contained in an open toric
subvarietyV ′ ⊂ W with a good toric quotientp ′ : V ′ → V ′//H such that the in-
duced mapV//H → V ′//H is an open inclusion. Of course, we can chooseV ′ in
such a manner thatV ′//H = T ′ ·(V//H ) holds, whereT ′ denotes the big torus of
V ′//H. We setX ′ := V ′//H andU := V//H to arrive at the following commuta-
tive diagram:

V ′
p ′ // V ′//H = X ′

X
ĝ // V

∪
p // V//H

∪
= U .

∪

The morphismX → V ′ sendingx to ĝ(x) is a dominant toric morphism be-
causeĝ : X→ W is; hence the same is true forg = p ′ B ĝ : X→ X ′. Moreover,
becausêg(X) ⊂ V holds, we conclude that the big torusT ′ of X ′ is contained in
U. It follows that the complementX ′ \U is of codimension at least 2 inX ′. Thus,
Lemma 1.7 yields that the toric varietyX ′ is also divisorial. This completes the
proof.

6. Divisorial Reduction and Categorical Quotients

In this section we come to the main results of this article. Recall from [18] that
a categorical quotientfor aG-varietyX is aG-invariant regular mapX → Y

such that anyG-invariant regular mapX → Z factors uniquely throughX → Y.

Clearly, this notion can be restricted to any subcategory of the category of alge-
braic varieties as soon as theG-varietyX belongs to this subcategory.

We give an answer to the problem of existence of categorical quotients for
subtorus actions in the divisorial category. In fact, our method of proof solves the
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existence problem of a more general universal object. Consider a toric varietyX

with big torusT and the action of a subtorusH ⊂ T .
Definition 6.1. An H -invariant divisorial reductionof X is a regular map
r : X → Y to a divisorial varietyY such that everyH -invariant regular map
f : X→ Z to a divisorial varietyZ admits a unique factorizationf = f̃ B r with
a regular mapf̃ : Y → Z. If H = 1, then we simply speak of adivisorial reduc-
tion.

A candidate for such a reduction is constructed in two steps. First, recall from [2]
that there is a toric quotient for the action ofH onX, which means there is a toric
morphism

p : X→ X/tqH

that is a categorical quotient for the action ofH onX in the category of toric vari-
eties. In a second step, construct the toric divisorial reduction of the toric quotient
space as described in Section 3:

q : X/tqH → (X/tqH )
tdr.

Theorem 6.2. For a toric varietyX, the following statements are equivalent:

(i) X admits anH -invariant divisorial reduction;
(ii) the compositionq B p : X→ Z is surjective.

Moreover, if one of these statements holds, thenq Bp is theH -invariant divisorial
reduction.

Applying this result to divisorial toric varietiesX, we obtain the following solu-
tion to the quotient problem.

Corollary 6.3. The action of a subtorusH on a divisorial toric varietyX ad-
mits a categorical quotient in the category of divisorial varieties if and only if the
composition ofX→ X/tqH andX/tqH → (X/tqH )

tdr is a surjective map.

A further special case of Theorem 6.2 is the case of a trivial torusH = 1. Here
we obtain the following.

Corollary 6.4. A toric variety admits a divisorial reduction if and only if its
toric divisorial reduction is surjective.

Proof of Theorem 6.2.Assume first thatq B p is surjective. We show that a given
H -invariant regular mapf : X→ Z to a divisorial varietyZ factors throughq Bp.
Lemma 5.1 yields a decompositionf = h B g with anH -invariant dominant toric
morphismg : X→ X ′ to a divisorial toric varietyX ′.

By the universal properties ofp andq, the toric morphismg has a factorization
g = g ′ B (q B p). By surjectivity ofq B p, the maph is defined on a neighborhood
of the image ofg ′. Hencef = (h B g ′) B (q Bp) is the desired factorization. Thus
q B p is theH -invariant divisorial reduction ofX.
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Conversely, suppose thatX has anH -invariant divisorial reductionr : X→ Y.

Since the normalization of a divisorial variety is again divisorial, we can conclude
thatY is normal. Moreover, the universal property ofr : X→ Y implies thatr is
surjective and thatY inherits a set-theoretical action of the big torusT ⊂ X,mak-
ing r equivariant. Note that it is not clear a priori that this action is regular, so we
cannot treatY as a toric variety.

Let Z := (X/tqH )
tdr. We shall compare theH -invariant divisorial reduction

r : X→ Y with the toric morphismq B p : X→ Z. On the one hand, because of
the universal property ofr, the mapq B p factors uniquely throughr. So there is
a unique regular mapα : Y → Z with q B p = α B r.

On the other hand, Lemma 5.1 provides a decompositionr = h B g with a dom-
inant toric morphismg : X → X ′ to a divisorial toric varietyX ′ and a rational
maph fromX ′ to Y that is defined on the image ofg. By the universal properties
of p andq, we haveg = g ′ B q B p with a toric morphismg ′ : Z → X ′. We thus
arrive at the following commutative diagram:

X
r //

qBp
��

Y

α
}}}}

~~}}}

Z
g ′

// X ′.

h

OO�
�
�

Note thatg ′(q(p(X))) = g(X) is contained in the domain of definition of the
rational maph. Sincer is surjective, we haveq(p(X)) = α(Y ) and so obtain that
h is defined ong ′(α(Y )). It follows that(hBg ′)Bα is the identity onY. This shows
thatα is injective. Moreover, on the big torus ofZ, the mapα B (h B g ′) is the
identity.

Consequently,α : Y → Z is a birational injection. SinceZ is normal, Zariski’s
main theorem tells us thatα is in fact an open embedding. Since the imageα(Y )

is invariant under the induced set-theoretical action ofT onY, the mapα is an iso-
morphism. In particular,r : X→ Y is surjective.

We conclude this section with some examples. In many situations, the foregoing
results give positive answers to the problem of existence of quotients. A typical
case are toric varieties defined by fans with convex support.

Corollary 6.5. LetX be a toric variety arising from a fan with convex support.
ThenX admits a divisorial reduction.

Proof. Let the toric divisorial reductionq : X → X ′ arise from a mapQ : N →
N ′ of fans1 and1′. Thenσ := Q(|1|) is a convex cone inN ′ andσ ⊂ |1′|.
Intersecting the cones of1′ with σ, we obtain a further fan inN ′, namely,

1′′ :=
⋃
τ ′∈1′

F(τ ′ ∩ σ).

Let X ′′ be the associated toric variety. The identity mapN → N ′ defines
an affine toric morphismg : X ′′ → X ′. In particular,X ′′ is divisorial. More-
over,Q : N → N ′ is also a map of the fans1 and1′′. The corresponding toric
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morphismq ′ : X → X ′′ is surjective becauseQ(|1|) equals|1′′|. Consider the
decomposition

X
q //

q ′ ÃÃAAAAAAAA X ′

X ′′.
g

==||||||||

The universal property of the toric divisorial reduction implies thatg : X ′′ → X ′ is
an isomorphism. Henceq : X→ X ′ is surjective, and the assertion follows from
Corollary 6.4.

Corollary 6.6. LetX be a divisorial toric variety arising from a fan with con-
vex support. Then every subtorus action onX admits a categorical quotient in the
category of divisorial varieties.

Proof. Let the toric quotientp : X → X ′ arise from a mapP : N → N ′ of fans
1 and1′. By [2, Remark 2.5], each coneσ ′ ∈1′ is generated by imagesP(σ) of
certainσ ∈1. Thus1′, too, has convex support andp : X→ X ′ is surjective, so
Corollaries 6.3 and 6.5 give the claim.

However, Corollary 6.3 also provides counterexamples to existence of quotients.
There can be different reasons for nonsurjectivity ofq Bp, as the following exam-
ples show.

Example 6.7. For the toric varietyX described in Example 3.6, the toric divi-
sorial reduction is not surjective; henceX does not admit a divisorial reduction.
Moreover, by Cox’s construction (see [11]),X is a good quotient of an open sub-
setX̂ ⊂ K9 by a 5-dimensional subtorusH ⊂ (K∗)9. Thus, the action ofH on
X̂ admits no categorical quotient in the category of divisorial varieties.

Example 6.8. Let1 be the fan inZ4 having the following maximal cones:

σ1 := cone((1,0,0,0), (0,1,0,0)), σ2 := cone((0,0,1,0), (0,0,0,1)).

The associated toric varietyX is an open toric subset ofK4. Define a projection
P : Z4→ Z3 by

P((1,0,0,0)) := (1,0,0), P((0,1,0,0)) := (0,1,0),
P((0,0,1,0)) := (0,0,1), P((0,0,0,1)) := (1,1,0).

By [2], the toric morphismp : X → K3 defined byP is the toric quotient for
the action of the subtorusH := ker(p) onX. Sincep is not surjective, the action
of H onX has no categorical quotient in the category of divisorial varieties.

7. An Open Problem

In this article we have solved the problem of existence of categorical quotients
for subtorus actions on toric varieties in the divisorial category. For the analogous
question in the category of all algebraic varieties, we have partial results.
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For example, the toric quotientp : X → X/tqH is a categorical quotient in the
category of algebraic varieties if the subtorusH is of codimension at most 2, or
if the mapp satisfies a certain curve lifting property andX/tqH is of expected di-
mension [1; 4].

However, the general question still remains open. Therefore, we pose it here as
a problem.

Problem 7.1. Givenecessary and sufficient conditions for subtorus actions on
toric varieties to admit a categorical quotient in the category of algebraic varieties.
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