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Quotients of Divisorial Toric Varieties

ANNETTE A’CAMPO-NEUEN & JURGEN HAUSEN

Introduction

A frequently occurring question in algebraic geometry is whether an algebraic
group actionG x X — X admits a categorical quotient—that is, a regular map
X — Y that is universal with respect G-invariant regular mapX — Z. For
example, moduli functors are often co-represented by categorical quotients. In
general, it is a difficult problem to decide whether a categorical quotient exists.
Some counterexamples for actions of the multiplicative gr@tipare presented

in [4].

As these examples show, difficulties already arise with subtorus actions on toric
varieties. Such actions have been investigated by several authors, mainly focus-
ing on the much more restrictive concept of a good quotient (see e.g. [13; 16; 21]).
The description of toric varieties in terms of rational fans relates the problem of
constructing quotients to problems of combinatorial convexity. Hence the class of
toric varieties serves as a testing ground for more general ideas.

Let X be a toric variety and lell be a subtorus of the big torus &f Our ap-
proach to categorical quotients for the induced actiotfabn X is to consider
the problem in suitable subcategories. A first step is to construct a quotient in the
category of toric varieties itself: in [2], we showed that there always exists@
quotient

pr X —> X} H.

This is a toric morphism that is universal with respecHténvariant toric mor-
phisms. The essential part of the proof is an explicit algorithm in terms of com-
binatorial data. The toric quotient is a canonical starting point for quotients in
further categories. For example, in [3] we gave an explicit method to decide by
means of the toric quotient when a subtorus action on a quasiprojective toric vari-
ety admits a categorical quotient in the category of quasiprojective varieties.

In this paper we give a considerable generalization of the results of [3]; namely,
we solve the analogous problem in the category of divisorial varieties. Recall that
an irreducible varietyX is calleddivisorial if every pointx € X has an affine
neighborhood of the fornX \ Supp D) with an effective Cartier divisob on X
(see e.g. [10] and [8, 11.2.2]).
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The class of divisorial varieties contains the quasiprojective varieties as well as
all Q-factorial varieties. It has nice functorial properties (see [10]), and, more-
over, often provides a natural framework to extend statements known to hold for
guasiprojective varieties on the one hand and for smooth varieties on the other.

A connection to toric geometry is provided by the embedding results of [14]: A
variety is divisorial if and only if it admits a closed embedding into a smooth toric
prevarietyZ having an affine diagonal mab — Z x Z. The equivariant version
of this statement implies in particular that a toric variety is divisorial if and only
if it has enough invariant effective Cartier divisors in the sense of Kajiwara [15];
see Section 1.

Now, given a divisorial toric varietX and a subtorugf of the big torus ofX,
when does the action dff on X admit a categorical quotient in the category of
divisorial varieties? As mentioned, we start with the toric quotient

pi X — X/ H.

A first problem is that in general the toric quotient spagg H is not a divi-
sorial variety. To deal with this effect, we construdiogic divisorial reduction.
This is a toric morphism

q: X/gH — (X/, )",

which is universal with respect to toric morphisms to divisorial toric varieties.
The question then is: How do these toric constructions behave in the essentially
larger category of arbitrary divisorial varieties? Our main result gives the follow-
ing answer (see Corollary 6.3).

THEOREM. The action ofH on X admits a categorical quotient in the category
of divisorial varieties if and only if the compositig p is surjective. Moreover,
in the latter caseg o p is the desired categorical quotient.

The paper is organized as follows. In Section 1 we discuss divisoriality in the con-
text of G-varieties and provide some general statements used in the subsequent
constructions. Sections 2 and 3 are devoted to the construction of the toric diviso-
rial reduction. This is done in the language of combinatorial convexity. The main
tool is convex support maps that extend the notion of a convex support function
on a fan.

Generalizing the corresponding well-known statement on projectivity and sup-
port functions, we show that divisoriality of a given toric variety is characterized
by the existence of a strictly convex support map on its fan. Moreover, we relate
convex support maps to toric morphisms to divisorial toric varieties. This allows
the construction of the toric divisorial reduction. Finally, we present some exam-
ples in Section 3.

In Sections 4 and 5 we prepare the proof of the main results. The essential task
is to reduce arbitranf -invariant regular maps téf-invariant toric morphisms.

This is done by the decomposition lemma (presented in Section 5): Given an
H-invariantregular mayf : X — Y to a divisorial variety, we construct a decom-
position f = h o g with an H-invariant toric morphisny followed by a rational
map#h defined neap (X).



Quotients of Divisorial Toric Varieties 103

The ingredients for the proof of this decomposition lemma are the aforemen-
tioned embedding of into a certain smooth toric prevarie® provided by [14]
and the following lifting result (presented in Section 4): There exist quasiaffine
toric varietiesX andZ “above” X and Z, respectively, such that the magpad-
mits a lifting f: X — Z. In essence, this reduces the decomposition problem to
the case of quasiaffine toric varieties.

In Section 6 we give statements and proofs of the main results. Finally, in Sec-
tion 7 we formulate an open problem on categorical quotients for subtorus actions
on toric varieties.

1. Divisorial G-Varieties

Throughout the entire paper, we work over a fixed, algebraically closedKield
Hence, a prevariety is a reduced irreducible scheme of finite typeldyvand a
variety is a separated prevariety. We say that a prevakiagyof affine intersec-
tion if its diagonal morphisnX — X x X is affine. The word “point” refers to a
closed point.
As usual, when we speak of& (pre)variety, wher&; is an algebraic group, we
mean an algebraic (pre)varieXytogether with agG-action given by a regular map
G x X — X. See [5; 12] for the basic notions on toric varieties and prevarieties.
In this section, we provide some general facts on group actions on divisorial
varieties. Following Borelli [10], we call a prevariefy divisorial if every point
x € X has an affine open neighborhood of the fotim= X \ Supp D) with an
effective Cartier divisoD on X.

REMARK 1.1.

(i) Quasiprojective varieties are divisorial.

(ii) Locally closed subspaces of divisorial prevarieties are divisorial.
(iii) Every divisorial prevarietyX is of affine intersection.
(iv) EveryQ-factorial prevariety of affine intersection is divisorial.

A geometric quotienfor the action of a reductive grou@ on a varietyX is an
affine regular map: X — Y such that the fibers gf are precisely th& -orbits
and the canonical homomorphisth — p..(Ox)? is bijective. The analogous
notion in the setting of prevarieties (i.e., for possibly nonsepar&teahdY) is
called ageometric prequotient.

In the sequel, we shall make use of the following characterization of divisorial-
ity in terms of geometric quotients and closed embeddings (see [14, Thm. 3.1]).

THEOREM 1.2. A varietyX is divisorial if and only if one of the following state-
ments holds.

(i) X is a geometric quotient of a quasiaffine variety by a free algebraic torus
action.

(i) X admits a closed embedding into a smooth toric prevariety of affine inter-
section.

Here a torus action is callddeeif every orbit map is a locally closed embedding.
This theorem has the following equivariant version (see [14, Thm. 3.4]).
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THEOREM 1.3. Let X be a normal divisoriall-variety, whereT is an algebraic
torus acting effectively.

() There is a quasiaffine variet}} with a regular action of a toru§” x H such
that H acts freely with al-equivariant geometric quotied — X.

(if) There is aT-equivariant closed embedding — Z into a smooth toric pre-
variety Z of affine intersection, wherE acts as a subtorus of the big torus.

Afirst consequence is that divisorial varieties with torus actions always have many
invariant effective Cartier divisors. This means that a toric variety is divisorial if
and only if it hasenough invariant effective Cartier divisois the sense defined

by Kajiwara [15].

ProrosiTION 1.4. LetT be an algebraic torus, and lef be a normal algebraic
T-variety X. ThenX is divisorial if and only if there exisT-invariant effective
Cartier divisorsDy, ..., D, on X such that the set¥ \ Supp(D;) are affine and
coverX.

Proof. We may assume thdt acts effectively. LetX be divisorial. By Theo-
rem 1.3, there is &-equivariant closed embedding &finto a smooth toric pre-
variety Z of affine intersection, wherg acts as a subtorus of the big torus. Hence
X inherits the desired property froi. The reverse implication is trivial. O

As the example of the rational nodal curve with stand&tehction shows, the as-
sumption of normality is essential in the statement of Proposition 1.4. Our next
result states that divisoriality is inherited by geometric quotients for torus actions.

ProrosiTiON 1.5. Let T be an algebraic torus, and suppose thais a normal
T-variety with geometric quotient: X — Y. ThenX is divisorial if and only if
Y is divisorial.

Proof. We may assume that the toriisacts effectively onX. If the quotient va-
riety Y is divisorial, then we obtain the desired effective Cartier divisorsXon
by pulling back suitable divisors frori. Conversely, suppose that is diviso-
rial. Then, by Theorem 1.3, we may assume in the proof khat a quasiaffine
T-variety.

Giveny € Y, we have to find an affine open neighborhoodyothat is the
complement of the support of an effective Cartier divisorfoil€hoosing anyr-
equivariant affine closure df, we find a functionf € O(X), homogeneous with
respect to some charactgf € X(7'), such that forD := div(f) the T-invariant
setU := X \V(f) = X \ Supp D) is an affine neighborhood of the fibgr(y).

By T-closedness gb: X — Y, the setV := p(U) is an open neighborhood of
y € Y. Moreover, as a geometric quotient space of the affivariety U, the setV
is again affine. Thus, to prove the assertion, we need only show {Bafpp D))
is the support of an effective Cartier divisBron Y. We construct local equations
for such ank.

First we claim that every pointe Y has an affine neighborhodd c Y such
that, onU, := p~%(V,), there is an invertible functioh, € O(U.) that is homoge-
neous with respect to some positive multipley ;. To check this, start with any
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affine neighborhood, c Y of z and choose a pointe p~(z). Consider the sub-
lattice N C X(T') of characters occurring as weights of homogeneous functions
g€ O, with g(x) = 1.

The sublatticeVN is of full rank in X(7); otherwise, we find a nontrivial 1-
parameter subgroup: K* — T such thaty oA = 1 holds for ally € N. It follows
thatA(K*) is contained in the isotropy groufa. On the other hand, thE-action
onU, is effective and closed. Hen@g is finite, a contradiction. Thu¥ is of full
rank. In particular, some positive multiple, x ; lies in N and our claim follows.

Now coverY by finitely manyV, as in our claim. Then we may assume that
all the invertible functiong, € O(U,) are homogeneous with respect to the same
multiple my . Every functiong, := f"/h, is T-invariant, is regular o/,, and
vanishes precisely on Su@) N U,. Since it isT-invariant,g, may be viewed as
a regular function oV, = p(U,), where its zero set is just

p(SuppD) N U.) = p(Supp(D)) N V..
Since everyg, /g, is an invertible regular function oW, N V., it follows that the
g, are local equations for the desired Cartier divigoon Y. O

As Kajiwara has shown (see [15, Thm. 1.9]), every toric varigtyith enough
invariant effective Cartier divisors arises as a geometric quotient of a quasiaffine
toric variety X by an algebraic subgroup of the big torus¥fIn view of the pre-
ceding results, we can enhance Kajiwara’'s statement as follows.

CoroLLARY 1.6. Atoric varietyX is divisorial if and only if there is a quasiaffine
toric variety X and a toric morphisnp: X — X such thatker(p) is a subtorus
of the big torus ofX and p is a geometric quotient for the action &er(p) on X.

Proof. If X is divisorial, then Theorem 1.3 gives the desired quotient presentation.
The converse follows from Proposition 1.5. O

Finally, we consider translates of divisorial open subsets with respect to an action
of a connected group. If the complement of the subset is small enough, then the
union of such translates is again divisorial.

LemMma 1.7. LetG be a connected linear algebraic group, and}ebe a normal
G-variety. If U C X is a divisorial open subset witbodim(X \ U) > 2, then
alsoG - U is divisorial.

Proof. We may assume tha& = G-U holds. LetDY, ..., DY be Cartier divi-
sors onU such that the set; := U \ Supp DY) form an affine cover ot/. By
closing components, eaczhiU extends to a Weil divisoD; on X.

We claim thatX \ Supp,, = U;. To see this, le#A; := X \ U;. Sincel; is affine,
A; is of pure codimension 1. Clearly Su(dpf’) C A; and hence Sug;) C A;.
Thus SupgD;) is a union of irreducible components af. Moreover, we have

X\ U =X\ (U; USuppD/)) = A; \ Supp D).
SinceX \ U has codimension at least 2, it follows that the intersection of each
irreducible component of A; with SuppDY) is dense im. This impliesA; =
Supp D;) and our claim is proved. In particular, we have
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X:G-U:G~0X\Suqui):O |J X \ Suppg- D).

i=1 i=1geG

Thus it suffices to show that, for eaéh, some multiple is Cartier oX. This
is done as follows. The restrictidd; of D; to the regular locuX’ C X is Cartier.
SinceX' is G-invariant, we may apply;-linearization; that is, replacing; with
a suitable multiple we achieve th@, is aG-sheaf (see e.§l7, Prop. 2.4]).

We claim that this structure of &-sheaf extends canonically 9,. For an
open setV C X let V' := V N X'. Given a sectionr € Op,(V), we define its
translateg - s as follows. Translate the restrictioshe Op,(V’) to a sectiorg -5’ €
Op.(g-V’) and then extend - s’ to the desired sectiogl-s € Op,(g- V).

Using theG-sheaf structure o)., we see that locally))y, is generated by a
single function. That meand; is a Cartier divisor. O

2. Support Maps

Projectivity of a given toric variety is characterized by the existence of a strictly
convex support function on its fan (see e.g. [12]). Generalizing the notion of a sup-
port function, we here introduce the concept of a support map on a fan and define
convexity properties for such maps. The main result of this section states that, for
a given fan, existence of a strictly convex support map is equivalent to divisoriality
of the associated toric variety.

For a latticeN, we denote the associated rational vector spac¥hyA cone
in N is a polyhedral (not necessarily strictly) convex cene Ng. A quasifanin
N is afinite setA of cones inN such that forr € A, every face ob belongs to
A, and foro, o’ € A, the intersectiom N ¢’ is a face of botlr ando’. A fanis a
guasifan containing only strictly convex cones.

Thesupportof a quasifanA is the union of all its cones and is denoted|by.
A map of quasifang\ in a lattice N and A’ in a lattice N’ is a lattice homomor-
phismN — N’ such that the associated linear mép — Ny maps the cones of
A into cones ofA’.

For the definition of support maps, fix a lattideand a quasifam\ in N. We
say that a map/p — QF is linear on a subset C N if its restriction toA is the
restriction of a linear map.

DEFINITION 2.1. A support magn A is a maph: |A| — QF that is linear on
every coney € A.

For a support map: |A| — QF, lety be the cone iV := N x Z* generated
by the grapH, of 4, and let§(y) denote the quasifan consisting of all faces of
y. Thefilled graphof # is the minimal subquasifan,, of §(y) with T, C |Ay].
Thus, A, is generated by the conés< y whose relative interio° meetsl,.

DEerINITION 2.2.  The support map: |A| — QF is calledconvexif the projec-
tion P: Ng — Ng is injective on the suppoft\,|.
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This notion of convexity includes the classical concept of a convex support func-
tion on a complete fan as defined, for example, in [12, p. 67].

REMARK 2.3. Leth: |A| — Q be a support map on a faw. If there are linear
formsu, (o € A) on N such that for any pais, r € A we have

hlo =tslo and hly <ugle,

thenh is a convex support map ax. Conversely, ifA is complete and is convex
thenh or —h satisfies these conditions.

On noncomplete fans, the concept of convexity for a support function via the in-
equalities of Remark 2.3 is more restrictive than our concept.

ExAMPLE 2.4. (See Figure 1.) Consider the fanin Z? generated by the two
maximal cones

o1:=cong(0), (L -1), o2:=cong(0,1), (1)
and the support map: |A| — Q determined by

n ) 21+ 2vy if (vy, v2) €01,

o vz = —vi+vy if (v, v2) €02,

Thenh is convex: The convex hujt of the graph’, is a strictly convex cone with
four rays, namely,

y =cong(1,0,2),(1,-10),(0,11),(110).

Moreover, the maximal cones af, are precisely the two faces pfaboves; and
o2, respectively.

g2

Figure 1
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However, neither the functiolnor the function-# satisfies the inequalities of
Remark 2.3, because

n((0,))=1<2 and h(L -1))=0> —2.

In order to define the notion of strict convexity, we must note some observations
on convex support maps. The first one is as follows.

LemMaA 2.5. Ifthe supportmap: |A| — QF is convex, then the projected cones
P(8), § € Ay, form a quasifanz,, in the latticeN.

Proof. The projectionP is injective on any give@ € A, and hence induces a bi-
jection between the faces &&and the faces oP(§). Moreover, giversy, 6, € Ay,
injectivity of P on|A,| implies

P(81) N P(82) = P(81N d2).

Sinced1 N §; is a face of botls;, it follows that P(§1 N §5) is a common face of
P(81) and P(5>). O

If h: |A| — QFis a convex support map, then we ca}) thequasifan associated
to h. We need the following properties of this quasifan.

LeEmMA 2.6. LetX, bethe quasifan associated to a convex supportimgp | —
Q*. Then

(i) every cone oA\ is contained in a cone oEy;
(ii) every coner € X, is generated by the coness A witht C o.

DEFINITION 2.7.  We say that a convex support miap|A| — QF is strictly con-
vexif its associated quasifan;, equalsA.

Using Remark 2.3, one may verify that, on a completeAarour notion of strict
convexity for a support map: |A| — Q concides with the usual one (as defined
in [12, p. 67]). Again, for noncomplete fans the notions differ, as our Example 2.4
shows.

ExampLE 2.8. The convex support map |A| — Q of Example 2.4 istrictly
convex.

We now come to the announced main result of this section—namely, the character-
ization of divisoriality of a toric variety via existence of a strictly convex support
map.

ProrosiTiON 2.9. For afanA in alattice N, the following statements are equiv-
alent

() A admits a strictly convex support map
(if) the toric varietyX associated ta\ is divisorial.
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In the proof of this statement, we make use of the following well-known charac-
terization of existence of geometric quotients for subtorus actions in terms of fans
(see e.g. [13, Thm. 5.1]).

ProposITION 2.10. LetA be a fan in a latticeV with associated toric variety,

let P: N — N be a surjective lattice homomorphism, and #etbe the subtorus
of the big torus ofX corresponding t&ker(P). Then the following statements are
equivalent

(i) P is injective on the suppott[;

(ii) the action ofH on X has a geometric quotient.

If one of these statements holds, then the quotient vaXighy is the toric variety
determined by the fapP(o); 0 € A} in N.

Proof of Proposition 2.9Assume first that the fann admits a strictly convex sup-
port maph: |A| — Q. Then, sinceA = X, all cones ofs;, are strictly convex.
As before, letV := N x Z*. By convexity ofh, the projectionP : 1\7@ — Ngis
an injection orfA|. In particular, all cones ok, are strictly convex. That means
thatA, is a fan.

The toric varietyX associated ta, is quasiaffine, and the projectigh: N —

N gives rise to a toric morphism: X — X. According to Proposition 2.10, this
toric morphismy is a geometric quotient for the subtorus action¥oorrespond-
ing to ker(P) c N. Thus, Corollary 1.6 yields tha is divisorial.

Suppose now that the toric variekydetermined by the fan is divisorial. By
Corollary 1.6, there is a quasiaffine toric varigfyand a toric morphismp: X —

X such that := ker(p) is a subtorus of the big torus &f and p is a geometric
quotient for the action off on X.

Let p: X — X arise fromamapP: N — N of fansA andA. SinceH =
ker(p) is connected, the map is surjective and we obtain a sectibh— N for
P. We may therefore assume thiit= N x Z* holds and that is the projec-
tion onto the first factor. By Proposition 2.10, the project®is injective on|A|.
Thus, for eaclé € A, the restriction

Pls: 6 — o := P(6)

admits a uniquely determined linear inverse of the faggm= (idy,, h,). The
mapsh,: o — QF patch together to a support mapon A. By construction,
A, = AandX, = A, soh is the desired strictly convex support mapsn [

In the remainder of this section we show that convex support maps in a canonical
way define toric morphisms to divisorial toric varieties. llebe a fan in a lattice
N, and leth: |A] — QF be a convex support map.

There is a universal method to construct a fan from the associated quagifan
Letomin € X denote its minimal cone. This is a linear subspac¥g@fLet Ng :=
omin N N, SetN,, := N/Ny, and denote the projection y,: N — N,. Thequo-
tient fanof ¥, is the fan
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A = {Fp(0); 0 € Zp}.

The projectionF),: N — N, is a map of the quasifar’s, andA,. Moreover,F,
is universal in the sense that every map of quasifans fignto a fanA’ factors
uniquely through#j,.

Now, let X and X, denote the toric varieties associated to the farend A,
respectively. Our precise statement is as follows.

ProrosiTION 2.11. The toric varietyX,, is divisorial, and the projectiorf, in-
duces a toric morphisnf;,: X — X,,.

Proof. By Lemma 26(i) and the uniersal property of the quotient fan,,, the
projectionFy,: N — N, is a map of the fand andA;, and hence induces a toric
morphismf,: X — Xj,. Thus we need only show that, is divisorial. In view
of Proposition 2.9, we look for a strictly convex support mapon

The first step is to construct a strictly convex support map the quasifark,
associated té. Consider a cone € ;. Then, denoting (as before) the projec-
tion by P: N — N, we haver = P(8) for some coné € Ay,.

By convexity ofh, the restrictionP : § — o has an inverse of the for(d, g, ).
The mapg,, patch together to a support mgpn =, andg extends:. Moreover,

I', equalsA , and hence the quasifan associated twincides withx;,.

Note thatx, = X does not change if we add a global linear functiog t&o
we may assume that the support functiomanishes on the minimal cone &f,.
But then we can push dowpto a strictly convex support function on the quotient
fan Ay,. O

3. Toric Divisorial Reduction

Fix atoric varietyX. In [3], we presented a universal way to redic a quasipro-
jective toric variety. In this section we give an analogous construction that reduces
to divisorial toric varieties.

DerINITION 3.1.  Atoric divisorial reductionof X is a toric morphism-: X —
X'9" to a divisorial toric varietyX'®" such that every toric morphisti: X — Z
to a divisorial toric varietyZ has a unique factorizatiofi = f o r with a toric
morphismf: X9r — 7.

THEOREM 3.2. Every toric variety admits a toric divisorial reduction.

The proof will be given shortly. We first need the following statement on the pull-
back of a convex support map.

LemMma 3.3. LetF: N — N’ be amap of fand and A’ in latticesN and N',
respectively. If': |A'| — QF is a convex support map axi, theni := h'o F isa
convex support map ot and F' is a map of the associated quasifangsand &, .

Proof. Clearly# is a support map on.. To prove convexity of:, we consider the
filled graphsA;, A and the map
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F:=F xidy: N xZ* > N' x ZF.

We claim that# is a map of the quasifans, and A,. To verify this, note first
that F maps the grapli), to I';,. Lets§ € A,. We need to show that the minimal
faces’ of con\(I') containingF(8) belongs toA . Let

G = idm‘ X h, G = id|A/‘ x h.

By definition of A, the relative interios° of § contains a point of the graph bf
that is, a point of the forn@ (v) for somev € |A|. By the choice of’ this means
F(G(v)) € (8')°. On the other hand, by the definitions@f G', and ¥, we have

F(G(v)) = G'(F(v)) € Ty.

Hencely N (8")° # @. This impliess’ € Ay, and our claim is proved.

For convexity ofi, we must show that the projectidh: N x Z¥ — N isinjec-
tive on|A,|. Supposew; = (v;, ;) € |A,| are two points such that(w;) equals
P(w»), which means that; = v,. Then we have

P'(F(wy)) = P'(F(wy)),

whereP’: N’ x Z¥ — N’ is the projection. Sincé' is a map of the quasifans
Aj, and Ay and sinceP’ is injective on|A |, it follows that #(w1) = F(w>). In
particular, we have, = 7, and thusw; = wo.

Finally, the fact thatF is a map of the quasifans,, andZ; follows immedi-
ately from the fact thaf' is a map of the quasifans, andA,. O

Proof of Theorem 3.2Let X be a toric variety arising from a faf in a latticeN.

First we show that any given toric morphisfit X — Z from X to a divisorial
variety Z factors uniquely through one of the toric morphisifysarising from a
convex support map oA as in Proposition 2.11.

To see this, consider the map of fafis A — A’ associated to the given toric
morphismf and choose a strictly convex support nkapn A'. Lemma 3.3 tells us
that, by pulling back’ via F, we obtain a convex support mamn A. Moreover,
F defines a map of quasifans fron), to &, = A’

The map of fang” now factors as a map of fans through the projectipn N —
Ny; thatis, F induces a map from the quotient fan, of X, to A". Obviously, the
corresponding toric morphism is the desired factorizatiosf ofX — Z through
fh: X — X;.

Now let us take a closer look at the toric morphisfas X — X, arising from
convex support maps. Recall that the morphignis already determined by the
guasifanx, associated ta. By Lemma 2.6(ii), each such quasifan has the prop-
erty that all cones are generated by coneg\ofConsequently there exist only
finitely many of such quasifans, s&y, ..., X,.

Let f;: X — Y; denote the toric morphisms to divisorial toric varieties deter-
mined byX;, and consider their produgt := f; x --- x f,. LetY denote the
closure of the imagg (X) in Y1 x - -- x ¥,. The normalizatior¥ of Y is again a
divisorial toric variety, andf lifts to a toric morphism td’. In ¥ we choose the
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smallest open toric subvariely containing the image of and, restrictingf, we
obtain a toric morphism: X — Y’.

By construction, for every we have a unique factorization gf throughr:
namely, f; = pr; or, where pf: Y’ — Y; denotes the restriction of the projection
on theith factor. This proves thatis the desired toric divisorial reduction. [J

We conclude this section with some examples. Note that any 2-dimensional toric
variety is simplicial and hence divisorial. Hence the minimal dimension for inter-
esting examples is 3.

ExampLE 3.4. If a toric variety does not admit nontrivial effective Cartier divi-
sors (see e.g. [12, p. 25]), then its toric divisorial reduction is a point.

ExaMPLE 3.5. (See Figure 2.) Consider the following eight vector®

V1= (27 25 1)? Vg = (_27 25 1)’ V3 = (_25 _25 1)7 Vg 1= (27 _27 1)5
vsi=(L11, vei=(-L11, vyi=(-1-11), wvg:=(2/3,131).
Let A denote the fan iZ3 with maximal cones
o1 .= con€vy, vy, Us, Vg), 02 .= CONgv2, V3, Vg, U7),

03 = CONgus, V4, V7, Vg), 04 .= CONEU1, V4, Us, Ug),

o5 .= CONgvs, ve, V7, Vg).

Figure 2 Intersection ofA with the planex; =1

The identity orZ® defines a map of fans from to the fan of faceg (o) of the
coneo .= conduvs, vy, v3, vg). We claim that the corresponding toric morphism
r: Xa — X, is the toric divisorial reduction oX .

To see this, consider a convex support magA| — QF and its associated
quasifanz,. Lemma 2.6 implies that we have only two possibilities: eithgr=
$(o) or ©, = A. Thus, to verify our claim, we need only exclude the latter pos-
sibility; that is, we must show thdt cannot be strictly convex.

Otherwise, lets € A, be the maximal cone abowg and choose a linear form
L1 Ng x Q¥ — Qthatis nonnegative op := con(T,) and fulfills§s = y NA*.
Pulling backx viaidy x &, we obtain a nonnegative support functgpon A van-
ishing precisely oms. Note that

gvy) = g(v2) = g(va).
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Moreover, we have the relations
v4 = 17v3 — 28v7 + 12vg, v4 = 5v, — 16v5 + 12vg.

Applying g, we obtain 1¢(v3) = 5¢(v1). This contradictg (v1) = g(v3), SOh
cannot be strictly convex and thus our claim is proved.

ExampLE 3.6. (See Figure 3.) We describe a toric variety with a nonsurjective
toric divisorial reduction. Similarly to the preceding example, consider the vectors

b= (2.2.1.0), wyi=(-2210), vs:=(=2 —2.10),
V4 1= (25 _25 17 0)5 Usg = (17 17 1’ O)a Vs = (_17 1’ L 0)7
v7i= (=1 -110), vg:=(2/3,1/310)

in Q*. Furthermore, let, be the fourth canonical base vector. lLetlenote the
fan in Z* with maximal cones

01 = CONgv1, V2, Us, Vg), O2 .= CONQv2, V3, Vg, V7),
03 := CONgw3, v4, V7, Vg), 04 .= CONEUVY, V4, Us, Vg),
05 .= CON€vs, v, V7, Vg), Op .= CONEUs, Vg, €4).

Vs

U8

v3 Vg

Figure 3 Intersection ofA with the hyperplane; =1

The identity onZ* defines a map of fans from to the fan of faceg (o) of the
coneo = conguy, vy, U3, Vs, €4). We claim that the corresponding toric mor-
phismr: X, — X, is the toric divisorial reduction ok,. Note that this map is
not surjective.

Let us verify the claim. Ifz is a convex support map then it follows thay,| C
o. The restriction of: to the support of the subfaff of A generated by the cones
o1, ..., 05 defines a convex support mapof A. So by the previous example,
2 = §(o’), whereo’ denotes the cone generatediyy. . ., va.

Now Lemma 3.3 implies that the smallest cani X, containingos also con-
tains all ofo’. That means (by Lemma 2.6) that eithee= ¢’ or t = o. In any
case, since’ is a face ol we obtaine’ € &;,.
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Next consider the smallest coméc T;, containingog. We havevs, vg € 05, SO
the coner’ meetso’ in its relative interior. Since;, is a quasifan, we can con-
clude thato’ is in fact a face oft’. Because4 € t this impliest’ = o, and we
obtainX;, = (o).

4. A Lifting Lemma

Here we relate regular maps between divisorial toric prevarieties to regular maps
between quasiaffine toric varieties. For maps of projective spaces, the following
example is a classical observation.

ExampLE 4.1. Letf: P, — P, be aregular map of projective spaces. Thien
is of the form

[20s -y 2] > [f0(20s ov s Z0)s o eos fn(Z00s s Z0)]

with homogeneous polynomialé that are pairwise of the same degree. In other
words, there is a lifting

K1\ {0} L. K™\ {0}

L,

]P)n —— ]Pnz .

The main result of this section is the following generalization of the previous lift-
ing statement.

LeEmMMA 4.2. Let f: X1 — X, be a regular map of divisorial toric prevarieties
such thatf(X;) intersects the big torus of,. Then there exists a commutative
diagram

.~ .
X1 > X2

qll f lqz

X, —— Xo,

whereXy, X, are quasiaffine toric vanetlesz],, - X, — X; are geometric prequo-
tients for free subtorus actions dﬂ and f X, — Xoisa regular map.

Proof. We use the ideas and methods presented in [14, Sec. 2]. Choose effec-
tive T;-invariant Cartier divisorsDy, ..., D} on X; such that the complements
Xi\ SupgDJ’f) form an affine cover of;. Let W; C CDiv(X;) denote the sub-
group generated bp;, ..., D;.. The pullback viaf gives rise to a group homo-
morphism

¥ Wo — CDiv(X1), D f*(D).
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EnlargeW; by adding the imagé (W,). Note that the line bundles determined
by the divisors ofW; areT;-linearizable (sefl7, p. 67,Remark]). We shall regard
¥ in the sequel as a homomorphism fravh to W;. Consider th&)y,-algebras

Ai = P Op(xp)

DeW;

and their associated relative spectia= Sped.A;). By [14, Remark 2.1], the in-
clusionOy, C A; gives rise to a geometric prequotient X; — X, for the free
action of the algebraic torus; := Spe¢K[W;]) on X; induced by thé¥;-grading
of .Ai.

Since W1 and W, define ample groups of line bundles in the sense of [14,
Def. 2.2], eachX; is in fact a quasiaffine variety. Moreover, by [14, Prop. 2.3], the
variety X; carries a regular action of the algebraic tofusommuting with the ac-
tion of H; such thaty; : X, — X; becomed;-equivariant. It follows thak; is a
toric variety with big torusl; = 7; x H;.

We still have to construct the lifting : X; — X». Toward this end, note that for
every affine open subsét C X, we may obtain a homomorphism 8f;-graded
algebras by setting

A(U) — Ay(f7HU)), Op(U)>h = f*(h) € Oypy(U) (D€ Wp).
Note that, on the homogeneous componéstl ), this is just the comorphism

A

of the mapyf. By definition of X; and the mapsg; . X; — X;, each of the preced-
ing homomorphisms gives rise to a lifting

fu il (YUY = g1 U)

of the restrictionf: f~X(U) — U. By construction, the mapg, patch together
to the desired liftingf : X; — X, of f: X1 — Xo. O

The following observation will be needed later to obtain equivariance properties
for the lifting f: X; — X, constructed in Lemma 4.2.

LemMma 4.3. Fori = 1, 2, let T; be algebraic tori and le®; be irreducibleT;-
varieties such thaf, acts freely ony,. If f: Y1 — Y, is regular and maps the
orbits of Ty into orbits of T, then there is a homomorphism T; — T, such that
f(@t-x) =) f(x) holds for all (¢, x) € T1 x Y3.

Proof. By Sumihiro’s theorem [20, Cor. 2], we may assume thas affine. Thus,
there is an algebraic quotiefi — Y for the action ofT, on Y,. SinceT, acts
freely, the quotient map, — Y is equivariantly locally trivial. Thus, shrinking,
we may even assume thit = 7> x Y holds. In particular, one hag = (f1, f2)
with regular mapsi: Y1 — T, and f>: Y1 — Y. So, we obtain a regular map

DTy x Y1 — T, (t,x) — fi(t-x) fr(x)™L

For fixedx € Y3, the mapr — @ (¢, x) maps the neutral element &f to the
neutral element of;, and thus is necessarily a homomorphism of the Tgrand
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T>. By rigidity of tori [9, 111.8.10], the map®d does not depend on Hence, there
is @ homomorphisnp: 71 — T, with @ (¢, x) = @(¢) for all (r,x) € Ty x Y;.
Clearly,¢ is as desired. O

A different aspect of the lifting problem is discussed extensively in [7]: Given two
guotient presentations; — X; of toric varieties in the sense of [6] and a regular
map f: X; — X», when can this map be lifted to a regular map X; — X,?

5. Decomposition of Regular Maps

Let X be a toric variety with big torug and consider the action of a closed sub-
groupH < T on X. Here we provide the key for relating -invariant regular
mapsX — Y to H-invariant toric morphisms.

LemMma 5.1. Let f: X — Y be anH-invariant regular map to a divisorial vari-
ety Y. Then there exists a dominaft-invariant toric morphisng: X — X’'toa

divisorial toric variety X', an open subsd? C X' with g(X) C U, and a regular
maph: U — Y suchthatf = hog.

Proof. First we reduce the problem to the case whHrés connected. Suppose
thatg: X — X' andh: U — Y satisfy the assertion for the identity component
HO of H. Theng induces an action of the finite abelian grdup= H/H® on X"

Let p: X' — X” be the geometric quotient for this action. Note tpds a toric
morphism. Using Corollary 1.6, we see that the varigtyis again divisorial.

By appropriate shrinking, we achieve tliats I"-invariant. Sincep is geomet-
ric, p(U) is open inX” and the restrictiorp: U — p(U) is again a geometric
quotient for the action of". Since# is I'-invariant, we havés = i’ o p for some
regular mag’: p(U) — Y. Itfollows that f = h'oc (p o g) is the desired decom-
position. Consequently, it suffices to give the proof for conneéted

The next simplification provides the link to the toric setting. As mentioned be-
fore, we can realiz& as a closed subvariety of a smooth toric prevariétgf
affine intersection (see Theorem 1.2). I&tC Z denote the minimal orbit clo-
sure of the big torus of such thatf(X) c Z’ holds. ThenZ’ is again a smooth
toric prevariety of affine intersection, but @1 the imagef (X) intersects the big
torus.

For the moment, regarf as a map fronX to Z’ and suppose that: X — X’
andh: U — Z’ satisfy the assertion fof : X — Z’. Taking closures iU and
Z' (respectively), we obtain

h(U) C h(g(X)) C h(g(X)) = f(X) C Y.

This means thai is, in fact, a map front/ to Y. ThusX’, g, h, andU also pro-
vide the desired data for the originat X — Y. Consequently, we can assume in
the sequel that is a smooth toric prevariety of affine intersection and th@t)
intersects the big torus af But then, according to Lemma 4.2, there is a commu-
tative diagram
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~ .
X—>Y
XL>Y,

whereX, Y are quasiaffine toric varieties and where the vertical maps are geomet-
ric prequotients for free actions of subtdfi andHy of the big tori of X and?,
respectively. We may even assume thiat X holds.

Let H := p~'(H) and suppose that thé’-invariant regular magf’ := f o p
admits a decomposition of the forffi = 1’ o g’ with a dominantH’-invariant
toric morphismg’: X — X’ and a regular map’: U — Y defined on an open
neighborhood’ of the image ofg’.

Then, by the universal property pf there is a toric morphism: X — X’ with
g’ = g o p. Clearly this morphism is dominant. Moreover, sineés surjective,
g is H-invariant andg(X) C U holds. Consequently; = 4’ o g is a decomposi-
tion as desired. Hence it suffices to prove the assertion for the caseXvhel
andHyx = 1 hold andp is the identity map.

Now we consider the regular map X — Y as a map from aif-variety to
an Hy-variety. Because o f = f is H-invariant, everyH-orbit is mapped by/
into a fiber ofg. On the other hand, the fibersgfire precisely théfy-orbits. We
can therefore apply Lemma 4.3 and conclude fhist H -equivariant with respect
to a homomorphisntf — Hy.

Choosing a locally closed toric embeddifigc K*, we obtain a homomor-
phismHy, — K*, and the induced map: X — K* is H-equivariant with re-
spect to the homomorphisi — Hy — K*. Hence the components gf are
H-homogeneous regular functions. By writing the componenfsasflinear com-
binations of character functions of the big tofis— X and using the summands
to define a toric morphisrg’: X — K’, we obtain a decomposition ¢f in the
form f = s o g/, with a linear map: K* — K°. Note thatg’ induces an action
of H onK”, makings: K" — K* into an H-equivariant map.

Let W be the normalization of the closure {X) in K. ThenW is an affine
toric variety with big torusg’(T). We can lift g’ to a dominant toric morphism
g: X — W and pull back to aregular mag: W — K°. Both g ands are again
equivariant for the inducedl -action onW. The setV .= §*1(?) is H-invariant
and open inW. Moreover, we havg(X) c V. So far, we are in the following

situation:
|4 Y
]
X Y.

Sinces: W — K¢ is an affine map, its restrictiof: V — Y is also affine.
Thusg o §: V — Y is an affineH-invariant regular map. Existence of an affine

N
R

f
_—
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H-invariant mapV — Y already implies existence of a good quotientV —
V/ H for the action ofH (see e.g. [19, Prop. 3.12]), so we obtain the following
commutative diagram of regular maps:

v —L>vVv)H

X —Y.

Note thatg := po g: X — V/H is H-invariant and thaV / H is divisorial, be-
causeY is divisorial andz is an affine morphism, so the decompositjpr= 4o g
is almost what we need. To complete the proof it suffices to show that we can em-
bedV/H as an open subset into a divisorial toric varigty such thatg, when
viewed as a morphism frork to X', is toric.

For this last step we argue as follows. Note that we constructeslan opeit -
invariant subset of the toric variety. In [21], Swiecicka showed that “maximal”
open subsets with a good quotient by a given subtorus in a toric variety are in fact
toric subvarieties.

More precisely, according to [21, Cor. 2.4}, is contained in an open toric
subvarietyV’ ¢ W with a good toric quotienp’: V' — V’/H such that the in-
duced map//H — V’JH is an open inclusion. Of course, we can cho@sén
such a manner that’/H = T'-(V/H) holds, wherel'” denotes the big torus of
V'/H. We setX’ := V'/H andU := V/ H to arrive at the following commuta-
tive diagram:

V/pHV///H X/

U U U
x—syv-—Lsv/H = U,

The morphismX — V’ sendingx to g(x) is a dominant toric morphism be-
causeg: X — W is; hence the same is true fpr= p’c g: X — X’. Moreover,
becausg&(X) C V holds, we conclude that the big tor@i$ of X’ is contained in
U. It follows that the complement’ \ U is of codimension at least 2 ii". Thus,
Lemma 1.7 yields that the toric varief’ is also divisorial. This completes the
proof. O

6. Divisorial Reduction and Categorical Quotients

In this section we come to the main results of this article. Recall from [18] that
a categorical quotienfor a G-variety X is a G-invariant regular magX — Y
such that any-invariant regular majX — Z factors uniquely througlk — Y.
Clearly, this notion can be restricted to any subcategory of the category of alge-
braic varieties as soon as thievariety X belongs to this subcategory.

We give an answer to the problem of existence of categorical quotients for
subtorus actions in the divisorial category. In fact, our method of proof solves the
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existence problem of a more general universal object. Consider a toric v&riety
with big torusT and the action of a subtorus C 7.

DEeFINITION 6.1. An H-invariant divisorial reductionof X is a regular map
r: X — Y to a divisorial varietyY such that everyH-invariant regular map
f: X — Z to adivisorial varietyZ admits a unique factorizatiofi = f o r with
aregularmag: ¥ — Z. If H = 1, then we simply speak of divisorial reduc-
tion.

A candidate for such a reduction is constructed in two steps. First, recall from [2]
that there is a toric quotient for the action&fon X, which means there is a toric
morphism

p: X —> X/ H

that is a categorical quotient for the action/fon X in the category of toric vari-
eties. In a second step, construct the toric divisorial reduction of the toric quotient
space as described in Section 3:

q: X/ H — (X/ H)'Y".

THEOREM 6.2. For a toric variety X, the following statements are equivalent

(i) X admits anH -invariant divisorial reduction

(ii) the compositio o p: X — Z is surjective.

Moreover, if one of these statements holds, thep is the H-invariant divisorial
reduction.

Applying this result to divisorial toric varietieX, we obtain the following solu-
tion to the quotient problem.

CoroLLARY 6.3. The action of a subtoru&l on a divisorial toric varietyX ad-
mits a categorical quotient in the category of divisorial varieties if and only if the
composition ofX — X/ H and X/, H — (X/,H)"" is a surjective map.

A further special case of Theorem 6.2 is the case of a trivial téfus 1. Here
we obtain the following.

CoRrOLLARY 6.4. A toric variety admits a divisorial reduction if and only if its
toric divisorial reduction is surjective.

Proof of Theorem 6.2Assume first thag o p is surjective. We show that a given
H-invariantregular mag : X — Z to a divisorial varietyZ factors througly o p.
Lemma 5.1 yields a decompositigh= h o g with an H-invariant dominant toric
morphismg: X — X’ to a divisorial toric varietyX'.

By the universal properties gf andg, the toric morphisng has a factorization
g = g’ o(q o p). By surjectivity ofq o p, the maph is defined on a neighborhood
of the image of’. Hencef = (hog’) o (¢ o p) is the desired factorization. Thus
q o p is the H-invariant divisorial reduction oX.
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Conversely, suppose th&thas anH -invariant divisorial reductiomn: X — Y.
Since the normalization of a divisorial variety is again divisorial, we can conclude
thatY is normal. Moreover, the universal propertyrof X — Y implies thatr is
surjective and that inherits a set-theoretical action of the big tofug- X, mak-
ing r equivariant. Note that it is not clear a priori that this action is regular, so we
cannot treal’ as a toric variety.

Let Z = (X/tqH)““. We shall compare thé/-invariant divisorial reduction
r: X — Y with the toric morphismy o p: X — Z. On the one hand, because of
the universal property of, the mapg o p factors uniquely through So there is
a unique regularmag@: ¥ — Zwithgop =aor.

On the other hand, Lemma 5.1 provides a decompositier: o g with a dom-
inant toric morphismg: X — X’ to a divisorial toric varietyX’ and a rational
maph from X’ to Y that is defined on the image gf By the universal properties
of p andg, we haveg = g’ o g o p with a toric morphisng’: Z — X’. We thus
arrive at the following commutative diagram:

X——=y
fiopi Ot/ ?h
P
Z—X'.
8
Note thatg’(¢(p(X))) = g(X) is contained in the domain of definition of the
rational map:. Sincer is surjective, we have(p (X)) = «(Y) and so obtain that
his defined ory’(a(Y)). Itfollows that(h o g’) o is the identity or¥. This shows
thata is injective. Moreover, on the big torus @f, the mapa o (h o g’) is the
identity.
Consequentlyy: Y — Z is a birational injection. Sinc& is normal, Zariski’'s
main theorem tells us thatis in fact an open embedding. Since the imag¥)
is invariant under the induced set-theoretical actiofi oh Y, the mapx is an iso-
morphism. In particular;: X — Y is surjective. O

We conclude this section with some examples. In many situations, the foregoing
results give positive answers to the problem of existence of quotients. A typical
case are toric varieties defined by fans with convex support.

CoRroLLARY 6.5. LetX be atoric variety arising from a fan with convex support.
ThenX admits a divisorial reduction.

Proof. Let the toric divisorial reductiog: X — X’ arise fromama@: N —
N’ of fansA and A. Theno = Q(]A|) is a convex cone iV’ ando C |A'].
Intersecting the cones a@f with o, we obtain a further fan iv’, namely,

AN = U 3’ No).
t'eN
Let X” be the associated toric variety. The identity mdp— N’ defines

an affine toric morphisngy: X” — X'. In particular, X” is divisorial. More-
over,Q: N — N’is also a map of the fan& andA”. The corresponding toric
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morphismg’: X — X" is surjective becaus@(]A|) equals|A”|. Consider the
decomposition

X—>X’

N4

The universal property of the toric divisorial reduction implies hak” — X' is
an isomorphism. Hencg: X — X' is surjective, and the assertion follows from
Corollary 6.4. O

CoROLLARY 6.6. LetX be a divisorial toric variety arising from a fan with con-
vex support. Then every subtorus actionadmits a categorical quotient in the
category of divisorial varieties.

Proof. Let the toric quotienp: X — X’ arise froma mag?: N — N’ of fans
A andA. By [2, Remark 2.5], each cong € A’ is generated by image®(o) of
certaino € A. ThusA, too, has convex support apd X — X’ is surjective, so
Corollaries 6.3 and 6.5 give the claim. O

However, Corollary 6.3 also provides counterexamples to existence of quotients.
There can be different reasons for nonsurjectivity ofp, as the following exam-
ples show.

ExaMpPLE 6.7. For the toric varietX described in Example 3.6, the toric divi-
sorial reduction is not surjective; hen&edoes not admit a divisorial reduction.
Moreover, by Cox’s construction (see [11},is a good quotient of an open sub-
setX c K° by a 5-dimensional subtord$ c (K*)°. Thus, the action off on

X admits no categorical quotient in the category of divisorial varieties.

EXAMPLE 6.8. LetA be the fan irz# having the following maximal cones:
o1:=cong(10,0,0), (0,1,0,0)), oz :=cong(0,0,1,0),(0,0,0,1).
The associated toric variety is an open toric subset &*. Define a projection
P:7*— 78 by
P(1,0,0,0) :=(1,0,0), P((0,1,0,0):=(0,10),
P((0,0,1,0) :=(0,0,1), P((0,0,0,1):=(110).

By [2], the toric morphisnp: X — K2 defined byP is the toric quotient for
the action of the subtorud := ker(p) on X. Sincep is not surjective, the action
of H on X has no categorical quotient in the category of divisorial varieties.

7. An Open Problem

In this article we have solved the problem of existence of categorical quotients
for subtorus actions on toric varieties in the divisorial category. For the analogous
guestion in the category of all algebraic varieties, we have partial results.
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For example, the toric quotiept: X — X/ H is a categorical quotient in the
category of algebraic varieties if the subtomdsis of codimension at most 2, or
if the mapp satisfies a certain curve lifting property aig, H is of expected di-
mension [1; 4].

However, the general question still remains open. Therefore, we pose it here as
a problem.

ProBLEM 7.1. Givenecessary and sufficient conditions for subtorus actions on
toric varieties to admit a categorical quotient in the category of algebraic varieties.
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