A UNIFIED THEORY OF WEAKLY OPEN FUNCTIONS

Takashi Noiri and Valeriu Popa

Abstract. We introduce a new notion of weakly M-open functions as functions defined between sets satisfying some minimal conditions. We obtain some characterizations and several properties of such functions. The functions enable us to formulate a unified theory of weak openness [36], weak semi-openness [10], weak preopenness [11], and weak β -openness [9].

1. Introduction. In 1984, Rose [36] defined the notion of weakly open functions. Some properties of weakly open functions were studied in [5]. Semi-open sets, preopen sets, and β -open sets play an important role in researching generalizations of open functions in topological spaces. By using these sets, Caldas and Navalagi [7–11] introduced and studied various types of modifications of weakly open functions. Furthermore, the analogy in their definitions and results suggest the need of formulating a unified theory.

In this paper, in order to unify several characterizations and properties of the functions mentioned above, we introduce a new class of functions called weakly M-open functions; these functions are defined between sets satisfying some minimal conditions. We obtain several characterizations and properties of such functions. In Section 3, we obtain several characterizations of weakly M-open functions. In Section 4, we obtain some conditions for a weakly M-open function to be M-open. In the last section, we recall several types of modifications of open sets and point out the possibility for new forms of weakly M-open functions. Moreover, we show that some functions in these new forms are equivalent to each other. As a result, we obtain the following property (stated in Corollary 6.1).

<u>Theorem 1.1</u>. For a function $f:(X,\tau) \to (Y,\sigma)$, the following properties are equivalent:

- (1) $f: (X, \tau) \to (Y, \sigma)$ is weakly open;
- (2) $f:(X,\tau_s) \to (Y,\sigma)$ is weakly open, where τ_s is the semiregularization of τ ;
- (3) $f:(X,\tau^{\alpha}) \to (Y,\sigma)$ is weakly open, where τ^{α} is the family of α -open sets of (X,τ) .

2. Preliminaries. Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be *regular closed* (resp. *regular open*) if Cl(Int(A)) = A (resp. Int(Cl(A)) = A). A subset A is said to be δ -open [37] if for each $x \in A$ there exists a regular open set G such that $x \in G \subset A$. A point $x \in X$ is called a δ -cluster point of A if $Int(Cl(V)) \cap A \neq \emptyset$ for

every open set V containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $\operatorname{Cl}_{\delta}(A)$. The set $\{x \in X : x \in U \subset A \text{ for some regular open set } U \text{ of } X\}$ is called the δ -interior of A and is denoted by $\operatorname{Int}_{\delta}(A)$. The θ -closure of A, denoted by $\operatorname{Cl}_{\theta}(A)$, is defined as the set of all points $x \in X$ such that $\operatorname{Cl}(V) \cap A \neq \emptyset$ for every open set Vcontaining x. A subset A is said to be θ -closed if $A = \operatorname{Cl}_{\theta}(A)$ [37]. The complement of a θ -closed set is said to be θ -open. It is shown in [37] that $\operatorname{Cl}_{\theta}(V) = \operatorname{Cl}(V)$ for every open set V of X and $\operatorname{Cl}_{\theta}(S)$ is closed in X for every subset S of X.

<u>Definition 2.1</u>. Let (X, τ) be a topological space. A subset A of X is said to be

- (1) semi-open [17] (resp. preopen [20], α -open [23], β -open [1] or semipreopen [3]) if $A \subset \operatorname{Cl}(\operatorname{Int}(A))$ (resp. $A \subset \operatorname{Int}(\operatorname{Cl}(A))$, $A \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))$, $A \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(A)))$),
- (2) δ -preopen [35] (resp. δ -semi-open [28]) if $A \subset Int(Cl_{\delta}(A))$ (resp. $A \subset Cl(Int_{\delta}(A))$).

The family of all semi-open (resp. preopen, α -open, β -open, δ -preopen, δ -semi-open) sets in (X, τ) is denoted by SO(X) (resp. PO(X), $\alpha(X)$ or τ^{α} , $\beta(X)$, δ PO(X), δ SO(X)).

<u>Definition 2.2</u>. The complement of a semi-open (resp. preopen, α -open, β -open, δ -preopen, δ -semi-open) set is said to be *semi-closed* [12] (resp. *pre-closed* [20], α -closed [21], β -closed [1] or *semi-preclosed* [3], δ -preclosed [35], δ -semi-closed [28]).

Definition 2.3. The intersection of all semi-closed (resp. preclosed, α closed, β -closed, δ -preclosed, δ -semi-closed) sets of X containing A is called the *semi-closure* [12] (resp. *preclosure* [15], α -*closure* [21], β -*closure* [2], or *semi-preclosure* [3], δ -*preclosure* [35], δ -*semi-closure* [28]) of A and is denoted by sCl(A) (resp. pCl(A), α Cl(A), β Cl(A) or spCl(A), pCl $_{\delta}(A)$, sCl $_{\delta}(A)$).

<u>Definition 2.4</u>. The union of all semi-open (resp. preopen, α -open, β open, δ -preopen, δ -semi-open) sets of X contained in A is called the *semiinterior* (resp. *preinterior*, α -*interior*, β -*interior* or *semi-preinterior*, δ *preinterior*, δ -*semi-interior*) of A and is denoted by $\operatorname{sInt}(A)$ (resp. $\operatorname{pInt}(A)$, $\alpha \operatorname{Int}(A)$, $\beta \operatorname{Int}(A)$ or $\operatorname{spInt}(A)$, $\operatorname{pInt}_{\delta}(A)$, $\operatorname{sInt}_{\delta}(A)$).

Throughout the present paper, (X, τ) and (Y, σ) denote topological spaces and $f: (X, \tau) \to (Y, \sigma)$ presents a (single valued) function.

<u>Definition 2.5</u>. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

- (1) semi-open [6] (resp. preopen [20], α -open [21], β -open [1]) if f(U) is semi-open (resp. preopen, α -open, β -open) for each open set U of X,
- (2) weakly open [36] (resp. weakly semi-open [10], weakly preopen [11], weakly β -open [9]) if $f(U) \subset \operatorname{Int}(f(\operatorname{Cl}(U)))$ (resp. $f(U) \subset$

 $\operatorname{sInt}(f(\operatorname{Cl}(U))), f(U) \subset \operatorname{pInt}(f(\operatorname{Cl}(U))), f(U) \subset \operatorname{spInt}(f(\operatorname{Cl}(U))))$ for each open set U of X,

(3) pre- β -open [18] if f(U) is β -open in Y for each β -open set U of X.

3. Weakly *M*-open Functions.

<u>Definition 3.1</u>. A subfamily m_X of the power set $\mathcal{P}(X)$ of a nonempty set X is called a *minimal structure* (briefly *m-structure*) [34] on X if $\emptyset \in m_X$ and $X \in m_X$. By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X and call it an *m-space*. Each member of m_X is said to be m_X -open (or briefly *m-open*) and the complement of an m_X -open set is said to be m_X -closed (or briefly *m-closed*).

<u>Remark 3.1</u>. Let (X, τ) be a topological space. Then the families τ , SO(X), PO(X), $\alpha(X)$, $\beta(X)$, δ PO(X), and δ SO(X) are all *m*-structures on X.

<u>Definition 3.2</u>. Let (X, m_X) be an *m*-space. For a subset *A* of *X*, the m_X -closure of *A* and the m_X -interior of *A* are defined in [19] as follows:

- (1) m_X -Cl(A) = $\bigcap \{F : A \subset F, X F \in m_X\},\$
- (2) m_X -Int $(A) = \bigcup \{ U : U \subset A, U \in m_X \}.$

<u>Remark 3.2</u>. Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, $\beta(X)$, δ PO(X), δ SO(X)), then we have

- (1) m_X -Cl(A) = Cl(A) (resp. sCl(A), pCl(A), α Cl(A), β Cl(A), pCl_{δ}(A), sCl_{δ}(A)),
- (2) m_X -Int(A) =Int(A) (resp. sInt(A), pInt(A), α Int(A), β Int(A), pInt $_{\delta}(A)$, sInt $_{\delta}(A)$).

<u>Lemma 3.1</u>. (Maki et al. [19]) Let X be a nonempty set and m_X a minimal structure on X. For subsets A and B of X, the following properties hold:

- (1) m_X -Cl $(X A) = X (m_X$ -Int(A)) and m_X -Int $(X A) = X (m_X$ -Cl(A)),
- (2) If $(X A) \in m_X$, then m_X -Cl(A) = A and if $A \in m_X$, then m_X -Int(A) = A,
- (3) m_X -Cl(\emptyset) = \emptyset , m_X -Cl(X) = X, m_X -Int(\emptyset) = \emptyset , and m_X -Int(X) = X,
- (4) If $A \subset B$, then m_X -Cl $(A) \subset m_X$ -Cl(B) and m_X -Int $(A) \subset m_X$ -Int(B),
- (5) $A \subset m_X$ -Cl(A) and m_X -Int(A) $\subset A$,
- (6) m_X -Cl $(m_X$ -Cl(A)) = m_X -Cl(A) and m_X -Int $(m_X$ -Int(A)) = m_X -Int(A).

<u>Definition 3.3.</u> A minimal structure m_X on a nonempty set X is said to have *property* \mathcal{B} [19] if the union of any family of subsets belonging to m_X belongs to m_X . <u>Lemma 3.2</u>. (Popa and Noiri [32]) For a minimal structure m_X on a nonempty set X, the following properties are equivalent:

- (1) m_X has property \mathcal{B} ;
- (2) If m_X -Int(V) = V, then $V \in m_X$;
- (3) If m_X -Cl(F) = F, then $X F \in m_X$.

<u>Lemma 3.3.</u> (Noiri and Popa [25]) Let X be a nonempty set and m_X a minimal structure on X satisfying property \mathcal{B} . For a subset A of X, the following properties hold:

- (1) $A \in m_X$ if and only if m_X -Int(A) = A,
- (2) A is m_X -closed if and only if m_X -Cl(A) = A,
- (3) m_X -Int $(A) \in m_X$ and m_X -Cl(A) is m_X -closed.

<u>Definition 3.4</u>. Let S be a subset of an m-space (X, m_X) . A point $x \in X$ is called

- (1) an m_X - θ -adherent point of S if m_X -Cl $(U) \cap S \neq \emptyset$ for every $U \in m_X$ containing x,
- (2) an m_X - θ -interior point of S if $x \in U \subset m_X$ -Cl $(U) \subset S$ for some $U \in m_X$.

The set of all m_X - θ -adherent points of S is called the m_X - θ -closure [25] of S and is denoted by m_X - $\operatorname{Cl}_{\theta}(S)$. If $S = m_X$ - $\operatorname{Cl}_{\theta}(S)$, then S is called m_X - θ -closed. The complement of an m_X - θ -closed set is said to be m_X - θ open. The set of all m_X - θ -interior points of S is called the m_X - θ -interior of S and is denoted by m_X -Int $_{\theta}(S)$.

<u>Remark 3.3.</u> Let (X, τ) be a topological space and $m_X = \tau$ (resp. SO(X), PO(X), $\beta(X)$), then m_X -Cl_{θ}(S) = Cl_{θ}(S) [37] (resp. sCl_{θ}(S) [13], pCl_{θ}(S) [27], spCl_{θ}(S) [24]).

<u>Lemma 3.4</u>. (Noiri and Popa [25]) Let A and B be subsets of (X, m_X) . Then the following properties hold:

- (1) $X m_X \operatorname{Cl}_{\theta}(A) = m_X \operatorname{Int}_{\theta}(X A)$ and $X m_X \operatorname{Int}_{\theta}(A) = m_X \operatorname{Cl}_{\theta}(X A)$,
- (2) A is m_X - θ -open if and only if $A = m_X$ -Int $_{\theta}(A)$,
- (3) $A \subset m_X$ -Cl $(A) \subset m_X$ -Cl $_{\theta}(A)$ and m_X -Int $_{\theta}(A) \subset m_X$ -Int $(A) \subset A$,
- (4) If $A \subset B$, then m_X -Cl_{θ} $(A) \subset m_X$ -Cl_{θ}(B) and m_X -Int_{θ} $(A) \subset m_X$ -Int_{θ}(B),
- (5) If A is m_X -open, then m_X -Cl $(A) = m_X$ -Cl $_{\theta}(A)$.

A function $f:(X, m_X) \to (Y, m_Y)$ is said to be weakly *M*-continuous [34] at $x \in X$ if for each $V \in m_Y$ containing f(x), there exists $U \in m_X$ containing x such that $f(U) \subset m_Y$ -Cl(V). It is shown in Theorem 3.2 of [34] that a function $f:(X, m_X) \to (Y, m_Y)$ is weakly *M*-continuous if and only if $f^{-1}(V) \subset m_X$ -Int $(f^{-1}(m_Y$ -Cl(V))) for each $V \in m_Y$. For a function $f: (X, m_X) \to (Y, m_Y)$, we define the concept of weak *M*-openness as a natural dual to the concept of weak *M*-continuity.

<u>Definition 3.5.</u> A function $f: (X, m_X) \to (Y, m_Y)$, where X and Y are nonempty sets with *m*-structures m_X and m_Y , respectively, is said to be weakly *M*-open if for each $U \in m_X$, $f(U) \subset m_Y$ -Int $(f(m_X$ -Cl(U))).

<u>Remark 3.4.</u> Let (X, τ) and (Y, σ) be topological spaces and $f: (X, m_X) \to (Y, m_Y)$ be a function. If $m_X = \tau$, $m_Y = \sigma$ (resp. SO(Y), PO(Y), $\beta(Y)$), and $f: (X, m_X) \to (Y, m_Y)$ is a weakly *M*-open function, then f is weakly open [36] (resp. weakly semi-open [10], weakly preopen [11], weakly β -open [9]).

<u>Theorem 3.1.</u> For a function $f:(X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

- (1) f is weakly M-open;
- (2) $f(m_X \operatorname{-Int}_{\theta}(A)) \subset m_Y \operatorname{-Int}(f(A))$ for every subset A of X;
- (3) m_X -Int $_{\theta}(f^{-1}(B)) \subset f^{-1}(m_Y$ -Int(B)) for every subset B of Y;
- (4) $f^{-1}(m_Y \operatorname{Cl}(B)) \subset m_X \operatorname{Cl}_{\theta}(f^{-1}(B))$ for every subset B of Y;
- (5) For each $x \in X$ and each m_X -open set U containing x, there exists an m_Y -open set V containing f(x) such that $V \subset f(m_X-\operatorname{Cl}(U))$.

<u>Proof.</u> (1) \Rightarrow (2): Let A be any subset of X and $x \in m_X \operatorname{-Int}_{\theta}(A)$. Then, there exists a $U \in m_X$ such that $x \in U \subset m_X\operatorname{-Cl}(U) \subset A$. Hence, we have $f(x) \in f(U) \subset f(m_X\operatorname{-Cl}(U)) \subset f(A)$. Since f is weakly M-open, $f(U) \subset m_Y\operatorname{-Int}(f(m_X\operatorname{-Cl}(U))) \subset m_Y\operatorname{-Int}(f(A))$ and $x \in f^{-1}(m_Y\operatorname{-Int}(f(A)))$. Thus, $m_X\operatorname{-Int}_{\theta}(A) \subset f^{-1}(m_Y\operatorname{-Int}(f(A)))$ and $f(m_X\operatorname{-Int}_{\theta}(A)) \subset m_Y\operatorname{-Int}(f(A))$.

 $(2) \Rightarrow (3)$: Let B be any subset of Y. By (2), $f(m_X \operatorname{-Int}_{\theta}(f^{-1}(B))) \subset m_Y \operatorname{-Int}(B)$. Therefore, $m_X \operatorname{-Int}_{\theta}(f^{-1}(B)) \subset f^{-1}(m_Y \operatorname{-Int}(B))$.

 $(3) \Rightarrow (4)$: Let B be any subset of Y. By Lemma 3.4 and (3), we have

$$X - m_X - \text{Cl}_{\theta}(f^{-1}(B)) = m_X - \text{Int}_{\theta}(X - f^{-1}(B)) = m_X - \text{Int}_{\theta}(f^{-1}(Y - B))$$

$$\subset f^{-1}(m_Y - \text{Int}(Y - B)) = f^{-1}(Y - m_Y - \text{Cl}(B)) = X - f^{-1}(m_Y - \text{Cl}(B)).$$

Therefore, $f^{-1}(m_Y - \operatorname{Cl}(B)) \subset m_X - \operatorname{Cl}_{\theta}(f^{-1}(B)).$

(4) \Rightarrow (5): Let $x \in X$ and U be any m_X -open set containing x. Let $B = Y - f(m_X - \operatorname{Cl}(U))$. By (4), $f^{-1}(m_Y - \operatorname{Cl}(Y - f(m_X - \operatorname{Cl}(U)))) \subset m_X - \operatorname{Cl}_{\theta}(f^{-1}(Y - f(m_X - \operatorname{Cl}(U))))$. Now, $f^{-1}(m_Y - \operatorname{Cl}(Y - f(m_X - \operatorname{Cl}(U)))) = X - f^{-1}(m_Y - \operatorname{Int}(f(m_X - \operatorname{Cl}(U))))$. And also we have,

$$m_X \operatorname{-Cl}_{\theta}(f^{-1}(Y - f(m_X \operatorname{-Cl}(U)))) = m_X \operatorname{-Cl}_{\theta}(X - f^{-1}(f(m_X \operatorname{-Cl}(U)))) \subset m_X \operatorname{-Cl}_{\theta}(X - m_X \operatorname{-Cl}(U)) = X - m_X \operatorname{-Int}_{\theta}(m_X \operatorname{-Cl}(U)) \subset X - U.$$

Therefore, we obtain $U \subset f^{-1}(m_Y \operatorname{-Int}(f(m_X \operatorname{-Cl}(U))))$ and $f(U) \subset m_Y \operatorname{-Int}(f(m_X \operatorname{-Cl}(U)))$. Since $f(x) \in f(U)$, there exists $V \in m_Y$ such that $f(x) \in V \subset f(m_X \operatorname{-Cl}(U))$.

 $(5) \Rightarrow (1)$: Let $U \in m_X$ and $x \in U$. By (5), there exists an m_Y open set V containing f(x) such that $V \subset f(m_X-\operatorname{Cl}(U))$. Hence, we have $f(x) \in V \subset m_Y-\operatorname{Int}(f(m_X-\operatorname{Cl}(U)))$ for each $x \in U$. Therefore, we obtain $f(U) \subset m_Y-\operatorname{Int}(f(m_X-\operatorname{Cl}(U)))$. This shows that f is weakly M-open.

<u>Theorem 3.2</u>. Let $f: (X, m_X) \to (Y, m_Y)$ be a bijective function, where m_X has property \mathcal{B} . Then the following properties are equivalent:

- (1) f is weakly M-open;
- (2) m_Y -Cl $(f(m_X$ -Int $(F))) \subset f(F)$ for each m_X -closed set F of X;
- (3) m_Y -Cl $(f(U)) \subset f(m_X$ -Cl(U)) for each $U \in m_X$.

<u>Proof.</u> (1) \Rightarrow (2): Let F be any m_X -closed set of X. Then X - F is m_X -open and

$$Y - f(F) = f(X - F) \subset m_Y \operatorname{-Int}(f(m_X \operatorname{-Cl}(X - F)))$$

= $m_Y \operatorname{-Int}(f(X - m_X \operatorname{-Int}(F)))$
= $m_Y \operatorname{-Int}(Y - f(m_X \operatorname{-Int}(F))) = Y - m_Y \operatorname{-Cl}(f(m_X \operatorname{-Int}(F))).$

This implies that m_Y -Cl $(f(m_X$ -Int $(F))) \subset f(F)$. (2) \Rightarrow (3): Let $U \in m_X$. By (2), we have

$$m_Y - \operatorname{Cl}(f(U)) = m_Y - \operatorname{Cl}(f(m_X - \operatorname{Int}(U))) \subset m_Y - \operatorname{Cl}(f(m_X - \operatorname{Int}(m_X - \operatorname{Cl}(U)))) \subset f(m_X - \operatorname{Cl}(U)).$$

 $(3) \Rightarrow (1)$: Let $U \in m_X$. Then, we have

$$Y - m_Y - \operatorname{Int}(f(m_X - \operatorname{Cl}(U))) = m_Y - \operatorname{Cl}(Y - f(m_X - \operatorname{Cl}(U)))$$

= $m_Y - \operatorname{Cl}(f(X - m_X - \operatorname{Cl}(U))) \subset f(m_X - \operatorname{Cl}(X - m_X - \operatorname{Cl}(U)))$
= $f(X - m_X - \operatorname{Int}(m_X - \operatorname{Cl}(U))) \subset f(X - U) = Y - f(U).$

Therefore, we obtain $f(U) \subset m_Y$ -Int $(f(m_X$ -Cl(U))). This shows that f is weakly M-open.

<u>Remark 3.5.</u> Let (X, τ) and (Y, σ) be topological spaces and $f: (X, \tau) \to (Y, m_Y)$ be a weakly *M*-open function, where $m_Y = \text{SO}(Y)$ (resp. PO(Y), $\beta(Y)$). Then by Theorems 3.1 and 3.2, we obtain the characterizations established in Theorem 2.3–2.6 of [10] (resp. Theorem 2.3–2.6 of [11], Theorems 2.4 and 2.5 of [9] and Theorems 2.4–2.6 of [7]).

4. Weak *M*-openness and *M*-openness.

<u>Definition 4.1</u>. A function $f: (X, m_X) \to (Y, m_Y)$ is said to be

- (1) *M*-open [22] if f(U) is m_Y -open in (Y, m_Y) for every $U \in m_X$,
- (2) almost M-open [22] at $x \in X$ if for each $U \in m_X$ containing x, there exists $V \in m_Y$ containing f(x) such that $V \subset f(U)$. If f is almost M-open at each point $x \in X$, then f is said to be almost M-open.

<u>Remark 4.1</u>. Let (X, τ) and (Y, σ) be topological spaces and $f: (X, m_X) \to (Y, m_Y)$ be an *M*-open function.

- (1) If $m_X = \tau$ and $m_Y = SO(Y)$ (resp. PO(Y), $\alpha(Y)$, $\beta(Y)$), then f is semi-open (resp. preopen, α -open, β -open).
- (2) If $m_X = \beta(X)$ and $m_Y = \beta(Y)$, then f is pre- β -open.

<u>Lemma 4.1.</u> A function $f:(X, m_X) \to (Y, m_Y)$ is almost *M*-open if and only if $f(U) = \text{Int}_Y(f(U))$ for each $U \in m_X$.

<u>Proof.</u> Necessity. Let $U \in m_X$ and $x \in U$. Then, there exists $V_x \in m_Y$ such that $f(x) \in V_x \subset f(U)$; hence, $V_x \subset \operatorname{Int}_Y(f(U))$. Therefore, we have $f(U) \subset \bigcup \{V_x : x \in U\} \subset \operatorname{Int}_Y(f(U))$ and hence, $f(U) = \operatorname{Int}_Y(f(U))$.

Sufficiency. Let $x \in X$ and U be an m_X -open set containing x. Then we have $f(x) \in f(U) = \operatorname{Int}_Y(f(U))$. Therefore, there exists $V \in m_Y$ such that $f(x) \in V \subset f(U)$. This shows that f is almost M-open.

<u>Lemma 4.2</u>. For a function $f: (X, m_X) \to (Y, m_Y)$, the following properties hold:

- M-openness implies almost M-openness and almost M-openness implies weak M-openness,
- (2) *M*-openness is equivalent to almost *M*-openness if m_Y has property \mathcal{B} .

<u>Proof.</u> (1) It is obvious from Lemma 4.1 that every *M*-open function is almost *M*-open. Suppose that *f* is almost *M*-open. Let $U \in m_X$. By Lemma 4.1, we have $f(U) = \text{Int}_Y(f(U)) \subset \text{Int}_Y(f(\text{Cl}_X(U)))$. Hence, *f* is weakly *M*-open.

(2) This follows from Lemmas 3.2 and 4.1.

<u>Remark 4.2</u>. (a) The converses of Lemma 4.2 (1) are not true in general. There exists an almost M-open function which is not M-open (Example 3.1 of [22]). And also, there exists a weakly M-open function which is not almost M-open (Example 2.19 of [10], Example 2.17 of [11], and Example 2.16 of [9]).

(b) Let $f:(X,\tau) \to (Y,\sigma)$ be a function. If $f:(X,m_X) \to (Y,m_Y)$, $m_X = \tau$, and $m_Y = SO(Y)$ (resp. PO(Y), $\beta(Y)$), then we obtain the results established in Theorem 2.18 of [10] (resp. Theorem 2.16 of [11], Theorem 2.15 of [9]).

<u>Definition 4.2</u>. A function $f: (X, m_X) \to (Y, m_Y)$ is said to be *strongly* M-continuous if $f(m_X$ -Cl(A)) $\subset f(A)$ for every subset A of X.

<u>Remark 4.3</u>. If $m_X = \tau$, $m_Y = \sigma$, and $f: (X, m_X) \to (Y, m_Y)$ is a strongly *M*-continuous function, then $f: (X, \tau) \to (Y, \sigma)$ is strongly continuous due to Levine [16].

<u>Theorem 4.1</u>. If $f:(X, m_X) \to (Y, m_Y)$ is a weakly *M*-open and strongly *M*-continuous function, then *f* is almost *M*-open.

<u>Proof.</u> Let $U \in m_X$. Since f is weakly M-open and strongly M-continuous, we have $f(U) \subset m_Y$ -Int $(f(m_X-\operatorname{Cl}(U))) \subset m_Y$ -Int(f(U)). By Lemma 3.1, $f(U) = m_Y$ -Int(f(U)). It follows from Lemma 4.1 that f is almost M-open.

<u>Corollary 4.1.</u> Let $f: (X, m_X) \to (Y, m_Y)$ be a strongly *M*-continuous function and m_Y has property \mathcal{B} . Then the following properties are equivalent:

- (1) f is M-open;
- (2) f is almost M-open;
- (3) f is weakly M-open.

<u>Proof.</u> This is an immediate consequence of Lemma 4.2 and Theorem 4.1.

<u>Remark 4.4.</u> (a) There exists a weakly M-open function which is not strongly M-continuous as shown in Example 2.8 of [10], Example 2.8 of [11], and Example 2.7 of [9].

(b) Let (X, τ) and (Y, σ) be topological spaces and $f: (X, m_X) \to (Y, m_Y)$ be a function. If $m_X = \tau$ and $m_Y = \text{SO}(Y)$ (resp. PO(Y), $\beta(Y)$), then by Corollary 4.1 we obtain the results established in Theorem 2.7 of [10] (resp. Theorem 2.6 of [11], Theorem 2.6 of [9]).

<u>Definition 4.3</u>. An *m*-space (X, m_X) is said to be *m*-regular [25] if for each m_X -closed set *F* and each $x \notin F$, there exist disjoint m_X -open sets *U* and *V* such that $x \in U$ and $F \subset V$.

<u>Remark 4.5.</u> Let (X, τ) be a topological space and $m_X = \tau$ (resp. SO(X), PO(X), $\beta(X)$). Then *m*-regularity coincides with regularity (resp. semi-regularity [14], pre-regularity [27], semi-pre-regularity [24]).

Lemma 4.3. (Noiri and Popa [25]) If an *m*-space (X, m_X) is *m*-regular, then for each $x \in X$ and each m_X -open set U containing x, there exists an m_X -open set V such that $x \in V \subset m_X$ -Cl $(V) \subset U$.

<u>Theorem 4.2.</u> Let (X, m_X) be *m*-regular. Then a function $f: (X, m_X) \to (Y, m_Y)$ is almost *M*-open if and only if *f* is weakly *M*-open.

<u>Proof.</u> If f is almost M-open, then it follows from Lemma 4.2 that f is weakly M-open. Suppose that f is weakly M-open. Let U be any m_X -open set of (X, m_X) . By Lemma 4.3, for each $x \in U$ there exists $U_x \in m_X$ such that $x \in U_x \subset m_X$ -Cl $(U_x) \subset U$. Hence, we obtain $U = \bigcup \{U_x : x \in U\} = \bigcup \{m_X$ -Cl $(U_x) : x \in U\}$ and hence,

$$f(U) = \bigcup \{ f(U_x) : x \in U \} \subset \bigcup \{ m_Y \operatorname{-Int}(f(m_X \operatorname{-Cl}(U_x))) : x \in U \}$$
$$\subset m_Y \operatorname{-Int}\left(\bigcup \{ f(m_X \operatorname{-Cl}(U_x)) : x \in U \} \right)$$
$$\subset m_Y \operatorname{-Int}\left(f\left(\bigcup \{ m_X \operatorname{-Cl}(U_x) : x \in U \} \right) \right)$$
$$= m_Y \operatorname{-Int}(f(U)).$$

By Lemma 3.1, we have $f(U) = m_Y$ -Int(f(U)). It follows from Lemma 4.1 that f is almost M-open.

<u>Corollary 4.2.</u> Let (X, m_X) be *m*-regular and m_Y has property \mathcal{B} . Then for a function $f: (X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

- (1) f is M-open;
- (2) f is almost M-open;
- (3) f is weakly M-open.

<u>Proof</u>. This is an immediate consequence of Lemma 4.2 and Theorem 4.2.

<u>Remark 4.6.</u> Let (X, τ) and (Y, σ) be topological spaces and $f: (X, m_X) \to (Y, m_Y)$ be a function. If $m_X = \tau$ and $m_Y = \sigma$ (resp. SO(Y), PO(Y), $\beta(Y)$), then by Corollary 4.2 we obtain the results established in Theorem 7 of [36] (resp. Theorem 2.12 of [10], Theorem 2.12 of [11], Theorem 2.3 of [9]).

<u>Definition 4.4.</u> A function $f: (X, m_X) \to (Y, m_Y)$ is said to satisfy the weakly *M*-open interiority condition if m_Y -Int $(f(m_X$ -Cl $(U))) \subset f(U)$ for every $U \in m_X$.

<u>Theorem 4.3</u>. If a function $f:(X, m_X) \to (Y, m_Y)$ is weakly *M*-open and satisfies the weakly *M*-open interiority condition, then *f* is almost *M*-open.

<u>Proof.</u> Let $U \in m_X$. Since f is weakly M-open, $f(U) \subset m_Y$ -Int $(f(m_X-\operatorname{Cl}(U))) = m_Y$ -Int $(m_Y$ -Int $(f(m_X-\operatorname{Cl}(U)))) \subset m_Y$ -Int $(f(U)) \subset f(U)$. Hence, $f(U) = m_Y$ -Int(f(U)) and by Lemma 4.1 f is almost M-open.

<u>Corollary 4.3.</u> Let $f:(X, m_X) \to (Y, m_Y)$ satisfy the weakly *M*-open interiority condition and m_Y has property \mathcal{B} . Then the following properties are equivalent:

- (1) f is M-open;
- (2) f is almost M-open;
- (3) f is weakly M-open.

<u>Remark 4.7</u>. (a) An *M*-open function $f: (X, m_X) \to (Y, m_Y)$ does not necessarily satisfy the weakly *M*-open interiority condition as shown by Example 2.10 of [7].

(b) Let (X, τ) and (Y, σ) be topological spaces. If $m_X = \tau$, $m_Y = \beta(Y)$, and $f: (X, m_X) \to (Y, m_Y)$ satisfies the weakly *M*-open interiority condition, then *f* satisfies the weakly β -open interiority condition [7].

(c) By Corollary 4.3 we obtain the result established in Theorem 2.11 of [7].

<u>Definition 4.5.</u> Let A be a subset of (X, m_X) . The m_X -frontier [34] of A, m_X -Fr(A), is defined by m_X -Fr(A) = m_X -Cl(A) $\cap m_X$ -Cl(X - A).

<u>Definition 4.6</u>. A function $f:(X, m_X) \to (Y, m_Y)$ is said to be *complementary weakly M-open* if $f(m_X \operatorname{-Fr}(U))$ is *m*-closed in (Y, m_Y) for each $U \in m_X$.

<u>Remark 4.8.</u> (a) Let (X, τ) and (Y, σ) be topological spaces. If $m_X = \tau$, $m_Y = \text{SO}(Y)$ (resp. PO(Y), $\beta(Y)$), and $f: (X, m_X) \to (Y, m_Y)$ is complementary weakly *M*-open, then *f* is complementary weakly semiopen [10] (resp. complementary weakly preopen [11], complementary weakly β -open [9]).

(b) The notions of weakly M-open functions and complementary weakly M-open functions are independent of each other as shown by the following examples: Examples 2.14 and 2.15 of [10], Examples 2.12 and 2.13 of [11], and Examples 2.12 and 2.13 of [9].

<u>Theorem 4.4.</u> If $f:(X, m_X) \to (Y, m_Y)$ is a weakly *M*-open and complementary weakly *M*-open bijection, where m_X has property \mathcal{B} and m_Y is closed under finite intersection, then f is almost *M*-open.

<u>Proof.</u> Let $x \in X$ and U be any m-open set in (X, m_X) containing x. Since f is weakly M-open, by Theorem 3.1 there exists $V \in m_Y$ such that $f(x) \in V \subset f(m_X-\operatorname{Cl}(U))$. Since m_X has property \mathcal{B} , we have $m_X-\operatorname{Fr}(U) = m_X-\operatorname{Cl}(U) \cap m_X-\operatorname{Cl}(X-U) = m_X-\operatorname{Cl}(U) \cap (X-m_X-\operatorname{Int}(U)) = m_X-\operatorname{Cl}(U) \cap (X-U)$. Since $x \in U, x \notin m_X-\operatorname{Fr}(U)$ and hence, $f(x) \notin f(m_X-\operatorname{Fr}(U))$. Put $W = V \cap (Y - f(m_X-\operatorname{Fr}(U)))$. Then, since f is complementary weakly M-open and m_Y is closed under finite intersection, we have $f(x) \in W \in m_Y$. Next, we shall show that $W \subset f(U)$. Let $y \in W$. Then $y \in V \subset f(m_X-\operatorname{Cl}(U))$ and $y \notin f(m_X-\operatorname{Fr}(U)) = f(m_X-\operatorname{Cl}(U) \cap (X-U)) = f(m_X-\operatorname{Cl}(U)) \cap (Y - f(U))$. Therefore, we have $y \in (Y - f(m_X-\operatorname{Cl}(U))) \cup f(U)$ and hence, $y \in f(U)$. Consequently, we obtain $W \subset f(U)$. This shows that f is almost M-open.

<u>Corollary 4.4.</u> Let $f:(X, m_X) \to (Y, m_Y)$ be a weakly *M*-open and complementary weakly *M*-open bijection, where m_X has property \mathcal{B} and m_Y is closed under finite intersection and has property \mathcal{B} . Then the following properties are equivalent:

- (1) f is M-open;
- (2) f is almost M-open;
- (3) f is weakly M-open.

<u>Remark 4.9.</u> Let (X, τ) and (Y, σ) be topological spaces. If $m_X = \tau$, $m_Y = SO(Y)$ (resp. PO(Y), $\beta(Y)$), and $f: (X, m_X) \to (Y, m_Y)$ is a function, then by Corollary 4.4, we obtain the results established in Theorem 2.16 of [10] (resp. Theorem 2.16 of [11], Theorem 2.14 of [9]).

5. Some Properties of Weakly M-open Functions.

<u>Definition 5.1</u>. An *m*-space (X, m_X) is said to be *m*-hyperconnected if m_X -Cl(U) = X for every *m*-open set U of (X, m_X) .

<u>Remark 5.1</u>. Let (X, τ) be a topological space and $m_X = \tau$. Then an *m*-hyperconnected space is well-known as a hyperconnected space or a *D*-space.

<u>Theorem 5.1.</u> Let an *m*-space (X, m_X) be *m*-hyperconnected and m_Y has property \mathcal{B} . Then a function $f: (X, m_X) \to (Y, m_Y)$ is weakly *M*-open if and only if f(X) is *m*-open in (Y, m_Y) .

<u>Proof.</u> Necessity. Let f be weakly M-open. Since $X \in m_X$, $f(X) \subset m_Y$ -Int $(f(m_X-\operatorname{Cl}(X))) = m_Y$ -Int(f(X)) and hence, $f(X) \subset m_Y$ -Int(f(X)). Since m_Y has property \mathcal{B} , by Lemma 3.3 $f(X) \in m_Y$.

Sufficiency. Suppose that f(X) is m-open in (Y, m_Y) . Let $U \in m_X$. Then, $f(U) \subset f(X) = m_Y$ -Int $(f(X)) = m_Y$ -Int $(f(m_X-\operatorname{Cl}(U)))$. Therefore, we obtain $f(U) \subset m_Y$ -Int $(f(m_X-\operatorname{Cl}(U)))$. This shows that f is weakly M-open.

<u>Remark 5.2</u>. Let (X, τ) and (Y, σ) be topological spaces. If $m_X = \tau$, $m_Y = \text{SO}(Y)$ (resp. PO(Y), $\beta(Y)$), and $f:(X, m_X) \to (Y, m_Y)$ is a function, then by Theorem 5.1, we obtain the results established in Theorem 2.25 of [10] (resp. Theorem 2.23 of [11], Theorem 2.21 of [9]).

<u>Definition 5.2</u>. A function $f: (X, m_X) \to (Y, m_Y)$ is said to be *contra*-*M*-closed if f(F) is *m*-open in (Y, m_Y) for every *m*-closed set *F* of (X, m_X) .

<u>Remark 5.3</u>. Let (X, τ) and (Y, σ) be topological spaces.

- (1) If $m_X = \tau$, $m_Y = \sigma$ (resp. PO(Y), $\beta(Y)$), and $f: (X, m_X) \to (Y, m_Y)$ is a contra-*M*-closed function, then *f* is contra-closed [5] (resp. contrapreclosed [11], contra- β -closed [9]),
- (2) If $m_X = PO(X)$, $m_Y = PO(Y)$, and $f:(X, m_X) \to (Y, m_Y)$ is a contra-*M*-closed function, then *f* is contra-*M*-preclosed [11].

<u>Theorem 5.2</u>. If a function $f: (X, m_X) \to (Y, m_Y)$ is contra-*M*-closed and m_X has property \mathcal{B} , then f is weakly *M*-open.

<u>Proof.</u> Let $U \in m_X$. Since m_X has property \mathcal{B} , by Lemma 3.3 m_X -Cl(U) is m-closed in (X, m_X) . Hence, we have $f(U) \subset f(m_X$ -Cl(U)) = m_Y -Int $(f(m_X$ -Cl(U))). Therefore, we obtain $f(U) \subset m_Y$ -Int $(f(m_X$ -Cl(U))) and f is weakly M-open.

<u>Remark 5.4</u>. (a) The converse of Theorem 5.2 need not be true as shown in Example 2.11 of [10], Example 2.10 of [11], Example 2.12 of [9].

(b) Let (X, τ) and (Y, σ) be topological spaces. If $m_X = \tau$, $m_Y = \sigma$ (resp. SO(Y), PO(Y), $\beta(Y)$), and $f: (X, m_X) \to (Y, m_Y)$ a contra-*M*-closed function, then by Theorem 5.2, we obtain the results established in Theorem 9 of [5] (resp. Theorem 2.10 of [10], Theorem 2.9 of [11], Theorem 2.9 of [9]).

<u>Definition 5.3</u>. An *m*-space (X, m_X) is said to be *m*-connected [33] if X cannot be written as the union of two nonempty disjoint sets of m_X .

<u>Remark 5.5.</u> Let (X, τ) be a topological space. If $m_X = \tau$ (resp. SO(X), PO(X), $\beta(Y)$) and (X, m_X) is *m*-connected, (X, τ) is called connected (resp. semi-connected [29], preconnected [30], β -connected [31]).

<u>Theorem 5.3.</u> If $f:(X, m_X) \to (Y, m_Y)$ is a weakly *M*-open bijection, m_Y has property \mathcal{B} , and (Y, m_Y) is *m*-connected, then (X, m_X) is *m*-connected.

<u>Proof.</u> Suppose that (X, m_X) is not *m*-connected. There exist nonempty *m*-open sets U_1 and U_2 such that $U_1 \cap U_2 = \emptyset$ and $U_1 \cup U_2 = X$. Hence, we have $f(U_1) \cap f(U_2) = \emptyset$ and $f(U_1) \cup f(U_2) = Y$. Since *f* is weakly *M*-open, we have $f(U_i) \subset m_Y$ -Int $(f(m_X-\operatorname{Cl}(U_i)))$ for i = 1, 2. Since U_i is *m*-closed, $U_i = m_X$ -Cl (U_i) and hence, $f(U_i) \subset m_Y$ -Int $(f(U_i))$ for i = 1, 2. Hence, we obtain $f(U_i) = m_Y$ -Int $(f(U_i))$ for i = 1, 2. Since m_Y has property \mathcal{B} , by Lemma 3.3 $f(U_i) \in m_Y$ for i = 1, 2. Then (Y, m_Y) is decomposed into two nonempty disjoint *m*-open sets. This is contrary to the hypothesis that (Y, m_Y) is *m*-connected.

<u>Remark 5.6.</u> Let (X, τ) and (Y, σ) be topological spaces. If $m_X = \tau$ and $m_Y = SO(Y)$ (resp. PO(Y), $\beta(Y)$), then by Theorem 5.3, we obtain the results established in Theorem 2.23 of [10] (resp. Theorem 2.21 of [11], Theorem 2.20 of [9]).

6. New Forms of Weakly M-open Functions. First we recall the relationships among some modifications of open sets. If a subset A of a topological space (X, τ) is semi-open and semi-closed, then it is said to be *semi-regular* [13]. It is shown in [13] that the semi-closure sCl(U) is semi-open and semi-regular for any semi-open set U of (X, τ) . This property is very useful. The set of all semi-regular sets of (X, τ) is denoted by SR(X). For a subset A of a topological space (X, τ) , we put $srCl(A) = \cap \{F : A \subset F, F \in SR(X)\}$.

Let A be a subset of a topological space (X, τ) . A point x of X is called a semi- θ -cluster point of A of $sCl(U) \cap A \neq \emptyset$ for every $U \in SO(X)$ containing x. The set of all semi- θ -cluster points of A is called the semi- θ -closure [13] of A and is denoted by $sCl_{\theta}(A)$. A subset A is said to be semi- θ -closed if $A = sCl_{\theta}(A)$. The complement of a semi- θ -closed set is said to be semi- θ -open. The family of all semi- θ -open sets of (X, τ) is denoted by $\theta SO(X)$.

A subset A is said to be *b*-open [4] if $A \subset \text{Int}(\text{Cl}(A)) \cup \text{Cl}(\text{Int}(A))$. The *b*-interior of A, bInt(A), is defined by the union of all *b*-open sets contained in A. The complement of a *b*-open set is said to be *b*-closed [4]. The *b*-closure of A, bCl(A), is defined by the intersection of all *b*-closed sets containing A. The family of all *b*-open sets of (X, τ) is denoted by BO(X).

For several modifications of open sets, we have the following diagram in which the converses of implications need not be true as shown in [26].

DIAGRAM

$_{ m regular \ open}$ $ ightarrow$	$\delta_{ ext{-open}}$	\rightarrow	open	$\rightarrow \alpha_{\text{-open}}$	$\rightarrow_{\mathrm{preopen}}$	$\rightarrow \delta_{\text{-preopen}}$
\downarrow	\downarrow		t	\downarrow	\downarrow	ţ
$semi-regular \rightarrow$	semi-A-open	$\rightarrow \delta_{-}$	semi₌open	-> semi-open	$\rightarrow h_{\text{open}}$	-> semi-preoper

<u>Remark 6.1</u>. In the diagram above, the following are to be noted.

- (1) It is shown in [28] that openness and δ -semi-openness are independent of each other.
- (2) It is shown in [26] that δ -preopenness and semi-preopenness are independent of each other.

Let $\operatorname{RO}(X)$ (resp. $\operatorname{RC}(X)$) be the family of all regular open (resp. regular closed) sets of a topological space (X, τ) . The family of all δ -open sets of (X, τ) forms a topology for X which is weaker than τ . This topology has $\operatorname{RO}(X)$ as the base. It is called the semiregularization of τ and is denoted by τ_s . Then we have $\operatorname{RO}(X) \subset \tau_s \subset \tau \subset \tau^{\alpha}$, where $\tau^{\alpha} = \alpha(X)$. For a subset A of X, we set $\operatorname{rCl}(A) = \cap \{K : A \subset K \text{ and } K \in \operatorname{RC}(X)\}$.

If we take *m*-structures m_X and m_Y as the families of modified open sets stated in the diagram, we can define a new kind of weakly *M*-open functions. But, we should notice that the families $\operatorname{RO}(X)$ and $\operatorname{SR}(X)$ do not have property \mathcal{B} . By the results established in Sections 3–5, we can obtain those properties. We investigate the relationships among these functions.

<u>Lemma 6.1</u>. Let m_X^1 and m_X^2 be two *m*-structures on a nonempty set X. If $m_X^1 \subset m_X^2$ and a function $f: (X, m_X^2) \to (Y, m_Y)$ is weakly *M*-open, then $f: (X, m_X^1) \to (Y, m_Y)$ is weakly *M*-open.

<u>Proof.</u> Suppose that $f:(X, m_X^2) \to (Y, m_Y)$ is weakly M-open. Let $U \in m_X^1$. Since $m_X^1 \subset m_X^2$, we have $U \in m_X^2$ and $f(U) \subset m_Y$ -Int $(f(m_X^2 - \operatorname{Cl}(U)))$. Moreover, we have $m_X^2 - \operatorname{Cl}(U) \subset m_X^1 - \operatorname{Cl}(U)$ and hence, $f(U) \subset m_Y$ -Int $(f(m_X^1 - \operatorname{Cl}(U)))$. This shows that $f:(X, m_X^1) \to (Y, m_Y)$ is weakly M-open.

<u>Lemma 6.2</u>. Let (X, τ) be a topological space. Then $\alpha Cl(U) = rCl(Int(Cl(Int(U))))$ for every $U \in \alpha(X)$.

<u>Proof.</u> Let U be any α -open set of (X, τ) . Since $\operatorname{RO}(X) \subset \tau \subset \tau^{\alpha}$, we have $\alpha \operatorname{Cl}(U) \subset \operatorname{Cl}(U) \subset \operatorname{rCl}(U)$. Suppose that $x \notin \alpha \operatorname{Cl}(U)$. There exists a $G \in \tau^{\alpha}$ containing x such that $G \cap U = \emptyset$. Hence, we have $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(G))) \cap U \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(G))) \cap \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(U))) = \emptyset$. Since $x \in$ $G \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(G))) \in \operatorname{RO}(X)$, we have $x \notin \operatorname{rCl}(U)$. Therefore, we obtain $\operatorname{rCl}(U) \subset \alpha \operatorname{Cl}(U)$ and $\alpha \operatorname{Cl}(U) = \operatorname{Cl}(U) = \operatorname{rCl}(U)$ for every $U \in \alpha(X)$. Moreover, for every $U \in \alpha(X)$, we have $\operatorname{Cl}(U) = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(U)))) =$ $\operatorname{rCl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(U))))$. Therefore, we obtain $\alpha \operatorname{Cl}(U) = \operatorname{rCl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(U))))$ for every $U \in \alpha(X)$.

<u>Theorem 6.1.</u> Let (X, τ) be a topological space. For any *m*-space (Y, m_Y) , the following properties are equivalent:

- (1) $f: (X, \operatorname{RO}(X)) \to (Y, m_Y)$ is weakly *M*-open;
- (2) $f: (X, \tau_s) \to (Y, m_Y)$ is weakly *M*-open;
- (3) $f: (X, \tau) \to (Y, m_Y)$ is weakly *M*-open;
- (4) $f: (X, \tau^{\alpha}) \to (Y, m_Y)$ is weakly *M*-open.

<u>Proof.</u> Since $\operatorname{RO}(X) \subset \tau_s \subset \tau \subset \tau^{\alpha}$, by Lemma 6.1 we have (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1).

 $(1) \Rightarrow (4)$: Let U be any α -open set of (X, τ) . Since $U \in \tau^{\alpha}$, we have $U \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(U))) \in \operatorname{RO}(X)$. By (1),

$$f(U) \subset f(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(U)))) \subset m_Y \operatorname{-Int}(f(\operatorname{rCl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(U)))))).$$

By Lemma 6.2, we have $f(U) \subset m_Y$ -Int $(f(\alpha Cl(U)))$. This shows that $f: (X, \tau^{\alpha}) \to (Y, m_Y)$ is weakly *M*-open.

<u>Remark 6.2</u>. In Theorem 6.1, let (Y, σ) be a topological space and $m_Y = SO(Y)$ (resp. PO(Y), $\beta(Y)$). Then we obtain the following characterizations of weakly semi-open (resp. weakly preopen, weakly β -open) functions.

Corollary 6.1. The following properties are equivalent:

- (1) $f: (X, \tau) \to (Y, \sigma)$ is weakly open;
- (2) $f: (X, \tau_s) \to (Y, \sigma)$ is weakly open;
- (3) $f: (X, \tau^{\alpha}) \to (Y, \sigma)$ is weakly open.

<u>Proof.</u> This is an immediate consequence of Theorem 6.1.

<u>Theorem 6.2</u>. For any *m*-space (Y, m_Y) and any function $f: (X, \tau) \to (Y, m_Y)$, the following properties are equivalent:

- (1) $f: (X, SR(X)) \to (Y, m_Y)$ is weakly *M*-open;
- (2) $f: (X, \theta SO(X)) \to (Y, m_Y)$ is weakly *M*-open;
- (3) $f: (X, \delta SO(X)) \to (Y, m_Y)$ is weakly *M*-open;
- (4) $f:(X, SO(X)) \to (Y, m_Y)$ is weakly *M*-open.

<u>Proof.</u> Since $SR(X) \subset \theta SO(X) \subset \delta SO(X) \subset SO(X)$, by Lemma 6.1 we have $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$.

(1) \Rightarrow (4): Suppose that $f:(X, \operatorname{SR}(X)) \rightarrow (Y, m_Y)$ is weakly Mopen. Let $U \in \operatorname{SO}(X)$. Then $\operatorname{sCl}(U) \in \operatorname{SR}(X)$ and we have $f(\operatorname{sCl}(U)) \subset m_Y - \operatorname{Int}(f(\operatorname{srCl}(\operatorname{sCl}(U))))$. We have $\operatorname{srCl}(\operatorname{sCl}(U)) = \operatorname{sCl}(U)$. Therefore, we obtain $f(U) \subset f(\operatorname{sCl}(U)) \subset m_Y - \operatorname{Int}(f(\operatorname{scl}(U)))$. This shows that $f:(X, \operatorname{SO}(X)) \rightarrow (Y, m_Y)$ is weakly M-open.

First we recall the relationships among some modifications of semipreopen (β -open) sets. If a subset A of a topological space (X, τ) is semi-preopen and semi-preclosed, then it is said to be *semi-pre-regular* [24]. It is shown in [24] that the semi-preclosure $\operatorname{spCl}(U)$ is semi-preopen and semi-pre-regular for any semi-preopen set U of (X, τ) . This property is very useful. The family of all semi-pre-regular sets of (X, τ) is denoted by $\operatorname{SPR}(X)$. For a subset A of a topological space (X, τ) , we put $\operatorname{sprCl}(A) = \cap \{F : A \subset F, F \in \operatorname{SPR}(X)\}.$

Let A be a subset of a topological space (X, τ) . A point x of X is called a *semi-pre-\theta-cluster point* of A if $\operatorname{spCl}(U) \cap A \neq \emptyset$ for every $U \in \operatorname{SPO}(X)$ containing x. The set of all semi-pre- θ -cluster points of A is called the *semipre-\theta-closure [24] of A and is denoted by \operatorname{spCl}_{\theta}(A). A subset A is said to be <i>semi-pre-\theta-closed* (briefly *sp-\theta-closed*) if $A = \operatorname{spCl}_{\theta}(A)$. The complement of a semi-pre- θ -closed set is said to be *semi-pre-\theta-open* (briefly *sp-\theta-open*). The family of all semi-pre- θ -open sets of (X, τ) is denoted by θ SPO(X).

<u>Lemma 6.3</u>. (Noiri [24]) For a subset A of a topological space (X, τ) , the following properties hold:

- (1) $A \in \beta(X)$ if and only if $\operatorname{spCl}(A) \in \operatorname{SPR}(X)$,
- (2) $\operatorname{SPR}(X) \subset \theta \operatorname{SPO}(X) \subset \beta(X)$.

<u>Theorem 6.3.</u> For any *m*-space (Y, m_Y) and any function $f: (X, \tau) \to (Y, m_Y)$, the following properties are equivalent:

- (1) $f: (X, \text{SPR}(X)) \to (Y, m_Y)$ is weakly *M*-open;
- (2) $f: (X, \theta \text{SPO}(X)) \to (Y, m_Y)$ is weakly *M*-open;
- (3) $f: (X, \beta(X)) \to (Y, m_Y)$ is weakly *M*-open.

<u>Proof.</u> By Lemmas 6.1 and 6.3 (2), we have $(3) \Rightarrow (2) \Rightarrow (1)$.

 $(1) \Rightarrow (3)$: Let U be any β -open set of (X, τ) . By Lemma 6.3, $U \subset \operatorname{spCl}(U) \in \operatorname{SPR}(X)$ and by (1) we have

$$f(U) \subset f(\operatorname{spCl}(U)) \subset m_Y \operatorname{-Int}(f(\operatorname{spCl}(U)))) = m_Y \operatorname{-Int}(f(\operatorname{spCl}(U)))$$
$$= m_Y \operatorname{-Int}(f({}_{\beta}\operatorname{Cl}(U))).$$

This shows that $f: (X, \beta(X)) \to (Y, m_Y)$ is weakly *M*-open.

References

- M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, "β-open Sets and β-continuous Mappings," Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- M. E. Abd El-Monsef, R. A. Mahmoud, and E. R. Lashin, "β-closure and β-interior," J. Fac. Ed. Ain Shams Univ., 10 (1986), 235–245.
- 3. D. Andrijević, "Semi-preopen Sets," Mat. Vesnik, 38 (1986), 24-32.
- 4. D. Andrijević, "On b-open Sets," Mat. Vesnik, 48 (1996), 59–64.
- C. W. Baker, "Contra-open Functions and Contra-closed Functions," Math. Today (Ahmedabad), 15 (1997), 19–24.
- N. Biswas, "On Some Mappings in Topological Spaces," Bull. Calcutta Math. Soc., 61 (1969), 127–135.
- M. Caldas, "Some Remarks on Weak β-openness," Math. Balcanica, 17 (2003), 215–220.
- M. Caldas, "Weak and Strong Forms of Irresolute Maps," Internat. J. Math. Math. Sci., 23 (2000), 253–259.
- M. Caldas and G. Navalagi, "On Weak Forms of β-open and β-closed Functions," Anal. St. Univ. Al. I. Cuza, Iaşi, s. Ia, Mat., 49 (2003), 115–128.
- M. Caldas and G. Navalagi, "On Weak Forms of Semi-open and Semiclosed Functions," *Missouri J. Math. Sci.*, 18 (2006), 165–178.
- M. Caldas and G. Navalagi, "On Weak Forms of Preopen and Preclosed Functions," Archivum Math., 40 (2004), 119–128.
- S. G. Crossley and S. K. Hildebrand, "Semi-closure," *Texas J. Sci.*, 22 (1971), 99–112.
- G. Di Maio and T. Noiri, "On s-closed Spaces," Indian J. Pure Appl. Math., 18 (1987), 226–233.
- 14. C. Dorsett, "Semi-regular Spaces," Soochow J. Math., 8 (1982), 45-53.

- S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour, and T. Noiri, "On p-regular Spaces," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27 (1983), 311–315.
- N. Levine, "Strong Continuity in Topological Spaces," Amer. Math. Monthly, 67 (1960), 269.
- 17. N. Levine, "Semi-open Sets and Semi-continuity in Topological Spaces," Amer. Math. Monthly, 70 (1963), 36–41.
- R. A. Mahmoud and M. E. Abd El-Monsef, "β-irresolute and Topological β-invariant," Proc. Pakistan Acad. Sci., 27 (1990), 285–296.
- H. Maki, K. Chandrasekhara Rao, and A. Nagoor Gani, "On Generalizing Semi-open and Preopen Sets," *Pure Appl. Math. Sci.*, 49 (1999), 17–29.
- A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep, "On Precontinuous and Weak Precontinuous Mappings," Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, "α-continuous and α-open Mappings," Acta Math. Hungar., 41 (1983), 213–218.
- M. Mocanu, "Generalizations of Open Functions," Stud. Cerc. St. Univ. Bacău Ser. Mat., 13 (2003), 67–77.
- O. Njåstad, "On Some Classes of Nearly Open Sets," Pacific J. Math., 15 (1965), 961–970.
- T. Noiri, "Weak and Strong Forms of β-irresolute Functions," Acta Math. Hungar., 99 (2003), 315–328.
- T. Noiri and V. Popa, "A Unified Theory of θ-continuity for Functions," Rend. Circ. Mat. Palermo, 52 (2003), 163–188.
- T. Noiri and V. Popa, "On *m*-quasi-irresolute Functions," *Math. Moravica*, 9 (2005), 25–41.
- 27. M. C. Pal and P. Bhattacharyya, "Feeble and Strong Forms of Preirresolute Functions," *Bull. Malaysian Math. Soc.*, 19 (1996), 63–75.
- J. H. Park, B. Y. Lee, and M. J. Son, "On δ-semiopen Sets in Topological Spaces," J. Indian Acad. Math., 19 (1997), 59–67.
- V. Pipitone e G. Russo, "Spazi Semiconnessi e Spazi Semiaperti," Rend. Circ. Mat. Palermo, 25 (1975), 275–285.
- V. Popa, "Properties of H-almost Continuous Functions," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 31 (1987), 163–168.
- V. Popa and T. Noiri, "Weakly β-continuous Functions," Anal. Univ. Timişoara, Ser. Mat. Inform., 32 (1994), 89–92.

- V. Popa and T. Noiri, "On M-continuous Functions," Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18 (2000), 31–41.
- V. Popa and T. Noiri, "On the Definitions of Some Generalized Forms of Continuity Under Minimal Conditions," Mem. Fac. Sci. Kochi Univ. Ser. Math., 22 (2001), 9–18.
- V. Popa and T. Noiri, "A Unified Theory of Weak Continuity for Functions," *Rend. Circ. Mat. Palermo*, 51 (2002), 439–464.
- S. Raychaudhuri and M. N. Mukherjee, "On δ-almost Continuity and δ-preopen Sets," Bull. Inst. Math. Acad. Sinica, 21 (1993), 357–366.
- D. A. Rose, "Weak Openness and Almost Openness," Internat. J. Math. Math. Sci., 7 (1984), 35–40.
- N. V. Veličko, "H-closed Topological Spaces," Amer. Math. Soc. Trans., 78 (1968), 103–118.

Mathematics Subject Classification (2000): 54A05, 54C10

Takashi Noiri 2949-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken 869-5142 JAPAN email: t.noiri@nifty.com

Valeriu Popa Department of Mathematics University of Bacău 600114 Bacău, RUMANIA email: vpopa@ub.ro