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Abstract. The isoperimetric problem with a density or weighting
seeks to enclose prescribed weighted volume with minimum weighted
perimeter. According to Chambers’ recent proof of the log-convex
density conjecture, for many densities on R

n, the answer is a sphere
about the origin. We seek to generalize his results to some other
spaces of revolution or to two different densities for volume and
perimeter. We provide general results on existence and boundedness
and a new approach to proving circles about the origin isoperimetric.

1. Introduction

The log-convex density theorem proved by Gregory Chambers [1] asserts
that on R

n with log-convex density, an isoperimetric surface is a sphere
centered at the origin. We seek to generalize his results to some other spaces
of revolution and to two different densities for volume and perimeter.

Our Theorems 3.2 and 3.4 provide general results on existence and
boundedness after Morgan and Pratelli [6]. The existence proof shows
that in the limit, no volume is lost to infinity. The boundedness proof uses
comparisons to derive a differential equation on volume growth.

Sections 4 and 5 focus on 2-dimensional surfaces of revolution with
perimeter density and volume density equal. Our main Theorem 1.1 shows,
under the assumption that the product of the density and the metric factor
is eventually log-convex that, for large volumes, if the component farthest
from the origin contains the origin, then an isoperimetric curve is a circle
centered at the origin.
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on this project. We would also like to thank the National Science Foundation; Williams
College; Michigan State University; the University of Maryland, College Park; and the
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Theorem 1.1 (Corollary 5.8). Consider R2 in polar coordinates (r, θ) with
metric

ds2 = dr2 + h(r)2dθ2

and radial density f(r). Suppose that fh has positive derivatives and is
eventually log-convex and (log fh)′ diverges to infinity. Then, for large
volumes, if the origin is interior to the component farthest from the origin,
an isoperimetric curve is a circle centered at the origin.

The idea of the proof, aided by Figure 1, is as follows. We first show
that if an isoperimetric curve is not a circle centered at the origin, then
it must go near the origin (Proposition 5.3). By using estimates on the
generalized curvature formula, we prove that in the region where fh is log-
convex and nondecreasing, the angle α from the radial vector to the tangent
vector at each point of the isoperimetric curve increases (Lemma 5.5) at
an accelerating rate (Lemma 5.6). Then we observe that, in order for the
isoperimetric curve to go near the origin, it must travel a long distance,
and the angle α would have to increase too much by what we have shown.
Putting these estimates together gives a contradiction (Theorem 5.7).

Figure 1. The angle α from the radial vector to the tan-
gent vector along the isoperimetric curve γ increases at an
accelerating rate, leading to a contradiction.
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Similar results have been proven by Kolesnikov and Zhdanov [4] for Rn

with Euclidean metric and Howe [3] for a warped product of an interval
with a Riemannian manifold, without assuming that the component of an
isoperimetric region farthest from the origin contains the origin. For details
see Remark 5.9.

Finally, unless otherwise specified, when we mention perimeter and vol-
ume, we mean perimeter and volume weighted by the density. We also
adopt the convention that A . B if there is some positive dimension-
dependent constant cn such that A ≤ cnB.

2. Coordinates and First Variation

Let H denote R
n in polar coordinates (r,Θ) with metric

ds2 = dr2 + h(r)2dΘ2

and radial density f(r) = eψ(r). Define

B(r) := {x ∈ H : |x| ≤ r}

as the ball of radius r. For any region E ⊆ H , let |E| denote the measure
of E.

The following first variation formula tells how perimeter varies as a region
is deformed.

Proposition 2.1. (First Variation Formula [8, 3.1, 3.2]). Let f = eψ be a
C1 density on H. Then the initial first derivatives of volume and perimeter
of a C1 region E with boundary ∂E, outward unit normal ν, and inward
mean curvature H0, moving each boundary point x with continuous normal
velocity u(x), are given by

V ′ =

∫

∂E

u, P ′ =

∫

∂E

uHf(x),

where

Hf (x) = H0(x) +
∂ψ

∂ν
(x).

Consequently, for a smooth isoperimetric region, Hf (x) is constant.

The quantity Hf (x) is called the generalized mean curvature. By Propo-
sition 2.1, it is the change of perimeter with respect to change in volume.
(We are using the convention that the mean curvature is the sum rather
than the mean of the principal curvatures.)
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3. Existence and Boundedness

Existence and boundedness of isoperimetric regions for a single density
for volume and perimeter on R

n were treated by Morgan and Pratelli [6].
Separate radial densities for volume and perimeter were treated by Di Giosia
et al. [2]. We further allow certain radial metrics. More recently, other
metrics have been treated by Pratelli and Saracco [7].

To prove existence of isoperimetric regions, we begin with a lemma that
puts a bound on the perimeter by using projection onto spheres.

Lemma 3.1. Let H be R
n with metric

ds2 = dr2 + h(r)2dΘ2

and with nondecreasing density f(r), where fh is nondecreasing. If E ⊂ H
has finite volume, then for all r > 0,

|∂E \B(r)| ≥ S(r),

where S(r) is the area of the section of a sphere of radius r sliced by the
region E, E ∩ ∂B(r).

Proof. The idea of the proof is to use projection. Let π : ∂E\B(r) → ∂B(r)
be the radial projection of the boundary ofE outside ofB(r) onto the sphere
∂B(r). Since fh is nondecreasing, π is measure nonincreasing, that is

|π (∂E \B(r))| ≤ |∂E \B(r)| .
It remains to show that the left-hand side is greater than or equal to S(r).
For this, it is sufficient to show that π (∂E \B(r)) covers E ∩ ∂B(r) up to
a set of measure zero.

Suppose the contrary. Then there exists a subset X ⊆ E ∩ ∂B(r) of
positive measure that is disjoint from π (∂E \B(r)). So the product of
(r,∞) × X in polar coordinates must be disjoint from the boundary ∂E.
Since X ⊆ E, we must also have that (r,∞) × X is contained in E. But
this would imply that |E| is infinite (because X has positive measure and
fh is nondecreasing), which is a contradiction. �

The following theorem shows the existence of isoperimetric regions by
generalizing arguments of Morgan and Pratelli [6].

Theorem 3.2. Let H be R
n with metric

ds2 = dr2 + h(r)2dΘ2,

volume density f(r), and perimeter density g(r). Suppose that h is nonde-
creasing, g diverges to infinity, and f ≤ cg for some constant c. Then an
isoperimetric region exists for every positive volume less than the volume
of the space H.
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Proof. The proof closely follows Morgan and Pratelli [6, Theorem 3.3]. The
idea is to take a sequence of sets with perimeters converging to the infimum
and extract a convergent subsequence. The concern is that in the limit,
some volume may be lost to infinity. We suppose that there is some volume
lost to infinity and show that it contradicts our assumption that perimeter
density diverges to infinity.

Let V be the prescribed (weighted) volume. Consider a sequence of
smooth sets Ej of volume V and |∂Ej | converges to the infimum. By
compactness, we may assume the sequence converges to a limit set E.

Suppose that some volume is lost to infinity. Then, there exists ε > 0
such that, for all R > 0,

|Ej \B(R)| ≥ ε (3.1)

for all j large enough. Inequality (3.1) then becomes

∫ ∞

R

Sj(r)f(r) dr ≥ ε,

where Sj(r) is the unweighted area under the metric ds of the slice of Ej
by the sphere of radius r. Define

Mj := sup
r≥R

Sj(r), g− := min
r≥R

g(r).

Notice that g− exists because g is continuous and diverges to infinity. Then,
by Lemma 3.1 (for unweighted volume), we have, for all r ≥ R,

|∂Ej | ≥ |∂Ej \B(r)| ≥ |∂Ej \B(r)|0 g− ≥ Sj(r)g−,

where the subscript 0 denotes the unweighted version. Therefore,

|∂Ej | ≥Mjg−. (3.2)

For large R, since g diverges,Mj is small (uniformly for all j), and hence,
Sj(r) is small. Thus, by the isoperimetric inequality on a sphere, for all
r ≥ R,

pj(r) & Sj(r)
n−2

n−1 ,
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where pj(r) is the unweighted perimeter of the slice of Ej by the sphere of
radius r. Therefore, by the coarea formula,

|∂Ej | ≥
∫ ∞

R

pj(r)g(r) dr ≥
1

c

∫ ∞

R

pj(r)f(r) dr

&

∫ ∞

R

Sj(r)
n−2

n−1 f(r) dr

≥ 1

(Mj)
1

n−1

∫ ∞

R

Sj(r)f(r) dr

≥ 1

(Mj)
1

n−1

ε. (3.3)

By (3.2) and (3.3),

|∂Ej |
n

n−1 & εg
1

n−1

− .

Since the left-hand side is uniformly bounded, g− is bounded independent
of R. This contradicts that assumption that g goes to infinity.

Therefore, there is no volume lost to infinity and E has the prescribed
volume and realizes the infimum perimeter. �

Remark 3.3. The argument used in Theorem 3.2 can be used to prove
the existence of a perimeter-minimizing n-bubble for any n given volumes.
This can be shown by considering a sequence of n-bubbles with prescribed
volumes whose perimeters tend towards the infimum. If some volume is lost
to infinity in the limit of the sequence, then the same argument shows that
the bubbles in the sequence have perimeters going to infinity, which cannot
be the case.

Finally, by again generalizing arguments of Morgan and Pratelli [6], we
prove boundedness of isoperimetric regions.

Theorem 3.4. Let H be R
n with metric

ds2 = dr2 + h(r)2dΘ2,

volume density f(r), and perimeter density g(r). Suppose that gh is nonde-
creasing, gn/(n−1)/f is nondecreasing, and

∫∞

0
f1/n diverges. Then, every

isoperimetric region is bounded.

Proof. This proof closely follows Morgan-Pratelli [6, Theorem 5.9]. We
begin by supposing that an isoperimetric region is unbounded. Then, from
the isoperimetric inequality and the coarea formula, we derive that the
volume of the region outside the ball of radius r decreases uniformly and
hence, becomes negative as r increases, which is a contradiction.

Suppose that an isoperimetric region E is unbounded. Define

Er := E ∩ ∂B(r),
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P (r) := |∂E \B(r)|g , V (r) := |E \B(r)|f ,
where the subscript denotes the density for the measure. By Lemma 3.1,
for density g, since gh is nondecreasing,

P (r) ≥ |Er|g . (3.4)

For r large, P (r) is small and therefore, |Er|g is small, while the g-weighted
volume of the sphere of radius r is not small because gh is nondecreasing.
So the isoperimetric inequality on a sphere applies. That is

|∂Er|0 & |Er|
n−2

n−1

0 ,

where the subscript 0 indicates unweighted measure. Multiplying both sides
by the density g(r) yields

|∂Er|g & g(r)
1

n−1 |Er|
n−2

n−1

g . (3.5)

Inequalities (3.4) and (3.5) then imply that

|∂Er|g & g(r)
1

n−1P (r)−
1

n−1 |Er|g . (3.6)

Using the coarea formula [5, §4.11], we can say that

−P ′(r) ≥ |∂Er|g . (3.7)

Meanwhile,

−V ′(r) = |Er |f . (3.8)

By inequalities (3.6), (3.7), and (3.8),

−P ′(r) & g(r)
1

n−1P (r)−
1

n−1 |Er|g

= −g(r)
n

n−1

f(r)
P (r)−

1

n−1V ′(r),

which simplifies to

− d

dr

(
P (r)

n

n−1

)
& −g(r)

n

n−1

f(r)

d

dr
V (r),

where cn is a new dimensional constant. Since E has finite perimeter and
volume, P (r) and V (r) both go to zero as r goes to infinity. Hence, inte-
gration of both sides of the previous inequality yields

P (r)
n

n−1 & −
∫ ∞

r

g(t)
n

n−1

f(t)

d

dt
V (t) dt

≥ −g(r)
n

n−1

f(r)

∫ ∞

r

d

dt
V (t) dt

=
g(r)

n

n−1

f(r)
V (r), (3.9)
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because gn/(n−1)/f is nondecreasing (and the right-hand side is positive).
Choose R so that the interior of the ball of radius R contains part of the

boundary of E. Then, for sufficiently small ε > 0, we can define a set Eε
by introducing a variation on the boundary of E inside B(R) to increase
the weighted volume by ε. Since the (constant) generalized mean curvature
H(E) is dP/dV (Proposition 2.1) we have

lim
ε→0

|∂Eε|g − |∂E|g
ε

= H(E).

Therefore, for small ε,

|∂Eε|g ≤ |∂E|g + ε (H(E) + 1) . (3.10)

Take r > R large enough such that ε = V (r) is small enough for this

construction. If we replace Eε by Ẽ := Eε ∩ B(r), discarding the volume

V (r), then Ẽ is back to the original volume of E. Since E is isoperimetric,

|∂Ẽ|g ≥ |∂E|g . (3.11)

On the other hand, since Ẽ loses the perimeter P (r) outside the ball and
creates new perimeter Er, it follows that

|∂Ẽ|g = |∂Eε|g − P (r) + |Er|g

≤ |∂E|g + ε (H(E) + 1)− cn
g(r)

f(r)
n−1

n

ε
n−1

n + |Er|g (3.12)

by inequalities (3.10) and (3.9), where cn is a dimension-dependent con-
stant.

For r large, ε is small, and so ε
n−1

n asymptotically dominates ε. From
(3.11) and (3.12),

|Er|g &
g(r)

f(r)
n−1

n

ε
n−1

n =
g(r)

f(r)
n−1

n

V (r)
n−1

n . (3.13)

Note that

|Er|f = |Er|g
f(r)

g(r)
.

Therefore, by (3.8) and (3.13), for r sufficiently large,

−V ′(r) & f(r)
1

nV (r)
n−1

n ,

which is equivalent to

d

dr

(
V (r)

1

n

)
. −f(r) 1

n .

Integrating both sides and using the fact that
∫∞

0 f1/n diverges, we find
that V (r) → −∞ as r → ∞, which is a contradiction. Therefore, E is
bounded. �
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4. Constant Generalized Curvature Curves in 2D

In this section, we consider the 2D case, R2 in polar coordinates (r, θ)
with metric

ds2 = dr2 + h(r)2dθ2

and radial density f(r) = eψ(r). Following Chambers [1, Section 2], let A be
an isoperimetric set spherically symmetrized. Let γ : [−β, β] → R

2 be the
arclength parameterization of the most distant component of the boundary
of A from the leftmost point on the x-axis back to itself, counterclockwise.
Then γ is symmetric about the x-axis, γ(0) and γ(±β) are on the x-axis,
γ is above the x-axis on (0, β), and γ is below the x-axis on (−β, 0). By
known regularity [5], γ is a smooth curve.

Let r̂(t) and θ̂(t) be the orthonormal basis vectors of the tangent space
at γ(t) in the radial and tangential directions (unless γ(t) is the origin).
Let α(t) be the counter-clockwise angle measured from r̂(t) to γ′(t) at γ(t).
Note that the angles are measured with respect to the defined metric and
not the standard metric in R

2.
Observe that

γ′ = r′r̂ + h(r)θ′ θ̂,

r′ = cosα, h(r)θ′ = sinα. (4.1)

Let κ(t) be the inward (leftward) curvature of γ at γ(t). The generalized
curvature is

κf (t) = κ(t) +
∂ψ

∂ν
,

where ν is the unit outward normal at γ(t). Recall that f = eψ. By the first
variation formula (Proposition 2.1) and the fact that A is an isoperimetric
region, κf (t) is constant for all t.

We seek to analyze the constant generalized curvature curve γ. First,
we need an explicit formula for the curvature.

Lemma 4.1. The curvature of γ at t is

κ(t) = h(r)2h′(r)θ′3 + 2h′(r)r′2θ′ + h(r) (r′θ′′ − θ′r′′) ,

where the polar coordinates (r, θ) of γ are functions of t.

Proof. In polar coordinates, R2 with the given metric has first fundamental
form (

E F
F G

)
=

(
1 0
0 h(r)2

)
.

The curvature of γ at t is the geodesic curvature, which is given by

κ(t) =
√
EG− F 2

[
Γ2
11r

′3 − Γ1
22θ

′3 +
(
2Γ2

12 − Γ1
11

)
r′2θ′

−
(
2Γ1

12 − Γ2
22

)
r′θ′2 − r′′θ′ + θ′′r′

]/ (
Er′2 + 2Fr′θ′ +Gθ′2

)3/2
,

158 MISSOURI J. OF MATH. SCI., VOL. 30, NO. 2



ISOPERIMETRY IN SURFACES OF REVOLUTION WITH DENSITY

where Γkij are the Christoffel symbols of the second kind. Since F = 0,

Γ1
11 =

Er
2E

= 0, Γ1
12 =

Eθ
2E

= 0, Γ1
22 = −Gr

2E
= −h(r)h′(r),

Γ2
11 = −Eθ

2G
= 0, Γ2

12 =
Gr
2G

=
h′(r)

h(r)
, Γ2

22 =
Gθ
2G

= 0.

Therefore,

κ(t)

=
[
h(r)2h′(r)θ′3 + 2h′(r)r′2θ′ + h(r)(r′θ′′ − θ′r′′)

] / (
r′2 + h(r)2θ′2

)3/2
.

The denominator is 1 due to arclength parametrization, implying the de-
sired formula. �

By using α (the angle from r̂(t) to γ′(t)), the curvature formula can be
further simplified.

Proposition 4.2. The curvature of γ at t is

κ(t) =
h′(r)

h(r)
sinα+ α′.

Proof. Recall from (4.1) that r′ = cosα and θ′ = sinα/h(r). The desired
formula follows from Lemma 4.1 by direct computation. �

The generalized curvature can now be explicitly computed.

Proposition 4.3. The generalized curvature of γ at t is

κf (t) = (log fh)′(r) sinα+ α′.

Note that f and h are functions of r, but α is a function of t.

Proof. By Proposition 4.2 and the definition of generalized curvature, it
suffices to prove that

∂ψ

∂v
=
f ′(r)

f(r)
sinα = ψ′(r) sinα.

The gradient of ψ is

∇ψ =
∂ψ

∂r
r̂ +

1

h(r)

∂ψ

∂θ
θ̂ = ψ′(r)r̂

because ψ is radial. The unit outward normal is

ν = h(r)θ′ r̂ − r′θ̂.

Hence,
∂ψ

∂v
= 〈∇ψ, ν〉 = ψ′(r)h(r)θ′ = ψ′(r) sinα,

as asserted. �
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From spherical symmetrization, some properties of α can be deduced.

Lemma 4.4. Assuming γ avoids the origin, the angle α satisfies

α(0) = π/2,

α(−β) = α(β) = π/2 or 3π/2, and

π/2 ≤ α(t) ≤ 3π/2,

for all t ∈ [0, β].

Proof. From spherical symmetrization, cosα = r′(t) ≤ 0 for all t ∈ [0, β],
implying the third assertion. Because r(0) is maximum, cosα(0) = r′(0) =
0. So α(0) = π/2 because γ has counter-clockwise parametrization. The
second assertion follows from the fact that r(β) is minimum, so cosα(β) =
r′(β) = 0. �

Remark 4.5. The results of this section hold for any component of an
isoperimetric region, not only for the farthest component γ. Moreover, by
Proposition 2.1, the generalized curvature (Proposition 4.3) of each compo-
nent has to be equal.

5. Circles Isoperimetric

In this section, with the assumption that the product fh of the density
and the metric factor is eventually log-convex, we will prove that for large
volume, an isoperimetric curve whose farthest component γ encloses the
origin is a circle centered at the origin. The notation carries over from
Section 4. In particular, α(t) denotes the angle from the radial to the
tangent at γ(t). First, we need a lemma.

Lemma 5.1. If α′(0) = 0, then γ is a circle centered at the origin.

Proof. Notice that a circle centered at the origin satisfies the constant
generalized curvature equation (Proposition 4.3) and has α(0) = π/2 and
α′(0) = 0. Therefore, by the uniqueness of solutions of ODEs, γ is a circle
centered at the origin. �

The next lemma shows that the fact that γ is a circle about the origin
is enough to conclude that an isoperimetric curve has only one component.

Lemma 5.2. Suppose that fh has positive derivatives. If the farthest com-
ponent γ of an isoperimetric curve is a circle centered at the origin, then
the whole isoperimetric curve is that circle centered at the origin.

Proof. The isoperimetric curve cannot have other components outside of its
farthest component γ because γ is a circle about the origin. Suppose that
there are other components inside γ; then some component γ̄ must have
clockwise orientation. By Proposition 4.3 and the hypothesis on fh, γ has
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positive generalized curvature. Similarly, by Remark 4.5, the oppositely-
oriented γ̄ has negative generalized curvature. This contradicts the fact that
an isoperimetric curve has constant generalized curvature (Proposition 2.1).
Therefore, γ is the whole isoperimetric curve. �

The following proposition shows that, if fh is eventually log-convex and
γ is not a circle centered at the origin, then it must go near the origin when
it crosses the x-axis at r(β). Recall that r(t) is the distance from the origin
to γ(t).

Proposition 5.3. If fh is log-convex on the interval [r0,∞) and the origin
is interior to γ, then either γ is a circle centered at the origin or r(β) < r0.

Proof. Suppose that r(β) ≥ r0. We must show that γ is a circle centered
at the origin. Since γ encloses the origin, Lemma 4.4 applies, α(β) = π/2,
and π/2 ≤ α(t) ≤ 3π/2 for all t ∈ [0, β]. Hence, α′(0) ≥ 0 and α′(β) ≤ 0.
The generalized curvature formula (Proposition 4.3) implies that

(log fh)′(r(0)) + α′(0) = (log fh)′(r(β)) + α′(β).

By spherical symmetrization, r(0) ≥ r(β) ≥ r0, so by log-convexity of fh,

(log fh)′(r(0)) ≥ (log fh)′(r(β)).

This implies that α′(0) ≤ α′(β), so that α′(0) = α′(β) = 0. Hence, by
Lemma 5.1, γ is a circle centered at the origin. �

Lemma 5.4. If fh is nondecreasing at r(0) and the origin is interior to
γ, then α(t) ∈ [π/2, π] for all t ∈ [0, β].

Proof. Suppose to the contrary that α(t) > π for some t ∈ [0, β]. By
Lemma 4.4, α(0) = π/2 and, because γ encloses the origin, α(β) = π/2.
Thus, there are t0 < t < t1 such that α(t0) = α(t1) = π, α′(t0) ≥ 0,
and α′(t1) ≤ 0. If γ has constant generalized curvature c, then by the
generalized curvature formula (Proposition 4.3)

c = α′(t0) = α′(t1),

so all three quantities have to be zero. So at t = 0,

0 = (log fh)′(r(0)) + α′(0).

The first term on the right-hand side is nonnegative by hypothesis, and
the second term is nonnegative because α′(0) ≥ 0 (Lemma 4.4). Therefore,
α′(0) = 0. By Lemma 5.1, γ is a circle centered at the origin, and α(t) = π/2
for all t ∈ [0, β], a contradiction. Hence, α(t) ≤ π for all t ∈ [0, β]. �

We now show that α is nondecreasing (Lemma 5.5) and that its rate of
increase is accelerating (Lemma 5.6) in the region where fh is log-convex.
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Lemma 5.5. If fh is nondecreasing and log-convex on the interval [r0,∞),
and the origin is interior to γ, then for any t ∈ [0, β] such that r(t) ≥ r0,
α′(t) ≥ 0.

Proof. Assume that r(0) ≥ r0, otherwise the statement is trivial. By
Lemma 5.4, α(t) ∈ [π/2, π] for all t ∈ [0, β]. By Lemma 4.4, α′(0) ≥ 0.
If α′(0) = 0, then Lemma 5.1 implies that γ is a circle centered at the
origin, and the lemma holds. So, suppose α′(0) > 0. Assume for contra-
diction that there is a t for which r(t) ≥ r0 and α′(t) < 0. Let t0 > 0 be
the smallest value of t such that r(t) ≥ r0 and α′(t) = 0. For t < t0, the
generalized curvature formula (Proposition 4.3) gives

(log fh)′(r(t)) sinα(t) + α′(t) = (log fh)′(r(t0)) sinα(t0).

Because α′(t) > 0, it must be that

(log fh)′(r(t)) sin α(t) < (log fh)′(r(t0)) sinα(t0). (5.1)

Note that π/2 ≤ α(t) < α(t0) ≤ π by construction, so sinα(t) > sinα(t0) ≥
0. Moreover, because r(t) ≥ r(t0) ≥ r0, by hypothesis,

(log fh)′(r(t)) ≥ (log fh)′(r(t0)) ≥ 0.

So the left-hand side of (5.1) is greater than or equal to its right-hand side,
a contradiction. Therefore, the lemma holds. �

Lemma 5.6. If fh is nondecreasing and log-convex on the interval [r0,∞)
and the origin is interior to γ, then for any t ∈ [0, β] such that r(t) ≥ r0,
α′′(t) ≥ 0.

Proof. Fix t ∈ [0, β] such that r(t) ≥ r0. By Lemma 5.5, α′(t) ≥ 0, so α
is nondecreasing. By Lemma 5.4, α(t) ∈ [π/2, π]. Recall the generalized
curvature formula (Proposition 4.3), that is

κf (t) = (log fh)′(r) sinα+ α′.

Because (log fh)′(r) is nonnegative and nonincreasing as a function of t
and sinα is nonnegative and nonincreasing, α′ is nondecreasing. Hence,
α′′(t) ≥ 0. �

The next theorem proves the circle isoperimetric, replacing the hypoth-
esis on close approach to the origin of Proposition 5.3, with a lower bound
M on (log fh)′ at the point farthest from the origin.

Theorem 5.7. Consider R
2 in polar coordinates (r, θ) with metric

ds2 = dr2 + h(r)2dθ2
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and radial density f(r). Suppose that fh has positive derivatives and that,
on the interval [r0,∞), it is log-convex. Let

M = inf
r>r0

[
(log fh)′(r) +

π

2(r − r0)

]
.

Suppose that the origin is interior to the component of an isoperimetric
curve farthest from the origin and the farthest distance from the origin
rmax satisfies

rmax > r0, (log fh)′(rmax) > M.

Then the isoperimetric curve is a circle centered at the origin.

Proof. The idea of the proof is that, if the farthest component γ goes near
the origin, then it has to travel a long distance to reach the region near the
origin, and α would have to increase too much. See Figure 1.

By Lemma 5.2, it suffices to show that γ is a circle centered at the origin.
Suppose the contrary. By Proposition 5.3, r(β) < r0. Since r(0) > r0, there
is a t0 such that r(t0) = r0. By Lemmas 5.5 and 5.6, α′(t) ≥ 0 and α′′(t) ≥ 0
for all t ∈ [0, t0]. Since (log fh)′(r(0)) > M , there is an r1 > r0 such that

(log fh)′(r(0)) > (log fh)′(r1) +
π

2(r1 − r0)
.

Log-convexity of fh implies that r1 < r(0), so there is t1 < t0 such that
r(t1) = r1. Because we are using arclength parametrization, it must be
that t0 − t1 ≥ r1 − r0. Because α(t1) ≥ π/2 and α(t0) ≤ π (Lemma 5.4),

π

2
≥ α(t0)− α(t1) =

∫ t0

t1

α′ ≥ (t0 − t1)α
′(t1) ≥ (r1 − r0)α

′(t1),

so that

α′(t1) ≤
π

2(r1 − r0)
.

By the constant generalized curvature formula (Proposition 4.3),

(log fh)′(r(0)) ≤ (log fh)′(r(0)) + α′(0)

= (log fh)′(r1) sinα(t1) + α′(t1)

≤ (log fh)′(r1) + α′(t1)

≤ (log fh)′(r1) +
π

2(r1 − r0)
,

a contradiction. Therefore, γ is a circle centered at the origin. By Lemma
5.2, the whole isoperimetric curve is that circle centered at the origin. �

The hypothesis of Theorem 5.7 can be satisfied for large volumes when-
ever fh is eventually log-convex and (log fh)′ diverges to infinity, as shown
in the following corollary.
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Corollary 5.8. Suppose that fh has positive derivatives and is eventually
log-convex and (log fh)′ diverges to infinity. Then, for large volumes, if the
origin is interior to the component farthest from the origin, an isoperimetric
curve is a circle centered at the origin.

Proof. Apply Theorem 5.7. For large volumes, r(0) is large, so
(log fh)′(r(0)) > M . Hence, γ is a circle centered at the origin. �

Remark 5.9. Similar results to Corollary 5.8 are proven by Kolesnikov and
Zhdanov [4] and Howe [3], without assuming that the component farthest
from the origin of an isoperimetric region contains the origin. Kolesnikov
and Zhdanov use the divergence theorem to show that isoperimetric surfaces
in R

n for large volumes are spheres about the origin [4, Proposition 6.7].
Howe uses vertical area to prove that isoperimetric regions in a warped
product of an interval with a Riemannian manifold for large volumes are
vertical fibers [3, Corollary 2.10].

The following corollary applies Theorem 5.7 to the example of the Borell

density er
2

on the hyperbolic plane.

Corollary 5.10. Consider the hyperbolic plane H
2 with density er

2

. Let
r0 = sinh−1(1/

√
2), M be as in Theorem 5.7, r∗ > r0 be such that

(log fh)′(r∗) =M, and V0 = 2π(cosh r∗ − 1) ≈ 31.098.

Then for any volume larger than V0, if the origin is interior to the compo-
nent farthest from the origin, an isoperimetric curve is a circle centered at
the origin.

Proof. The product fh = er
2

sinh r is log-convex and nondecreasing on
[r0,∞), so we can apply Theorem 5.7. Since V0 is the area of the hyperbolic
circle with radius r∗, for any volume larger than V0, r(0) > r∗ > r0, so that
(log fh)′(r(0)) > M . Therefore, by Theorem 5.7, γ is a circle centered at
the origin. �
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