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Abstract. We compute the spectrum and Smith normal form of
the incidence matrix of disjoint transversals, a combinatorial object
closely related to the n-dimensional case of Rota’s basis conjecture.

1. Introduction and Definitions

Let n be a positive integer, and consider a square array of n2 distinct
elements:

a1 a2 · · · an

b1 b2 · · · bn

...
...

...
...

c1 c2 · · · cn.

(1.1)

A transversal of the array (1.1) is an n-element set consisting of exactly one
element from each row. Two transversals are said to be disjoint if and only
if they are disjoint as sets. We write Tn to denote the set of all transversals,
ordered in some fashion.

These transversals together with the relation of disjointness will be the
object of our study. We can encode this information into an incidence ma-
trix (more accurately, an adjacency matrix) as follows. Define the incidence
matrix of disjoint transversals An to be the nn×nn matrix whose rows and
columns are indexed by Tn such that the (i, j)-entry of An is one if the ith
transversal and the jth transversal are disjoint and zero otherwise.

The spectrum of An does not depend on how the set of transversals was
ordered, and so we may view it as an invariant of the incidence relation.
More fundamental is the Smith normal form of An, which is unchanged
even under independent row and column permutations of An and hence
describes the incidence relation at a more basic level.

Recall that the Smith normal form of a (possibly nonsquare) integer
matrix is a diagonal matrix of the same size, with the diagonal entries
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subject to certain divisibility conditions. More formally, if A is an m × n

integer matrix, then there exist unimodular (invertible over the integers)
matrices P and Q such that the matrix PAQ = (di,j) satisfies

di,j = 0, for i 6= j

and

di,i divides di+1,i+1, for 1 ≤ i < min{m,n}.

This diagonal matrix is called the Smith normal form of A. These diagonal
entries di,i are unique up to sign, and are called the invariant factors of the
matrix A.

In the next section, we will compute the spectrum and the Smith normal
form of An, the incidence matrix of disjoint transversals. The matrices
An are actually the association matrices for the maximal distance in the
Hamming association schemes H(n, n), and their eigenvalues are known
[4]. We give another computation of the spectrum because it is relevant
to how we will calculate the Smith normal form of An. Our main result
was conjectured in [2] and first established in [9] using character-theoretic
methods. Here we give an elementary proof. In the final section, we explain
the connection between the matrix An and Rota’s basis conjecture.

2. The Spectrum and Smith Normal Form of An

Theorem 2.1. Let An be the incidence matrix of disjoint transversals.

(1) The eigenvalues of An are

(−1)n−k(n− 1)k

occurring with multiplicity

(

n

k

)

(n− 1)n−k

for 0 ≤ k ≤ n.

(2) The invariant factors of An are

(n− 1)k

occurring with multiplicity

(

n

k

)

(n− 1)n−k

for 0 ≤ k ≤ n.
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Proof. Let V = R
Tn , the vector space over the reals consisting of all formal

linear combinations of elements of Tn. Then An represents the linear map
ψ : V → V defined by

ψ({ai1 , bi2 , · · · , cin}) =
∑

aj1
6=ai1

,··· ,cjn 6=cin

{aj1 , bj2 , · · · , cjn} , (2.1)

for {ai1 , bi2 , · · · , cin} ∈ Tn. That is, ψ is the linear map defined by sending
a transversal to the sum of the transversals disjoint to it.

Next, let [n] denote the set {1, 2, · · ·, n} and define W = R
[n], the vector

space over the reals consisting of all formal linear combinations of elements
of [n]. If Bn is the n×nmatrix whose diagonal entries are zero and all other
entries are one, then Bn represents the linear map θ :W →W defined by

θ(i) =
∑

j∈[n],j 6=i

j, (2.2)

for i ∈ [n]. That is, θ sends an element in [n] to the (formal) sum of all the
elements of [n] distinct from it. It is easy to see that n− 1 is an eigenvalue
of Bn with multiplicity one, and −1 is an eigenvalue with multiplicity n−1
(eigenvectors will have entries that sum to zero).

Now, in order to see the connection between (2.1) and (2.2), let us take
the tensor product of W with itself n times and consider the induced linear
map θ⊗n :W⊗n →W⊗n defined by

θ⊗n(i1 ⊗ · · · ⊗ in) = θ(i1)⊗ · · · ⊗ θ(in).

Since the tensor product respects the distributive law over vector addition,
we have that

θ⊗n(i1 ⊗ · · · ⊗ in) = θ(i1)⊗ · · · ⊗ θ(in),

= (
∑

j1 6=i1

j1)⊗ · · · ⊗ (
∑

jn 6=in

jn),

=
∑

j1 6=i1,··· ,jn 6=in

j1 ⊗ · · · ⊗ jn.

(2.3)

It is easy to see that the vector spaces V and W⊗n are isomorphic under
the map that sends a transversal {ai1 , bi2 , · · · , cin} to the simple tensor
i1⊗ i2⊗· · ·⊗ in, and after identifying these spaces the maps (2.1) and (2.3)
are the same. In other words, An can be obtained by taking the Kronecker
product of Bn with itself n times. Therefore, part (1) of the theorem is
proved if we show that the eigenvalues of θ⊗n are

(−1)n−k(n− 1)k
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occurring with multiplicity

(

n

k

)

(n− 1)n−k

for 0 ≤ k ≤ n. To see this, take a basis of eigenvectors {xi}
n
i=1 for the map

θ : W → W in (2.2). Let x1 have eigenvalue n − 1 and let x2, x3, · · · , xn
each have eigenvalue −1. Let xi1 ⊗· · ·⊗xin be an arbitrary basis vector for
W⊗n. Then it is easy to see that this basis vector is in fact an eigenvector
for θ⊗n and both the eigenvalue and multiplicity depend on how many times
x1 occurs in this simple tensor. Explicity, if x1 occurs exactly k times in
the simple tensor xi1 ⊗ · · · ⊗ xin then

θ⊗n(xi1 ⊗ · · · ⊗ xin) = θ(xi1 )⊗ · · · ⊗ θ(xin)

= (−1)n−k(n− 1)kxi1 ⊗ · · · ⊗ xin ,

so (−1)n−k(n − 1)k is an eigenvalue of θ⊗n. Additionally, the number of
basis vectors containing a factor of x1 exactly k times is

(

n

k

)

(n − 1)n−k.
This completes the proof of part (1).

Next, let us prove part (2) of the theorem. It is amazing that a nearly
identical argument goes through to give the invariant factors of An. Set
V = Z

Tn and W = Z
[n], the free modules over the integers consisting

of all formal linear combinations of elements of Tn and [n], respectively.
The maps (2.1) and (2.2) should now be viewed as homomorphisms of
free abelian groups. It is an easy exercise using integral row and column
operations to show that Bn has Smith normal form:

S =















1
1

. . .

1
n− 1















.

Therefore, 1 is an invariant factor with multiplicity n − 1 and n − 1 is an
invariant factor with multiplicity 1. This means that we can find bases
{xi}

n
i=1 and {yi}

n
i=1 of W so that

θ(x1) = (n− 1)y1

θ(xi) = yi,

for 2 ≤ i ≤ n. The matrix An still represents the homomorphism θ⊗n :
W⊗n →W⊗n, and the sets {xi1 ⊗ · · ·⊗xin} and {yi1 ⊗ · · ·⊗ yin} are bases
of W⊗n. If x1 occurs exactly k times in the basis vector xi1 ⊗ · · · ⊗ xin ,

30 MISSOURI J. OF MATH. SCI., VOL. 29, NO. 1



INTEGER INVARIANTS

then we have

θ⊗n(xi1 ⊗ · · · ⊗ xin) = θ(xi1 )⊗ · · · ⊗ θ(xin),

= (n− 1)kyi1 ⊗ · · · ⊗ yin .

Hence, the invariant factors of An are

(n− 1)k

occurring with multiplicity
(

n

k

)

(n− 1)n−k

for 0 ≤ k ≤ n, and this completes the proof. �

3. Relationship to Rota’s Basis Conjecture

The following conjecture was made by Gian-Carlo Rota in 1989 [7].
Suppose one has n bases B1,B2, · · · ,Bn of an n-dimensional vector space

V. Form an n×n array, with the elements of Bi forming the ith row. Then
Rota’s basis conjecture states that there is a way to independently permute
the entries of each row so that all the columns of the array are also bases
of V.

This conjecture is very general, stated for any finite dimensional vector
space over any field. The basis conjecture is implied for even dimensions
and fields of specific characteristics (in particular, characteristic zero) by the
Alon-Tarsi conjecture concerning even and odd Latin squares [1, 8]. Indeed,
much of the recent progress on Rota’s basis conjecture has been through
investigations of Latin squares [5, 6]. The conjecture also generalizes to an
identical statement about bases in a rank n matroid that has been fully
settled only for n ≤ 3 [3].

If we assign the elements of the ith basis Bi to the positions in the ith
row of the array (1.1), then Rota’s basis conjecture asserts that there will
exist n mutually disjoint transversals where each transversal corresponds
to a basis of V. Now, which transversals will correspond to bases will
depend on the original choice of B1,B2, · · · ,Bn, and each such choice will
distinguish a principal submatrix of An. Thus in this sense the matrix An

contains the information needed to verify any particular instance of Rota’s
basis conjecture. It is hoped that the matrix An may offer a new approach
to this problem.

4. Acknowledgements

The authors would like to thank Peter Sin for helpful discussions. The
authors also acknowledge the helpful computations produced by Michael

MISSOURI J. OF MATH. SCI., SPRING 2017 31



S. BITTNER, J. DUCEY, X. GUO, M. OH, AND A. ZWEBER

Cheung. Discussion of this work originated from an REU (Research Expe-
rience for Undergraduates) project at James Madison University in June
2012. This work was supported in part by the NSF under DMS-1004516.

References

[1] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica, 12

(1992), 125–134.
[2] S. Bittner, X. Guo, and A. Zweber, Approaches to Rota’s basis conjecture, Report

on James Madison University Summer REU, (2012).
[3] W. Chan, An exchange property of matroid, Discrete Math., 146 (1995), 299–302.
[4] P. Delsarte, An algebraic approach to the association schemes of coding theory,

Philips Res. Rep. Suppl., 1973, pp. vi+97.
[5] A. A. Drisko, On the number of even and odd Latin squares of order p+1, Adv. Math.,

128 (1997), 20–35.
[6] D. G. Glynn, The conjectures of Alon-Tarsi and Rota in dimension prime minus

one, SIAM J. Discrete Math., 24 (2010), 394–399.
[7] R. Huang and G.-C. Rota, On the relations of various conjectures on Latin squares

and straightening coefficients, Discrete Math., 128 (1994), 225–236.
[8] S. Onn, A colorful determinantal identity, a conjecture of Rota, and Latin squares,

Amer. Math. Monthly, 104 (1997), 156–159.
[9] P. Sin, Smith normal forms of incidence matrices, (to appear).

MSC2010: 05C25

Key words and phrases: Rota’s basis conjecture, incidence matrix, transver-
sals, eigenvalues, invariant factors, Smith normal form

Department of Mathematics and Computer Science, Virginia Wesleyan Col-

lege, Norfolk, VA 23502.

E-mail address: snbittner@vwc.edu

Department of Mathematics and Statistics, James Madison University, Har-

risonburg, VA 22807

E-mail address: duceyje@jmu.edu

Department of Mathematics, Stanford University, Stanford, CA 94305

E-mail address: xuyguo@stanford.edu

Department of Mathematics and Statistics, James Madison University, Har-

risonburg, VA 22807

E-mail address: ohmx@jmu.edu

Mathematics Department, Carleton College, Northfield, MN 55057

E-mail address: zwebera@carleton.edu

32 MISSOURI J. OF MATH. SCI., VOL. 29, NO. 1


