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Abstract. In this short note we give an exceedingly short proof that
the harmonic series diverges. The proof is virtually a one-liner.

1. Introduction
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is one of the most famous or well-known infinite series in elementary mathe-
matical analysis. The series diverges—a fact first demonstrated by Nicole’d
Oresme [1, ca. 1323-1382]. There are a number of proofs that the harmonic
series diverges, some of them well-known and elementary. In [2], Steven J.
Kifowit and Terra A. Stamps give a survey of 20 proofs of the divergence of
the harmonic series, covering simple popular proofs, up to more advanced
proofs.

2. The Exceedingly Short Proof

The author of the present note discovered the following elementary, al-
most one-line proof that the harmonic series diverges—this proof is not
found in [2].

Theorem 2.1. The harmonic series diverges.

Proof. For all x ≥ 0, x ≥ ln(1 + x). Therefore, we have the following
exceedingly short proof that the harmonic series diverges.
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