GENERAL DORROH EXTENSIONS
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ABSTRACT. In a recent paper G. A. Cannon and K. M. Neuerburg
point out that if A = Z and B is an arbitrary ring with unity, then
Z* B, the Dorroh extension of B, is isomorphic to the direct product
Z x B. Thus, the ideal structure of Z* B can be completely described.
The aim of this note is to point out that this result may be extended
to any pair (A, B) in which B is an A—algebra with unity, and to study
the construction of extensions of algebras without zero divisors and
their behavior with respect to algebra maps.

1. DORROH EXTENSIONS

All rings A have unity. We call a rng or a pseudo—ring any triad
(B,+, x) in which (B,+) is an abelian group, and x is associative and
distributive with respect to 4, i.e. a ring not necessarily with unity. By
an A-—algebra we mean a pseudo-ring B with left and right A-module
structures satisfying the following three properties:

aq (bag) = (alb)ag, a(blbg) = (abl)bz, and (blbg)a = bl (bga),

for any a,a1,a2 € A and b,by,bo € B. If in addition B has a unity, say
e, one may prove that ae = ea for any a € A; this means that the map
f A — B, defined as f(a) = ae, is a ring map from A to B. We define an
A—algebra map from an algebra B to an algebra B’ as a two—sided module
map f : B — B’ satisfying f(b1b2) = f(b1)[f(b2) for any b1,bs € B. In the
same way we may define left and right or two—sided ideals, subalgebras, and
other elements and constructions generalizing those studied in ring theory.
In this note we shall consider non-zero algebras, but it may be that the
zero algebra {0} appears inside some constructions.

Example 1.1. Let A be a ring. The following are examples of A—algebras:
(1) The ring A is a unitary A—algebra.

(2) The set {<8 g) | a,be A} is an A-algebra with a left sided unity.

*Partially supported by MTM2007-66666, FQM-266, and MTM2010-20940.
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(3) If A is commutative and a € A, then aA is an A-algebra. For instance
XZ[X] and 2Z are Z—algebras.

(4) If {Ax | X € A} is a family of A-algebras, then @ Ax and [], Ax are
A-algebras. In this case ®yAy is a subalgebra and a two—sided ideal of
I1, Ax.

A classical problem in ring theory is how to embed an A—algebra B in
an A-algebra with unity, say A x B, in such a way that this embedding is
minimal in the following sense: for any unitary A—algebra C, any algebra
map f : B — C may be uniquely factorized through A x B. To construct
A% B we proceed as follows.

For any A-algebra B, in the cartesian product underlying set A x B we
define an addition by

(al,bl) —+ (ag,bQ) = (CLl + CLQ,bl —+ bg), for any ai,ag € A and bl,bQ S B,
and a multiplication by

(a1,b1) (az,b2) = (araz,a1by + bias + bibs),
for any a1,as € A and by, by € B.

With these operations A x B is an A—algebra with unity (1,0). We denote
this A-algebra by Ax B and call it the Dorroh extension® of B by A. If we
identify B with {(0,b) | b € B} and A with {(a,0) | a € A}, then B is an
ideal and A a unitary subalgebra of A x B.

Theorem 1.2. For any A-algebra B, any unitary A-algebra C, and any
algebra map f : B — C, there exists a unique unitary algebra map f' :

Ax B — C such that f"B = f.

B— > AxB

Note that any ring B is a Z-algebra. Hence, as we remarked before,
the first construction involving Dorroh extensions deals with pairs (Z, B),
see [3]. In this particular case, in [1] and [2] the ideal structure of Z x Z is
studied. In the former paper it is pointed out that Z x B is isomorphic to
the direct product Z x B, for any ring B with identity.

We are interested in the general case, in which A may be different from
Z, because it allows us to use some useful tools of general ring theory.

Proposition 1.3. For any ring A and any unitary A—algebra B the Dorroh
extension A x B is isomorphic to the direct product A x B.

IThis construction was first performed by J. L. Dorroh in (3] for A =17Z.
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Proof. Let B be an algebra with unity, say e € B, then (0,¢) is a central
idempotent element in A x B. Indeed, for any (a,b) € Ax B we have

(a,b) (0,e) = (0,ae + be) = (0, ea + eb) = (0, ¢€) (a,b).

If we identify e with (0,¢e), then B = e(A % B). On the other hand 1 =
(1,0) = (1, —€e) + (0, €); this means that any element (a,b) € A x B may be
written as (a,b) = (a,—ae) + (0,ae + b), and we have the decomposition
A*xB = (1-¢)(A*B)+ e(Ax B) which produces the algebra isomorphism
AxB=(1—¢€)(AxB) xe(A*B).

As we have noted before, e(A x B) = B. On the other hand, (1 —
e)(A* B) = {(a,—ae) | a € A} is isomorphic to A via the ring map
(a,—ae) — a. As a consequence A x B = A x B via the isomorphism
¢ : (a,b) = (a,ae + b). O

Note that even if B is a unitary A—algebra, the Dorroh extension of B
does not coincide with B.

Some remarks on the ideal structure of Ax B. Note that if B has a unity,
ideals in A x B have a simple description. Indeed, for any ideal ¢ C A x B
we have the decomposition ¢ = (1 — e)c @ ec. Thus we proceed as follows:

AxB=——=(1-¢)(AxB)®e(AxB)——= A X B.

c———— > (1—e)cpec——>axb.

In this case we denote a the ideal pr4(c), where pry : Ax B — A is the
projection. Therefore we have (1 —e)c = {(a, —ae) | a € a} = pra(c) = a.
The ideal ec may also be completely determined; in particular b = ec C B,
and it may be described as b = {prg(c) + pra(c)e | ¢ € ¢}. Therefore ¢
is determined by its images by the projections pr4 and prg, and we have
¢ = {(pra(c), —pra(cle) | c €} &{(0,pra(c) +pra(ce) | cec}.

Are ideals in Ax B of the type axb (defined in the obvious way) for ideals
a C Aand b C B? To answer this question first we note that for ideals
a C A and b C B the following statements are equivalent: (a) axb C AxB
is an ideal and (b) Ba,aB C b. In this case we have

axb=(1—¢e)(axb)De(axb) > ax (ae+b)=axb.

In general, given an ideal ¢ C Ax B we have ¢ = axb, for some ideals a C A
and b C B, if and only if pra(c)e C prg(c).

Prime ideals in A x B are completely determined as they are in A x B.
Prime ideals in Ax B are either Ax b, with b C B being prime, or ax B, with
a C A being prime. On one hand we have the ideal {(a, —ae) | a € A} @b
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(note that Ae ¢ b as b C B is a proper ideal), and on the other we have
the ideal {(a,—ae)| a € a} ® B=axB.

2. SZENDREI EXTENSIONS

Let us consider the following examples.

Example 2.1. (1) If A = Z and B = XZ[X], the Dorroh extension is
isomorphic to Z[X].

(2) If A=7Z and B = 2Z, the Dorroh extension has an underlying structure
of an abelian group isomorphic to Z X Z, hence it is not isomorphic to
Z.

(8) In general we have proved that if B is a ring with identity, the Dorroh
extension Z x B is isomorphic to Z x B. Consider the case of Z*Z[X],
which is isomorphic to Z x Z[X].

We note that in some cases the “smallest” unitary algebra containing
B is different of A x B. The reason is that in the universal property in
Theorem (1.2) characterizing Dorroh extensions, the map f was an arbi-
trary (not necessarily unitary) algebra map. One may pose the question:
is it possible to modify the Dorroh construction to some specific classes of
algebras to construct “smallest” unitary algebra extensions?

One of these modifications is known as the Szendrei Extension, see [4].
We present here a modification of it. Let B be an A-algebra such that
bB = 0 implies b = 0 for every b € B; we say B is a proper algebra; prime
and semiprime A-algebras are proper. Define b = {x € Ax B | =B =0}.

Lemma 2.2. With the above notation, if B is a proper algebra, b C A% B
is a two-sided ideal and bN B = 0.

In this case the composition map B — Ax B — (A« B)/b is injective,
and we may identify B with its image in (A B)/b. We call (A B)/b the
Szendrei Extension of B.

Note that if B is a unitary A—algebra, it is a proper algebra and (A% B)/b
and B are isomorphic as unitary algebras. In particular, in the examples
mentioned in (2.1) we have:

Example 2.3. (1) (Z+ XZ[X])/b =2 Z[X].
(2) (Z%27)/6 = L.
(3) (Z*B)/b=B.

Does this mean that Szendrei Extensions are more useful than Dorroh
Extensions? The answer is no, as the construction of Szendrei Extensions
may dampen some of the functorial properties of Dorroh Extensions. In
practice this is exactly what happens. For that reason it is not of interest
from a categorial point of view. Nevertheless we have the following useful
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property of Szendrei Extensions, which indicates that it may be of interest
from an arithmetical point of view.

Theorem 2.4. Let A be a ring, B a proper A—algebra, and C a unitary
A-algebra without zero divisors. For any non—zero algebra map f: B — C
there is a unique unitary algebra map " : (AxB)/b — C such that f"jg =f.

Proof. By Theorem (1.2), there is a unique unitary algebra map f’ : AxB —
C such that fl’ 5 = f. To prove this theorem we only need to prove that
f'(6) = 0. Indeed, if € b, then B = 0, hence, 0 = f'(zB) = f'(z)f(B).
Since f(B) # 0, then f'(z) = 0. Therefore, there is a unique unitary
algebra map f” : (A B)/b — C such that f"jg = f. O

The following example shows that the absence of zero divisor in C' is
necessary in the above theorem.

Example 2.5. Let us consider A =7, and B = 2Z. In Ax B = 7Z % 27
the annihilator of 2Z is b = {(—2z,2x) | = € Z}. If we take C = Zs and
[ 127 — Zsg, defined by f(2) = 4; the only unitary algebra map extending f
to Zx2Z is ' : L% 27 — Zsg, defined by f'(a,2b) = a + 4b for any a,b € Z.
As a consequence [’ can’t be extended to (Z % 27Z)/b, as f'(b) # 0; indeed
we have: f'(=2,2)=-2+4=2#0.

As an application of this Szendrei Extension, we have the original result
due to Szendrei, see [4]. In it the author studied when the extension of
a (commutative) domain is also a unitary domain (one of the main prob-
lems on Dorroh Extensions is the appearance of zero divisors), and the
corresponding universal property for this construction.

Corollary 2.6. Let A be a commutative ring, B a prime commutative A—
algebra, and C a prime unitary commutative A—-algebra. Then (A x B)/b
is a prime unitary commutative A—algebra, containing B as an ideal, and
for any non—zero algebra map f : B — C there is a unique unitary algebra
map " : (A% B)/b— C such that f"jg =f.

And we have an extension in the following sense.

Corollary 2.7. Let A be a commutative ring, B a semiprime commutative
A-algebra, and C' a semiprime unitary commutative A—algebra. Then (A%
B)/b is a semiprime unitary commutative A-algebra, containing B as an
ideal, and for any non-zero algebra map f : B — C there is a unique
unitary algebra map f" : (A% B)/b — C such that fl’]’B =f.

Proof. Following with the notation in the proof of Theorem (2.4), let P =
{p | p C C} the set of all prime ideals of C, then we consider the following
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commutative diagram.

B AxB
f/ //

P 3 C

C HpeP r

lﬂ—p
<
p

Where 7, : Hp cp % — % is the canonical projection on the factor, for any
p € P. Since mpoio f'(b) = 0, for every prime ideal p € P, then io f'(p) = 0,
i.e. f/(b) = 0, and this provides the existence of a unique A-algebra map

f":(AxB)/b — C such that f/; = f. O

From now on, let us consider a commutative ring A and commutative
A-algebras. Let f : By — By be a map between proper commutative A—
algebras. It is well-known that f induces a map of unitary A-algebras:
Ax f: Ax By - A% B, defined in the obvious way. Is the same result
for Szendrei Extensions true? The answer is no, as the following example
shows.

Example 2.8. Let us consider A =7, By = 27, By = Zg[X], and [ : 2Z —
Zs|X|] defined as f(2) = 4. The Szendrei Extension of 27 is (Z % 27) /b1,
where by = {(—2n,2n) € Z*2Z | n € Z}, and the Szendrei Extension of
Zs[X] is (Z+Zs|X])/ba = Zs[X], where by = {(a,b) € ZxZs|X] | G+b = 0}.
The map Z x f is defined as (Z * f)(a,2n) = (a,4n). Since (—2,2) € by,
and (Zx f)(=2,2) = (—2,4) ¢ by as 2+4=-2+4=2+#0. Asa
consequence, f does not induce a unitary A—algebra map.

We have a positive answer in several particular cases. Thus, f induces
a unitary A-algebra map whenever either f : By — Bs is surjective or f is
a unitary A-—algebra map.

On one hand, if f is a surjective A—algebra map and (a,b) € by then
(a,b)B; = 0, hence, (a, f(b))B2 = (a, f(b))f(B1) = A* f((a,0)B1) = 0,
and f induces a surjective A—algebra map f': (A By)/b; — (A % B3)/ba.
On the other hand, in the unitary case, f’ coincides with f.

If f: By — By, an A-algebra map between proper commutative A—
algebras with kernel a, induces a map f': (A% By)/b; — (A* Bg)/ba, it is
straightforward to prove the following result.
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Proposition 2.9. With the above notation the kernel of [ is (a:b_fﬁ), where
(a:B1)={x € Ax By | By C a}. In particular, the kernel of f' contains
a+by

b1

Then in general, we have the following corollary.

Corollary 2.10. Let f : By — By be an A-algebra map between proper
commutative A-algebras with kernel a such that Ba is prime. Then A %
By /by is a prime ring, there is a map f': (Ax By)/b; — (A Bz2)/ba, and

(a:B1) C AxB;
b1

T is a prime ideal.
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