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Abstract. There is a magnificent mathematical gem missing from
most numerical analysis curricula. A literature search of numeri-
cal analysis and mathematical modeling texts indicates its absence.
What is missing from the numerical analysis toolbox and why isn’t
it there? The missing tool is the Kalman filter. The Kalman filter
requires a modest knowledge of statistics. Is this why it is miss-
ing from the toolbox? Read and reach your own conclusion whether
this piece of mathematics should be part of a numerical analysis or
mathematical modeling curriculum.

1. Missing From the Numerical Analysis Toolbox

In a numerical analysis toolbox [3, 10] you find such things as Gauss-Jordon,
Gauss-Seidel elimination, polynomial interpolation and extrapolation, the
trapezoid rule for integration, Runge-Kutta method for ODE’s, etc., but
the Kalman filter is missing. In [2] it is claimed that “along with the sim-
plex method” the Kalman filter is “probably the single most useful piece of
mathematics developed this century.” It played an essential role in getting
the Viking I and II spacecraft from earth to Mars. It is used in navigation,
computer vision, to track objects, etc., anywhere sensors obtain measure-
ments subject to noise. Engineers and scientists have used the Kalman fil-
ter for several decades following the seminal paper [4] written by Rudolph
Kalman. Yet mathematicians seem to have overlooked it.

Literally hundreds of journal articles have been published since Kalman’s
original work, extending the filter in numerous directions. If this is such a
significant result in engineering and applied mathematics then why doesn’t
it appear in today’s numerical analysis books and curriculum? One draw-
back is that it requires some probability and statistics, though the pre-
requisites are modest. Most students taking an applied mathematics or
numerical analysis course would probably take a course in probability and
statistics anyway. Still, there is no guarantee they do. The purpose of this
article is to expose this useful tool to the mathematician and show that
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the necessary probability and statistics required to understand it could
easily be incorporated into a numerical analysis course. The little time
spent on prerequisites is well worth the reward of providing knowledge of
an extremely useful tool students might use later in graduate school or
industry.

2. Where to Start

One way to introduce a Kalman filter is to show what it does. Consider a
couple of examples which are slight variations of [11]. A Kalman filter is an
algorithm, in fact, a recursive set of equations. As a comparison, consider
a recursive equation to compute the mean of a set of data values obtained
from measurements x1, x2, . . . , xn−1, xn taken periodically over time where
x1 is the oldest value up to xn, the most recent value. Convince yourself
that if x̄n is the mean of n measurements then

x̄n =
(n− 1)x̄n−1 + xn

n

for n ≥ 1 with initial condition x̄0 = 0. Normally we don’t think of a mean
or average as being calculated recursively. However, presented this way, it
serves as a simple example which processes data recursively in a manner
similar to a Kalman filter. And why recursive? Because that is what makes
the Kalman filter so attractive. When it comes to processing data in real-

time recursion translates into efficiency. And why the term filter? Because
the average and Kalman algorithms “filter out” unwanted noise, revealing
a, hopefully, good estimate of the truth.

3. Water Tank

The first example takes measurements of the water level of a water tank.
The contents of the tank cannot be seen and measurements are taken to
determine water level over time. Assume the water level is constant over a
short period when it is measured. Like all sensors or measuring devices they
have inherent noise. The Kalman filter has proven to be an indispensable
tool to deal with noise.

Before looking into the details of the Kalman filter equations, lets see how
it compares to taking the average. Ten measurements are taken. Figure
1 shows the results of repeatedly taking the average of the measurements
so far, a sort of running average. The true water level, measurements and
running average are plotted in Figure 1. The data was purposely made
noisy to see how the running average copes with it.

Figure 2 shows how the Kalman filter deals with the noisy measurements.
If you compare Figures 1 and 2, you see little difference. In fact, when both
the running average and Kalman filter plots were put in the same figure the
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Figure 1. Tank filling using running average.

second wrote over and covered the first. That is why two separate figures
were made.

How were these plots produced and what do the Kalman equations look
like? The implementation of the Kalman and running average equations,
together with the plots were produced with the software package Octave

[9]. Octave is very similar to Matlab [6] but Octave is free and open source.
The Kalman equations during the nth iteration for the water tank example
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Figure 2. Tank filling using Kalman filter

are

xn = x−
n ,

Pn = P−
n +Q,

Kn = P−
n (P−

n +R)−1,

xn = x−
n +Kn(yn − x−

n ),

Pn = (I −Kn)P
−
n ,

x−
n+1 = xn,

P−
n+1 = Pn;

where x−
n is the previous state, P−

n is the previous state variance, Q is the
process variance, R is measurement noise, Kn is referred to as the Kalman

gain, yn is a measurement, I is the identity matrix and Pn is used to update
P−
n . I know what you are thinking. What do the previous state variance,

process variance, measurement noise, Kalman gain, etc., mean? Please be
patient. More is said about them below. Whatever is going on, you must
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admit, somehow the Kalman estimates, like the running average, begin to
approach the true water level in spite of the noisy data.

The first two equations are called the prediction equations, the next
three the Kalman equations and the last two the update equations. Only
the middle three equations are often referred to as the Kalman equations
proper. Initially, x−

0 = 0, P−
0 = 1000 (high state variance), R = 0.1,

Q = 0.0001 (small process variance), measurements are taken every ∆t = 1
sec, and true water level is 1.

Upper case letters normally represent matrices and lower case vectors.
In the water tank example all quantities are one dimensional (scalars). The
exponent −1 on the right side of the equation for Kn usually represents
the inverse of a matrix but since all quantities here are scalars it denotes
the reciprocal of a number. The algorithm repeatedly uses the equations
to recalculate as more measurements are processed. The Kalman filter
estimates plotted in Figure 2 are the values x−

n .

4. Vehicle Position and Velocity

The next example estimates the position and velocity of a vehicle from
simulated noisy sensor data. Figure 3 shows plots of the true position of
the vehicle, estimated position obtained from a Kalman filter and running
average, and the measurements. As Figure 3 indicates, the Kalman filter
clearly out performs the running average. In fact, in spite of how noisy the
data is, the Kalman filter is obviously giving a very good estimate of the true
position. The running average drifts away from the true position over time.
Figure 4 shows the difference between true position minus measurement
and true position minus Kalman estimated position, and Figure 5 shows
true and estimated velocity. The figures clearly show that whatever is going
on here the results look good. There must be something to this Kalman
filter.

The moving vehicle can be described by the following linear system

xn+1 = Axn +Bun +wn state equation

yn = Cxn + zn output equation

where A, B and C are matrices, n is a time index, vector xn is the state of
the system, vector un is a known input to the system, vector yn is measured
output, vectorwn is process noise and vector zn is measurement noise. The
state of the system is the vehicle’s position and velocity. In the absence of
noise, velocity and position can be updated from time index n to n + 1,
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Figure 3. Vehicle position, Kalman filter and average estimates.

constituting time interval ∆t, as follows

vn+1 = vn + (∆t)un

pn+1 = pn + (∆t)vn +
(∆t)2

2
un

where un is input acceleration and the second equation was obtained from
the first by integrating. When noise is taken into consideration the equa-
tions for velocity and position become

vn+1 = vn + (∆t)un + v∼n

pn+1 = pn + (∆t)vn +
(∆t)2

2
un + p∼n

where v∼n and p∼n are velocity and position noise. The later two equations
for velocity and position are more realistic because they take instrument
noise into account.
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Figure 4. Vehicle position measurement and estimate error

5. System State

The state vector is xn =

(

pn
vn

)

and the linear system can be written

as

xn+1 =

(

1 ∆t
0 1

)

xn +

(

(∆t)2/2
T

)

un +wn

yn+1 =
(

0 1
)

xn + zn.

6. Process and Measurement Noise Covariance

Assume measurements are taken every 1
10 sec, i.e., ∆t = 0.1 sec. Also

assume p0 = 0, v0 = 0 and acceleration is constant at 1 ft/sec2, that is,

a0 = a = 1 ft/sec
2
. Then p = p0 + (∆t)v0 + (∆t)2

2 a0 = 0 + (.1)(0) +
(0.1 sec)2

2 × 1 ft
sec2 = 0.005 ft. Assume acceleration noise is σa = 0.2 ft/sec2.

The standard deviation of position noise is therefore σP = (0.005)(0.2) =
10−3. Also v = v0 + (∆t)a0 = 0 + (0.1 sec)

(

1 ft
sec2

)

= 0.1 ft/sec. The
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Figure 5. Vehicle velocity true value and Kalman filter

standard deviation of velocity noise is therefore σV = (0.1)(0.2) = 0.02 =
2× 10−2. This accounts for process noise that originates from acceleration

noise. Consequently, the process noise vector w =

(

10−3

2× 10−2

)

.

Assume process position noise P is a a random variable (RV) having a
normal distribution with mean µP = 0 and variance σ2

P . The statistician’s
notation for this is P ∼ N(0, σ2

P ), which we adopt here. Assume process
velocity noise V is an RV and V ∼ N(0, σ2

V ). So the standard deviation

for process position noise is σP = (∆t)2

2 aσa and the standard deviation
for process velocity noise is σV = (∆t)aσa. The process noise vector is

w =

(

σP

σV

)

. Consequently, the process noise covariance matrix is
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Sw = Cov(P, V )

= E[wwT ]

= E

[(

σP

σV

)

(

σP σV

)

]

=

(

σ2
P σPσV

σV σP σ2
V

)

=





(

(∆t)2

2 aσa

)2
(∆t)2

2 aσa(∆t)aσa

(∆t)aσa
(∆t)2

2 aσa ((∆t)aσa)
2





= a2σ2
a

(

(∆t)4

4
(∆t)3

2
(∆t)3

2 (∆t)2

)

= (1)2(0.2)2

(

(0.1)4

4
(0.1)3

2
(0.1)3

2 (0.1)2

)

=

(

10−6 2× 10−5

2× 10−5 4× 10−4

)

.

Assume measurement position noise Pm is an RV and Pm ∼ N(0, σ2
Pm

)
where the measurement position noise scalar is z = σPm

= 10 ft. Conse-
quently, the measurement position covariance matrix Cov(Pm, Pm) = Sz =
(σPm

)(σPm
)T = σ2

Pm
= 102.

7. Linear System and Kalman Equations

Now consider the state, output and Kalman equations for the nth itera-
tion. First, a few preliminaries. Matrices A, B, and C are used in the equa-

tions below where A =

(

1 ∆t
0 1

)

, B =

(

(∆t)2

2
∆t

)

and C =
(

1 0
)

.

Matrix A is called the transition matrix and B the input matrix. The initial

state vector is x0 =

(

0
0

)

. The initial input acceleration, and all subse-

quent acceleration values are u0 = un = 1, which are scalars in this case.

The random process noise vector is wn =

(

(∆t)2r1
2

(∆t)r2

)

and the nth noise

measurement vector (which is actually a scalar) is zn = σPm
r3 where r1,

r2 and r3 are random numbers. New random numbers are generated dur-
ing each iteration of the algorithm. All random numbers are produced by
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the randn library function available in Octave and Matlab which generates
random numbers based on RV R where R ∼ N(0, 1). The initial process
covariance matrix is P0 = Sw. The state, output and Kalman equations
are

xn = Ax−
n +Bun +wn

yn = Cxn + zn

x̂n = Ax̂−
n +Bun

v = yn − Cx̂n

S = CPnC
T + Sz

Kn = APnA
TS−1

x̂n+1 = x̂n +Knv

Pn+1 = APnA
T −APnC

TS−1CPnA
T + Sw

where x−
n is the previous state, x̂−

n and x̂n are the previous and next state
estimate, v is the innovation vector, S is the covariance of innovation,
and Kn is the Kalman gain. This is the jargon used by engineers that
work in the linear system world. The first two equations, state and output
equations, form the linear system. The remaining equations are considered
the Kalman equations. The last two equations prepare the state estimate
and process covariance matrix for the next iteration. Exponent T denotes
the transpose of a matrix and exponent −1 is the inverse of a matrix.

Here is a little explanation of the above equations. In the calculation of
x̂n+1, the first term x̂n is the propagated state estimate from Ax̂−

n +Bun in
the absence of a measurement. The second term Knv is a correction term.
It represents the amount by which to correct the propagated state estimate.
Consider the equation for the Kalman gain Kn. If measurement noise is
large, Sz will be large, so Kn is small and we don’t give much credibility
to measurement yn. On the other hand, if measurement noise is small, Sz

is small, so Kn is large and we give more credibility to the measurement.

8. Real-Time Embedded Software

Nowhere else does a Kalman filter have greater impact than in real-time

processing. The world of embedded micro-controllers containing a micro-
processor, together with analog to digital (ADC) sensors, timers, wireless
communication, USB connections, etc., is growing exponentially, and pro-
lific in our everyday lives. Cell phones, sensors in automobiles, robots,
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appliances, medical monitoring devices, routers, etc., just to name a few,
contain micro-controllers embedded inside them that process measurements
in real-time. A Kalman filter can be implemented efficiently in the real-time
embedded software to deal with noise inherent in the measuring devices to
produce reliable results. The impact on our lives is obvious. This is why
knowledge of it is a tremendous asset for a student entering the working
world or graduate school.

9. Lost at Sea

Graphs illustrating the Kalman filter and seeing how well it performs in
the presence of noisy data is all well and good but the mathematician asks
“where’s the proof?” A complete proof of the Kalman filter is outside the
scope of this article. There are many references such as [1] which provide
a proof in a general multidimensional context required by the Kalman fil-
ter. However, some steps towards quenching the mathematician’s thirst for
proof can be presented through the following variant of a one dimensional
example found in [7].

You are lost at sea at night and have no idea of your location. You
use the stars to locate your position. Your location is specified as the
one dimensional distance from a fixed reference point. At time t1 you
determine that your location is z1 based on your measurements. However,
your measurements have inherent inaccuracies and you assume that the
variance of your measurements is σ2

z1
. Your friend, a trained navigator,

takes an independent fix of your location. Immediately after you, at time t2,
obtain a more accurate measurement with mean z2 and (smaller) variance
σ2
z2
. You have two measurements of your location. How do you combine

them?

10. Bayesian Estimation

Assume a prior distribution of RV M to have a normal distribution
with mean z1 and variance σ2

z1
, that is, M ∼ N(z1, σ

2
z1
). Let Z2 be a

normal RV for the sample measurement with mean z2 and variance σ2
z2
,

i.e., Z2 ∼ N(z2, σ
2
z2
). A method [5, 8] known as Bayesian estimation is

used to determine the posterior distribution of M , given Z2 = z2, namely

p(µ|z2) =
h(µ)f(z2|µ)

g(z2)

where the probability density function (PDF) of the prior distribution is

h(µ) =
1

σz1

√
2π

e
− 1

2

(

µ−z1
σz1

)

2

since M ∼ N(z1, σ
2
z1
)
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and, for M = µ, the PDF of the sampling distribution is

f(z2|µ) =
1

σz2

√
2π

e
− 1

2

(

z2−µ

σz2

)

2

since Z2 ∼ N(z2, σ
2
z2
).

The marginal PDF g(z2) will be determined later.
Plug in h(µ), f(z2|µ) and g(z2) to get

p(µ|z2) =
1

2πσz1σz2g(z2)
e
− 1

2

(

µ−z1
σz1

)

2

− 1

2

(

z2−µ

σz2

)

2

.

which looks like a PDF for a normal distribution. It is, indeed, normal. To
show this, the exponent (power) of e, denoted here as P (µ), is rewritten so
that completing the square can be done.

11. Rearrange P (µ)

A little algebra yields

P (µ) = −1

2

(

1

σ2
z1

+
1

σ2
z2

)

µ2 +

(

z1
σ2
z1

+
z2
σ2
z2

)

µ− 1

2

(

z21
σ2
z1

+
z22
σ2
z2

)

.

Let 1
σ2 = 1

σ2
z1

+ 1
σ2
z2

so that the coefficient of µ2 in P (µ) becomes − 1
2σ2 . If

− 1
2σ2 is a common factor of the µ2 and µ terms of P (µ), it can be factored

out of these terms. Completing the square can then be performed to help
identify p(µ|z2) as the PDF of a normal distribution.

To get − 1
2σ2 as a factor of µ solve

µ1

σ2
=

z1
σ2
z1

+
z2
σ2
z2

for µ1 to get

µ1 =
σ2
z2
z1

σ2
z1

+
σ2
z1
z2

σ2
z2

.

Consequently

P (µ) = − 1

2σ2
µ2 +

µ1

σ2
µ− 1

2

(

z21
σ2
z1

+
z22
σ2
z2

)

= − 1

2σ2

(

µ2 − 2µ1µ
)

− 1

2

(

z21
σ2
z1

+
z22
σ2
z2

)

.
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12. Complete the Square

Complete the square to get

P (µ) = − 1

2σ2
(µ− µ1)

2
+

µ2
1

2σ2
− 1

2

(

z21
σ2
z1

+
z22
σ2
z2

)

= −1

2

(

µ− µ1

σ

)2

+R

where R =
µ2

1

2σ2 − 1
2

(

z2

1

σ2
z1

+
z2

2

σ2
z2

)

. Function p(µ|z2) can now be written as

p(µ|z2) =
eR

2πσz1σz2g(z2)
e−

1

2 (
µ−µ1

σ )
2

.

The marginal PDF g(z2) is defined as

g(z2) =

∫

range of M

h(µ)f(z2|µ)dµ

=

∫ ∞

−∞

h(µ)f(z2|µ)dµ

=

∫ ∞

−∞

eR

2πσz1σz2

e−
1

2 (
µ−µ1

σ )
2

dµ

=
eRσ

√
2π

2πσz1σz2

∫ ∞

−∞

1

σ
√
2π

e−
1

2 (
µ−µ1

σ )
2

dµ

=
σeR

σz1σz2

√
2π

.

Plug g(z2) =
σeR

σz1
σz2

√
2π

into the equation for p(µ|z2) to get

p(µ|z2) =
1

σ
√
2π

e−
1

2 (
µ−µ1

σ )
2

.

This is the PDF of a normal distribution with mean µ1 and variance σ2

where

µ1 =
σ2
z2
z1

σ2
z1

+
σ2
z1
z2

σ2
z2

and
1

σ2
=

1

σ2
z1

+
1

σ2
z2

.

13. Your Turn

The above derivation of µ1 and σ was based on Bayesian estimation.
Another approach [12] is to use χ2 estimation. An outline of this approach
is given and you are asked to fill in the details. Perhaps this can be the
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start of a capstone or undergraduate research project that you, the student,
would like to pursue. Start by considering the following expression

χ2 =
(z1 − x̂)2

σ2
z1

+
(z2 − x̂)2

σ2
z2

where z1, z2, σz1 and σz2 are all the same as before. Treat χ2 as a function
of x̂ and take the derivative with respect to x̂. Set the derivative equal to
zero and solve for x̂. Does it look familiar?

If σ2
z1

= E[(z1−µx)
2] and σ2

z2
= E[(z2−µx)

2] where E is expected value,

find σ2
x = E[(x̂ − µx)

2] by plugging in the expression you obtained for x̂.
Keep in mind that z1 and z2 are independent. What do you get for σ2

x?

14. Observations of µ1 and σ2

Note that σ2 < min(σ2
z1
, σ2

z2
). Therefore, two measurements yield a

PDF with smaller variance, and hence, a better estimate of the true po-
sition than either single measurement provides. Suppose σ2

z2
= σ2

z1
. Use

the equation for µ1 to show that µ1 = z1+z2
2 which is the average of the

two measurements. Suppose σ2
z2

> σ2
z1
. Then the coefficient of z1 in the

expression for µ1 is larger than the coefficient of z2 giving more weight to
the estimate z1 when calculating µ1. This is desirable because z1 would
be the better estimate since it has a smaller variance. Based on both mea-
surements z1 and z2 an estimate of µ1 was obtained. As it turns out, it
is the maximum likelihood estimate, the weighted least squares estimate
and the linear estimate whose variance is less than that of any other linear
unbiased estimate. Consequently, it is the “best” estimate according to any
reasonable criterion.

15. A Little Kalman Filter

The equation for µ1 can be rearranged to derive a formula for the es-
timate x̂(t2) = µ1 in terms of the estimate x̂(t1). Using the fact that
x̂(t1) = z1 show that

x̂(t2) = x̂(t1) +
σ2
z1

σ2
z1

+ σ2
z2

[z2 − x̂(t1)].

This yields the following Kalman Filter

x̂(t2) = x̂(t1) +K(t2)[z2 − x̂(t1)]

where

K(t2) =
σ2
z1

σ2
z1

+ σ2
z2

.

K(t2) is the Kalman gain that was mentioned earlier. This equation pro-
vides one form of the Kalman filter formula. This gives a way of deriving the
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best estimate of your position, x̂(t2) at time t2 based on the best estimate
x̂(t1) at time t1 and the measurement z2 at time t2.

The above Kalman filter equation can be used to derive an analogous
formula to calculate the variance σ2

x(t2) in terms of σ2
x(t1) and K(t2). Show

that

σ2 = [1−K(t2)]σ
2
z1
.

Since σ2
z1

= σ2
x(t1) and σ2 = σ2

x(t2) the last equation can be rewritten as

σ2
x(t2) = [1−K(t2)]σ

2
x(t1).

This equation provides a formula for calculating σ2
x(t2) from σ2

x(t1) and
K(t2) analogous to the equation used to calculate x̂(t2) from x̂(t1) and
K(t2). The pair of equations for x̂(t2) and σ2

x(t2) solve what is referred to
as the static estimation problem.

16. Dynamic Estimation Problem

Returning to the “lost at sea” example, suppose you travel for some time
before taking a third measure z3 of your position at time t3. Assume that
the best model of your motion is given by the differential equation

dx

dt
= u+ w

where u is a nominal velocity and w noise that is assumed to have a normal
PDF with zero mean and variance σ2

w. Let t
−
3 represent the time just before

t3 when the third measurement z3 is taken.
Given a third measurement z3 of your position x(t3) at t3, a fourth PDF
having a normal distribution can be defined. The fourth PDF at time
t−3 has a mean x̂(t−3 ) and variance σ2

x(t
−
3 ) which satisfy the following two

equations

x̂(t−3 ) = x̂(t2) + u[t3 − t2]

σ2
x(t

−
3 ) = σ2

x(t2) + σ2
w[t3 − t2].

The value of x̂(t−3 ) is the best estimate of your position at time t−3 just
before measurement z3 at time t3 is taken and σ2

x(t
−
3 ) is the variance in

that estimate. If the Kalman filter equation for x̂(t2) above is applied with
x̂(t−3 ) being the previous best estimate at time t−3 , z3 the measurement at
time t3 we get

x̂(t3) = x̂(t−3 ) +K(t3)[z3 − x̂(t−3 )]

for the best estimate x̂(t3) in position at time t3 where

K(t3) =
σ2
x(t

−
3 )

σ2
x(t

−
3 ) + σ2

z3

.
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Similarly, if the equation above for σ2
x(t2) is applied with σ2

x(t
−
3 ) being the

best estimate of the variance at time t−3 , we can calculate the best estimate
of the variance σ2

x(t3) at time t3 as follows

σ2
x(t3) = [1−K(t3)]σ

2
x(t

−
3 ).

Extending equations x̂(t−3 ) and σ2
x(t

−
3 ) to vectors yields the general Kalman

filter algorithm for updating from one measurement to the next measure-
ment. Extending equations K(t3) and σ2

x(t3) to vectors yields the Kalman
filter update at a measurement time.
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