
ON THE MODIFIED FERMAT PROBLEMZVONKO �ERINAbstract. For a given positive real number v smaller than √
2, weconsider the Fermat-like con�guration consisting of a circle k anda rectangle ABB′A′. A point P is on k if and only if the relation

|AD|2 + |BC|2 = v2 |AB|2 holds, where C and D are the intersec-tions of the line AB with the lines A′P and B′P , respectively. Thereare four such rectangles with the side AA′ parallel to any given lineof symmetry of the circle. This property is shared by all ellipses.When v =
√
2, analogous statements hold for parabolas. Finally, for

v >
√
2, this is true for hyperbolas only for its line of symmetry con-taining the foci. We also show that many geometric properties of thiscon�guration do not depend on a position of a point on the circle.The original Fermat problem corresponds to the case v = 1.1. Introduction � The Fermat ProblemFor given di�erent points A and B and any points P1, P2, P3, P4 in theplane, let ϕ(P1P2, P3P4) =

|P1P2|2+|P3P4|2
|AB|2 .Among the numerous questions that Pierre de Fermat formulated, thefollowing geometric problem is our main concern (see Figure 1).Fermat Problem . Let P be a point on the semicircle that has the topside AB of the rectangle ABB′A′ as a diameter. Let |AB|

|AA′| =
√
2. Letthe segments PA′ and PB′ intersect the side AB in the points C and D,respectively. Then ϕ(AD,BC) = 1.The great Leonard Euler in [3] provided the �rst rather long proof, whichis old fashioned (for his time), and avoids the analytic geometry (whicho�ers rather simple proofs as we shall see later). Several more concisesynthetic proofs are now known (see [6], [4, pp. 602, 603], [1, pp. 168, 169]and [5, pp. 181, 264]). A nice description of Euler's proof can be found in[7].The analytic proofs also reveal that the above relation holds for all pointson the circle with the segment AB as a diameter.MISSOURI J. OF MATH. SCI., FALL 2013 153
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PSfrag replacements Figure 1. The con�guration of the Fermat problem.2. The modified Fermat problemFor a circle, we consider a slightly more general situation when the num-ber 1 in ϕ(AD,BC) = 1 is replaced by v2, where v is a real number satis-fying 0 < v <
√
2 (see Figure 2).
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ON THE MODIFIED FERMAT PROBLEMThe following result gives this modi�ed form of the Fermat problem.Theorem 1. For every positive real number v smaller than √
2, every circle

k and every line π in the plane there are exactly four rectangles ABB′A′such that the lines AA′ and π are parallel and the following two statementsare equivalent for a point P in the plane:(a) A point P is on the circle k.(b) ϕ(AD,BC) = v2, where C and D are intersections of the line ABwith the lines A′P and B′P , respectively.Proof. We shall use analytic geometry which o�ers a simple proof. With-out loss of generality, we can assume that the line π is the y-axis of therectangular coordinate system, the center of the circle O is its origin andthe equation of the circle is a standard x2 + y2 = r2, where r is a positivereal number (the radius of the circle).The coordinates of the points A, B, A′ and B′ are (a, b), (a+ cd, b),
(a, b+ c) and (a+ cd, b + c), respectively, where a, b, c and d are realnumbers such that c 6= 0 and d 6= 0. An arbitrary point P on the planehas coordinates (p, q). From the similar right-angled triangles, we easily�nd that C (

cp−a(q−b)
b+c−q

, b
) and D

(

cp−(a+cd)(q−b)
b+c−q

, b
). For an integer n, let

δn = n− v2. Note that ϕ(AD,BC) − v2 is My

d2(b+c−q)2 , where My is thequadratic polynomial
d2

[

c δ1(2b+ c− 2q) + δ2(q − b)2
]

+ 2(a− p)(a+ cd− p)in the variables p and q.Now in order that P is on the circle k, the polynomialMy should be of theform λ(p2 + q2 − r2) for some real number λ 6= 0. This gives the system ofsix equations in �ve variables a, b, c, d and λ. Let L = r
√
2 and K =

√
2 δ2.One solution is a = −KL

2 v
, b = δ1L

v
, c = −Lδ2

v
, and d = −K

δ2
. Hence, theassociated �rst rectangle ABB′A′ has as vertices the pairs L

v

(

−K
2 , δ1

),
L
v

(

K
2 , δ1

), L
v

(

K
2 ,−1

), L
v

(

−K
2 ,−1

), where we use µ(a, b) as a shorter no-tation for the pair (µa, µ b). The second rectangle is the re�ection of the�rst in the x-axis. We get two additional rectangles by re�ecting theserectangles in the y-axis (see Figure 3). The above system of equations hasno other solutions.Finally, if P (p, q) is any point in the plane, then ϕ(AD,BC) − v2 = v2δ2κ
ϑ2 ,where ϑ = v q + L and κ = p2 + q2 − r2. Hence, for the �rst rectangle

ABB′A′, the identity ϕ(AD,BC) = v2 holds if and only if the coordinatesof the point P satisfy κ = 0, i.e., if and only if the point P is on the circle
k. The same conclusion is true for the remaining three rectangles. �In the sequel, we shall call any of the above four rectangles ABB′A′,the F v-rectangle of the circle k (in the direction π). We shall use the sameMISSOURI J. OF MATH. SCI., FALL 2013 155
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Figure 3. The four F
6

5 -rectangles ABB′A′, BAA′B′,
A∗B∗B′

∗A
′
∗ and B∗A∗A′

∗B
′
∗ in the vertical direction.name also for other conics. Note that the points C and D (for the �rstrectangle) are L

2vϑ (2vδ2p∓Kvq ±KLδ1, 2δ1ϑ). Throughout the paper, theupper sign goes with the �rst stated point and the lower sign goes with thesecond stated point, respectively.3. The Case of an EllipseThe following theorem is a version of Theorem 1 for ellipses. Since circlesare special ellipses (with eccentricity zero) and their lines of symmetry areall lines through their centers, it follows that Theorem 2 is a generalizationof Theorem 1. On the other hand, the ellipse case could also be derivedfrom the circle case by applying an a�ne stretch.Theorem 2. For every positive real number v <
√
2, every ellipse γ andeach line of symmetry π of γ there are exactly four rectangles ABB′A′ suchthat the lines AA′ and π are parallel and the following two statements areequivalent for a point P in the plane:(a) A point P is on the ellipse γ.(b) ϕ(AD,BC) = v2, where C and D are intersections of the line ABwith the lines A′P and B′P , respectively.156 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2



ON THE MODIFIED FERMAT PROBLEMProof. We shall use analytic geometry again and follow the above prooffor circles. We �rst assume that the line π is the y-axis of the rectangularcoordinate system, the center of the ellipse O is its origin and the equationof the ellipse is a standard x2

h2 + y2

k2 = 1, where h and k are positive realnumbers (the semi-axes of the ellipse).Once again, the coordinates of the points A, B, A′ and B′ are (a, b),
(a+ cd, b), (a, b+ c), and (a+ cd, b+ c), respectively, where a, b, c, and dare real numbers such that c 6= 0 and d 6= 0. An arbitrary point P on theplane has coordinates (p, q). The coordinates of the intersections C and
D, the di�erence ϕ(AD,BC) − v2 as well as the polynomial My have beencomputed above.Now in order that P is on the ellipse γ, the polynomial My shouldbe of the form λ

(

p2

h2 + q2

k2 − 1
) for some real number λ 6= 0. This givesthe system of six equations in �ve variables a, b, c, d, and λ. One solu-tion is a = −h

√
δ2

v
, b = k

√
2δ1
v

, c = −k
√
2δ2
v

, and d = − h
√
2

k
√
δ2

that gives the�rst rectangle ABB′A′ with vertices 1
v

(

−h
√
δ2, k δ1

√
2
), 1

v

(

h
√
δ2, k δ1

√
2
),

1
v

(

h
√
δ2,−k

√
2
), 1

v

(

−h
√
δ2,−k

√
2
). The second rectangle is the re�ectionof the �rst in the x-axis. We get two additional rectangles by re�ecting theserectangles in the y-axis (see Figure 4). There are no other solutions.
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Figure 4. The eight F 6

5 -rectangles of the ellipse x2 + 4 y2 = 1.By repeating this argument for the x-axis (the second line of symmetryof γ), we shall get analogously four more rectangles. �MISSOURI J. OF MATH. SCI., FALL 2013 157



Z. �ERINNote that these eight F v-rectangles all have the same area 2
√
2h k δ2

√
δ2

v2and their vertices lie on two ellipses coaxal with γ (see Figure 4).4. The Case of a ParabolaWhen v =
√
2, the Fermat con�guration is tied to a parabola. This isexplained in the following result.Theorem 3. For every parabola δ and every real number d 6= 0, there isa rectangle AdBdB

′
dA

′
d such that the side AdA

′
d is parallel to the line ofsymmetry π of δ and for a point P in the plane the following two statementsare equivalent:(a) A point P is on the parabola δ.(b) ϕ(AdDd, BdCd) = 2, where Cd and Dd are intersections of the line

AdBd with the lines A′
dP and B′

dP , respectively.Proof. We again assume that the line π is the y-axis of the rectangularcoordinate system, the equation of the parabola is a standard x2 = 2 h yand the coordinates of the vertices A, B, A′, and B′ of a rectangle ABB′A′with AA′ and π parallel are (a, b), (a+ cd, b), (a, b+ c) and (a+ cd, b+ c),respectively, where a, b, c, d, and h are real numbers such that c 6= 0, d 6= 0,and h > 0. An arbitrary point P on the plane has coordinates (p, q). Thecoordinates of the intersections C and D have been computed above. Then
2− ϕ(AD,BC) = M0

d2(b+c−q)2 , where
M0 = c d2(2 b+ c− 2 q) + 2(p− a)(a+ c d− p).Now, in order that P is on the parabola δ, the polynomial M0 shouldbe of the form λ

(

p2 − 2 h q
) for some real number λ 6= 0. This gives thesystem of �ve equations in �ve variables a, b, c, d, and λ. The only solutionis a = h

d
, b = 3 h

2 d2 , c = − 2h
d2 , and λ = −2 that gives the required rectangles

AdBdB
′
dA

′
d with vertices h

d

(

1, 3
2 d

), h
d

(

−1, 3
2 d

), −h
d

(

1, 1
2 d

), −h
d

(

−1, 1
2 d

),respectively (see Figure 5). �It is obvious that for every d 6= 0 the rectangles AdBdB
′
dA

′
d and

A−dB−dB
′
−dA

′
−d are symmetric with respect to the line π.5. The Case of a HyperbolaFinally, when v >

√
2, the modi�ed Fermat con�guration is possible foreach hyperbola. This is described in the following theorem.Theorem 4. For every hyperbola η and every real number v >

√
2, thereare exactly four rectangles ABB′A′ such that the side AA′ is parallel to themajor line of symmetry π of η (going through its foci) such that for a point

P in the plane the following two statements are equivalent:158 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2



ON THE MODIFIED FERMAT PROBLEM
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Figure 5. The F
√
2-rectangle AdBdB

′
dA

′
d of a parabola.(a) A point P is on the hyperbola η.(b) ϕ(AD,BC) = v2, where C and D are intersections of the line ABwith the lines A′P and B′P , respectively.Proof. We assume that the line π is the x-axis of the rectangular coordi-nate system, the equation of the hyperbola is x2

h2 − y2

k2 = 1 and the coordi-nates of the vertices A, B, A′, B′, and P are (a, b), (a, b+ cd), (a+ c, b),
(a+ c, b+ c d), and (p, q), respectively, where h, k, a, b, c, d, p, and q arereal numbers such that h > 0, k > 0, c 6= 0 and d 6= 0. The coordinates ofthe intersections C and D, the di�erence ϕ(AD,BC) − v2, and the poly-nomial Mx have been computed above.The point P is on the hyperbola η if and only if the polynomial Mxhas the form λ

(

p2

h2 − q2

k2 − 1
) for some real number λ 6= 0. This givesthe system of six equations in �ve variables a, b, c, d, and λ. One ofits four solutions is a = −h δ1
√
2

v
, b = k

√
−δ2
v

, c = h δ2
√
2

v
, and d = k

√
2

h
√
−δ2that gives the �rst rectangle ABB′A′ with vertices 1

v

(

−hδ1
√
2, k

√
−δ2

),
− 1

v

(

hδ1
√
2, k

√
−δ2

), 1
v

(

h
√
2, k

√
−δ2

), and 1
v

(

h
√
2,−k

√
−δ2

). The sec-ond rectangle is the re�ection of the �rst in the y-axis. We get two ad-ditional rectangles by re�ecting these rectangles in the x-axis (see Figure6). There are no other solutions. Also, when we assume that the line πis the y-axis, repeating the above procedure, we get a system that has nosolutions. �MISSOURI J. OF MATH. SCI., FALL 2013 159



Z. �ERIN
D*

C*

B'*

A'*

B*

A*

D

C

B'

A'

B

A

O

P

Figure 6. The four F 3-rectangles of the hyperbola x2 − 4 y2 = 1.6. Invariants of the Modified Fermat ConfigurationIn the rest of this paper, our main goal is to explore what other relation-ships in the modi�ed Fermat con�guration of a circle and its F v-rectangle
ABB′A′ remain invariant as the point P changes position on the circle.In other words, we search for statements analogous to (b) that are alsoequivalent to (a) (both in Theorem 1) and are related to the F v-rectangleof k. The case v = 1 was considered earlier in [2]. Similar results could bealso proved for other conics (ellipse, parabola, and hyperbola). These caseshave more complicated statements.Let P ′ be the re�ection of the point P in the x-axis. We remark thatmost of our results in this section come in related pairs. The second version,which requires no extra proof, comes (for example, already in Theorem 1)by replacing the points C and D with the points C′ and D′, which are theintersections of the line AB with the lines P ′A′ and P ′B′, respectively.We begin with the diagonals of the trapezium A′B′DC (see Figure 2).It is somewhat unusual that the number v does not appear.(c) ϕ(A′D,B′C) = ϕ(A′D′, B′C′) = 2.Proof of (c). With straightforward computations one can easily check that
ϕ(A′D,B′C)− 2 = κv2δ2

ϑ2 . �We note the following generalization. Let the points A∗, B∗, C∗, D∗satisfy AA∗ = λAA
′, BB∗ = λBB

′, BC∗ = µBC, AD∗ = µAD for realnumbers λ and µ. Then ϕ(A∗D∗, B∗C∗) = δ2λ
2 + v2µ2.For points X and Y , let X ⊕ Y be the center of the square built on thesegmentXY such that the triangleX(X ⊕ Y )Y has the positive orientation(counterclockwise). When the point X ⊕ Y is shortened to M , then M∗denotes Y ⊕X.160 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2



ON THE MODIFIED FERMAT PROBLEMThe midpoints G, H , G′, H ′ of the segments AC, BD, AC′, BD′ andthe top N of the semicircle over AB are used in the next two statements.In other words, N = B ⊕A. The midpoint M (

0, δ1L
v

) of the segment ABappears in the statement (e) (see Figure 7).(d) ϕ(NG,NH) = ϕ(NG′, NH ′) = 2+v2

4 .(e) ϕ(MG,MH) = ϕ(MG′,MH ′) = v2

4 .Proof of (d) and (e). This time the di�erences ϕ(NG,NH)− 2+v2

4 and
ϕ(MG,MH)− v2

4 both simplify to the following quotient v2δ2κ
4ϑ2 , which hasthe factor κ again. �

N2

N1

H

N

M
G

CD

B'A'

B
A

PFigure 7. The quotients ϕ(NG,NH), ϕ(AN2, BN1) and
ϕ(NN1, NN2) are equal to 1

2 + v2

4 , 1 + v2

2 , and v2

2 .Let Gs, Hs, G′
s, H ′

s be the points that divide the segments NG, NH ,
NG′, NH ′ in the same ratio s 6= −1 (i.e., NGs : GsG = s : 1, etc.).(f) ϕ(MGs,MHs) = ϕ(MG′

s,MH ′
s) =

s2v2+2
4(s+1)2 .(g) ϕ(NGs, NHs) = ϕ(NG′

s, NH ′
s) =

(v2+2) s2

4(s+1)2 .Proof of (f). Since L
2(s+1)

(

s(2δ2p∓2Kq∓KLv)
2ϑ ,

K+2δ1(s+1)
v

) are the coordinatesof Gs and Hs, the di�erence ϕ(MGs,MHs)− s2v2+2
4(s+1)2 is s2v2δ2κ

4(s+1)2 ϑ2
. �MISSOURI J. OF MATH. SCI., FALL 2013 161



Z. �ERINLet N1, N2, N3, N4 denote the highest points on the semicircles builton the segments AC, BD, AC′, BD′ above the line AB. In other words,
N1 = C ⊕A, N2 = B ⊕D, N3 = C′ ⊕A, N4 = B ⊕D′ (see Figure 7).(h) ϕ(BN1, AN2) = ϕ(BN3, AN4) = 1 + v2

2 .(i) ϕ(NN1, NN2) = ϕ(NN3, NN4) =
v2

2 .Proof of (h) and (i). Since N1 and N2 have the coordinates L
4ϑ

(

n∓,
m∓

v

),with n∓ = 2δ2p∓ 2Kq ∓ vKL andm∓ = 2v(δ1q ± δ2p) + L(Kδ2 + 4δ1), weget ϕ(BN1, AN2)−
(

1 + v2

2

)

= ϕ(NN1, NN2)− v2

2 = v2δ2κ
2ϑ2 . �The following statements also use the points N1, N2, N3 and N4. How-ever, they do not use the function ϕ.(j) |N1N2|

|AN | = v and |N3N4|
|AN | = v.(k) |N1N2| = |N3N4|.(l) |N1N2|2 + |N2N3|2 + |N3N4|2 + |N4N1|2 = 2 v2 |AB|2.Proof of (j) and (l). We easily get |N1N2|2 − v2|AN |2 =

L2 δ2
2
κ

ϑ2 .Since N3 and N4 have the coordinates L
4η

(

h∓,
k∓

v

), with η = vq − L,
h∓ = −2δ2p∓ 2Kq ± vKL and k∓ = 2v(2 δ1q ∓ δ2p)−L(Kδ2 + 4δ1), thesum |N1N2|2 + |N2N3|2 + |N3N4|2 + |N4N1|2 − 2 v2 |AB|2 is equal to

8 r2 δ22(v
2 q2 + 2 r2)κ

η2 ϑ2
.

�Note that |N1N
∗
2 |2 + |N∗

2N
∗
3 |2 + |N∗

3N4|2 + |N4N1|2 = 2 v2 |AB|2 if andonly if the point P is on the ellipse p2

a2 + q2

b2
= 1, where a=r

√

3− 2
v2 and

b = r
√

3
2 − 1

v2 = a√
2
.Let m = v2

2 , n = 1+m
2 , o = 1 +m, t = (s+ 1)2, and p = n+ n

t
.Let N5 = A⊕D, N6 = C ⊕B, N7 = A⊕D′, and N8 = C′ ⊕B.(m) ϕ(AN5, BN6) = ϕ(AN7, BN8) = m.(n) ϕ(GN6, HN5) = ϕ(G′N8, H

′N7) = n.(o) ϕ(NN5, NN6) = ϕ(NN7, NN8) = o and ϕ(GsN6, HsN5) = p.Proof of (m). Since N5 and N6 have the coordinates L
4 v ϑ

(s∓, t∓), where
s∓=δ2(2 v p∓KL) and t∓=2 v[(2δ1 −K)q ∓ δ2p] + L(4δ1 −K v2), we get
ϕ(AN5, BN6)− v2

2 = δ2v
2κ

2ϑ2 . �The next six statements use the centers of squares on the segments CDand C′D′. Let M1 = C ⊕D and M2 = C′ ⊕D′.(p) |N M1| = v |AN | and |N M2| = v |AN |.162 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2



ON THE MODIFIED FERMAT PROBLEM(q) |N M1| = |N M2|.Proof of (p) and (q). SinceM1=
L

2 v ϑ
(2 vδ2p, v(2δ1−K)q+Lδ1(K+2)), thedi�erence |M1N |2 − v2 |AN |2 is equal to 2 r2 δ2

2
κ

ϑ2 . In a similar way, we get
|M2N |2 − |M1N |2 =

4L3 δ2
2
q v κ

η2ϑ2 . �(r) ϕ(M1N1,M1N2) = ϕ(M2N3,M2N4) =
v2

2 .For any point X in the plane, let G1, G2, G3, G4, G5, and G6 denote thecentroids of the triangles ACX , CDX , DBX , AC′X, C′D′X , and BD′X ,respectively.(s) ϕ(G2G1, G2G3) = ϕ(G5G4, G5G6) =
v2

9 .(t) |G2G1|2 + |G2G3|2 = |G5G4|2 + |G5G6|2.Proof of (s). If X = (x, y), then the points G1, G2, and G3 have the sameordinate y
3 + 2Lδ1

3 v
while their abscissae are x

3 − L(2Kq−2δ2p+v K L)
6ϑ

, x
3 + 2L δ2p

3ϑ
,and x

3 + L(2Kq+2δ2p+v K L)
6ϑ

, respectively. Now we can easily get that the dif-ference ϕ(G2G1, G2G3)− v2

9 is v2δ2κ
9ϑ2 . �We use U and V to denote the midpoints of the segments CC′ and DD′,respectively (see Figure 8).(u) ϕ(NU,NV ) = 1.(v) ϕ(MU,MV ) = 1

2 .(w) ϕ(N6U,N5V ) = v2

2 .Proof of (u) and (v). Since L
2 v

(

− δ2L(2 v p±KL)
ϑη

∓K, 2δ1

) are U and V , re-spectively, we get ϕ(NU,NV )− 1 = ϕ(MU,MV )− 1
2 = δ2L

2 v2κ
η2ϑ2 . �Let W = U ⊕ V (see Figure 8).(x) ϕ(AW,BW ) = 1 and ϕ(NW,NW ∗) = 1.(y) ϕ(WNi,WNj) =

v2

2 , for i ∈ {1, 3} and j ∈ {2, 4}.(z) The center W lies on the circle that has the segment AB as adiameter.Proof of (z). SinceW = −L
2 vϑη

(

2δ2v L p, (K − 2δ1)v
2 q2 + δ1L

2(K + 2)
), weget that |WM |2 − |AB|2

4 equals 4 r2 δ2
2
κ

η2 ϑ2 . �(a1) The lines WN1 and WN2 are perpendicular.(b1) The lines WN3 and WN4 are perpendicular.Proof of (a1). The lines WN1 and WN2 have equations a(x, y) = λ and
b(x, y) = µ, respectively, where a = a(x, y) and b = b(x, y) are homoge-nous linear functions and λ and µ are real numbers. Let S = x+ y andMISSOURI J. OF MATH. SCI., FALL 2013 163
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2 .
R = x− y. Then a = [Kv(L2 − 2 q2) + 2δ2Lp]S − δ2q(2 p v +KL)R. Sim-ilarly, we have b = [Kv(L2 − 2 q2)− 2δ2Lp]R+ δ2q(2 p v −KL)S. Theselines are perpendicular if and only if L3δ2

2
q v κ

ϑ2 η2 is zero. �Let K1 = B ⊕N1, K2 = N2 ⊕A, K3 = B ⊕N3, K4 = N4 ⊕A. Thesepoints can be de�ned more simply. They all are at the same height as Nand vertically above the points N6, N5, N8, N7, respectively. Let L1, L2,
L3, L4 be the re�ections of the points K1, K2, K3, K4 in the line AB,respectively. The next four statements use rather exotic numbers.(c1) ϕ(A′K2, B

′K1) = ϕ(A′K4, B
′K3) =

5
2 − 3 v2

4 +K.(d1) ϕ(A′L2, B
′L1) = ϕ(A′L4, B

′L3) =
5
2 − 3 v2

4 −K.Proof of (c1). Since L
4 v ϑ

(δ2(2 v p±KL), 2ϑ(K + 2δ1)) are the coordinatesof K1 and K2, we get that ϕ(A′K2, B
′K1)−

(

5
2 − 3 v2

4 +K
) is v2δ2 κ

4ϑ2 . �Replacing A′ and B′ with A and B in (c1) and (d1) we get the number
1
2 + v2

4 as the common value of the function ϕ in all four cases.Let S1 and T1 denote the midpoints of the segments A′C and B′D,respectively. Similarly, let S2 and T2 be the midpoints of the segments164 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2
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A′C′ and B′D′, respectively. Note that

ϕ(GsS1, HsT1)=ϕ(G′
sS2, H

′
sT2)=

(K s+2)2+2 sK2+4(K+1)
8(s+1)2 .(e1) ϕ(NS1, NT1) = ϕ(NS2, NT2) = 1 + K

2 .(f1) ϕ(MS1,MT1) = ϕ(MS2,MT2) =
1
2 .Proof of (f1). From the right-angled triangles MGS1 and MHT1 and (e),we get that the sum

|MS1|2 + |MT1|2 = (|MG|2 + |GS1|2) + (|MH |2 + |HT1|2)is (|MG|2 + |MH |2) + |A′A|2
2 = v2

4 |AB|2 +
(

1
2 − v2

4

)

|AB|2 = 1
2 |AB|2. �By replacing the point N with its re�ection N∗ in (e1) on the right handside the + sign changes into the opposite sign −.For points X and Y , let %YX be the re�ection of the point X in the point

Y . Let Q = %DA , R = %CB , Q′ = %D
′

A , R′ = %C
′

B .(g1) ϕ(A′Q,B′R) = ϕ(A′Q′, B′R′) = 3 v2 + 2.Proof of (g1). Since L
2 v ϑ

(4vδ2p± 3Kvq ±KL(1− 2δ1), 2δ1ϑ) are the co-ordinates of Q and R, we get that ϕ(A′Q,B′R)− (3 v2 + 2) is equal to
4 v2δ2 κ

ϑ2 . �We conclude with the following three additional invariant properties ofthe points Q, R, Q′, and R′ that could be established by the same method.(h1) ϕ(AQ,BR) = ϕ(AQ′, BR′) = 4 v2.(i1) ϕ(N5Q,N6R) = ϕ(N7Q
′, N8R

′) = 5 v2

2 .(j1) ϕ(K2Q,K1R) = ϕ(K4Q
′,K3R

′) = 9 v2

4 + 1
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