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Abstract. This paper deals with functionally Hausdorff spaces. Some
separation axioms which are introduced recently are studied in this
paper. An interesting categorical properties of functionally Haus-
dorff spaces are given. Finally, we characterize topological spaces for
which the functionally Hausdorff-reflection is a spectral space.

1. Introduction

Let X be a topological space. The ring of all real valued continuous func-
tions defined on X will be denoted by C(X). A Urysohn function for A
and B, disjoint subsets of X is a mapping f in C(X) such that f(A) = {0}
and f(B) = {1}. Urysohn’s Lemma shows that if X is a T4-space, then any
two disjoint closed subsets of X have a Urysohn function and conversely
if any two disjoint closed subsets of X have a Urysohn function, then this
space is T4. But the existence of such a function does not guarantee that
X is a T1-space and thus a T3-space (for this see Example 5 [10]). So the
following separation axioms are immediate.

Tychonoff. For any closed subset F of a T1-space X and x /∈ F , there
is a Urysohn function for F and {x}.

Functionally Hausdorff. For any two distinct points x and y in X , there is

a Urysohn function for {x} and {y} (We say that x and y are functionally
separated or completely separated).

Clearly, Tychonoff implies functionally Hausdorff implies T2.
Now, let us recall the functionally Hausdorff-reflection of a topological

space. Let X be a topological space. We define the equivalence relation
∼ on X by x ∼ y if and only if f(x) = f(y) for all f ∈ C(X). Let
FH(X) := X/ ∼ the set of equivalence classes and µX : X → FH(X) be
the canonical surjection map assigning to each point of X its equivalence
class. The resulting quotient space FH(X) is a functionally Hausdorff space
and since every f in C(X) is constant on each equivalence class, we can
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define FH(f) : FH(X) → R by FH(f)(µX(x)) = f(x). The construction
FH(X) satisfies some categorical properties.

For each functionally Hausdorff space Y and each continuous map f : X →

Y , there exists a unique continuous map f̃ : F (X) → Y such that f̃ ◦µX =
f . We will say that FH(X) is the functionally Hausdorff-reflection of X .

Let f : X → Y be a continuous map. Then there is a unique continuous
map FH(f) : FH(X) → FH(Y ) such that FH(f) ◦ µX = µY ◦ f .

Consequently, it is clear that FH is a covariant functor from the category
of topological spaces Top into the full subcategory FunHaus of Top whose
objects are functionally Hausdorff spaces.

In [4], the authors have introduced some new separation axioms.

Definition 1. Let i, j be two integers such that 0 ≤ i < j ≤ 2. Let us
denote by Ti the functor from Top to Top which takes each topological
space X to its Ti-reflection (the universal Ti-space associated with X). A
topological space X is said to be T(i,j)-space if Ti(X) is a Tj-space (thus
we have three new types of separation axioms namely; T(0,1), T(0,2), and
T(1,2)).

Definition 2. Let C be a category and F, G two (covariant) functors from
C to itself.

(1) An object X of C is said to be a T(F,G)-object if G(F(X)) is iso-
morphic with F(X).

(2) Let P be a topological property on the objects of C. An object X of
C is said to be a T(F,P )-object if F(X) satisfies the property P .

Following Defintion 2, for the functor FH one may define other separa-
tion axioms. A space X is called T(0,FH) (resp., T(S,FH)) if the space T0(X)
(resp., S(X) ) is functionally Hausdorff, where S(X) is the sober-reflection
of X . Finally, a T(FH,ρ)-space is a topological space X such that FH(X)
is Tychonoff.

This paper consists of some investigations concerning functionally Haus-
dorff spaces. The first one deals with the characterization of T(0,FH),
T(S,FH) and T(FH,ρ)-spaces. In the second section, we characterize mor-
phisms in Top rendered invertible by the functor FH . Finally, we study
topological spaces X such that FH(X) is spectral.

2. Functionally Hausdorff Spaces and Separation Axioms

Let G be a covariant functor from Top to itself. In order to characterize
T(G,FH)-spaces let us introduce the following concept.

Definition 3. A full subcategory A of Top is said to be real onto subcate-
gory if it satisfies the following properties

(a) A is reflective in Top.
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(b) The real line R belongs to A.
(c) Let G be the left adjoint functor of the embedding I : A → TOP

and µ the unit of the adjunction (G, I). Then for each space X in
A, µX : X → G(X) is onto.

Example 4.

(a) Top0,Top1,Top2 and FunHaus are real onto subcategories in
Top.

(b) The full subcategory Sob of sober spaces is not a real onto subcat-
egory.

Theorem 5. Let A be a real onto subcategory and G : TOP → A the left
adjoint functor of the inclusion functor I : A → TOP . Let µ be the unit
of the adjunction (G, I). For a given topological space X, the following
statements are equivalent.

(i) X is a T(G,FH)-space;
(ii) Any two points x and y in X such that µX(x) 6= µX(y) have a

Urysohn function.

Proof. (i) ⇒ (ii) Let x and y be two points in X such that µX(x) 6= µX(y).
Then µX(x) and µX(y) are two distinct points inG(X) which is functionally
Hausdorff and thus, there exists a mapping f ∈ C(G(X)) separating µX(x)
and µX(y). Clearly f ◦µX is a Urysohn function for x and y. Note that in
this implication it is enough to suppose that A is only reflective.

(ii) ⇒ (i) Conversely, since µX is onto, let µX(x) and µX(y) be two
distinct points in G(X). By (ii) let f ∈ C(X) such that f(x) 6= f(y). Now,
according to the fact that A is reflective and R belongs to A, there exists a

unique continuous map f̃ from G(X) to R such that f = f̃ ◦ µX . Clearly,

f̃ is a Urysohn function of µX(x) and µX(y). �

Recall that a topological spaceX is called a sober space if any irreducible
closed subset C of X has a unique generic point (there is a unique a ∈ X

such that C = {a}). It is also worth noting that the subcategory SOB of
sober spaces is reflective in Top.

Let us recall the sober-reflection of a topological space. Let X be a
topological space and S(X) be the set of all nonempty irreducible closed

sets of X . Let F be a closed set of X , set F̃ = {G ∈ S(X) : G ⊆ F}; then

(F̃ , F is a closed set of X) is the collection of closed sets of a topology on
S(X).

The unit µ of the adjunction (S, I) is defined by µX(x) = {x} and for any
continuous map f : X → Y , S(f) : S(X) → S(Y ) is given by S(f)(C) = C
for every element C in S(X), (for more information see [7]).
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Corollary 6. Let X be a topological space. The following statements are
equivalent.

(i) X is a T(0,FH)-space;
(ii) X is a T(S,FH)-space;

(iii) Any two points x and y in X such that {x} 6= {y} have a Urysohn
function.

Proof. According to the previous theorem it is sufficient to show (iii) ⇒
(ii). Indeed, let C1 and C2 be two distinct points in S(X) (that is two
distinct irreducible closed subsets in X ). Then there exist two distinct

points x1 and x2, respectively in C1 and C2 such that {x1} 6= {x2}. By
(iii) let f be a continuous map from X to R separating x1 and x2. Set
g = µ−1

R
◦ S(f) : S(X) → R (where µR : R → S(R) the map sending each

x ∈ R to the one point {x}). Now, let us show that for i = 1, 2 we have
g(Ci) = f(xi).

First remark that any continuous image of an irreducible set is irreducible
which means that f(Ci) is an irreducible set of R. But any nonempty
irreducible subset of a Hausdorff space is a one point, so set {ai} = f(Ci).

Hence, g(Ci) = µ−1
R

◦ S(f)(Ci) = µ−1
R

(f(Ci)) = µ−1
R

({ai}) = ai.
On the other hand, since xi ∈ Ci for i = 1, 2, then {f(xi)} ⊆ f(Ci) =

{ai} and thus, f(xi) = ai, so that g(Ci) = f(xi). �

Before giving the characterization of T(FH,ρ)-spaces let us introduce the
following notations and remarks.

Notation 7. Let X be a topological space.

(1) For any x ∈ X, we denote by d(x) := ∩[f−1(f({x})) : f ∈ C(X)].
(2) For any subset A of X, we denote by d(A) := ∪[d(a) : a ∈ A].

The following results are immediate.

Proposition 8. Let X be a topological space, a ∈ X and A a subset of X.
Then

(1) d(A) = µ−1
X (µX(A)).

(2) d(a) is a closed subset of X.
(3) A ⊆ d(A) ⊆ ∩[f−1(f(A)) : f ∈ C(X)].
(4) For all f ∈ C(X), f(A) = f(d(A)).

Now, we give a characterization of functionally Hausdorff spaces and
T(0,FH)-spaces in term of d.

Proposition 9. Let X be a topological space. Then the following state-
ments are equivalent.

(i) X is a functionally Hausdorff space;
(ii) For any set A of X, d(A) = A;
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(iii) For any a ∈ X, d(a) = {a}.

Proof. (i) ⇒ (ii) If X is a functionally Hausdorff space, then FH(X) = X
and µX is equal to 1X and thus, d(A) = A.

(ii) ⇒ (iii) The proof is straightforward.
(iii) ⇒ (i) Note that d(a) = {a} means that for any x ∈ X such that

x 6= a, there exists a continuous map f : X → R such that f(x) 6= f(a) and
thus X is a functionally Hausdorff space. �

Proposition 10. Let X be a topological space. Then the following state-
ments are equivalent.

(i) X is a T(0,FH)-space;

(ii) For any a ∈ X, d(a) = {a}.

Proof. (i) ⇒ (ii) Clearly, d(a) is a closed subset of X containing a and

thus, {a} ⊂ d(a).
Conversely, let x ∈ d(a), then f(x) = f(a) for any f ∈ C(X) and thus

by Corollary 6 {a} = {x} and consequently, x ∈ {a}.

(ii) ⇒ (i) Let x and a be two points in X satisfying {a} 6= {x}. Then x /∈

{a} or a /∈ {x} that is x /∈ d(a) or a /∈ d(x) and consequently, there exists
a continuous map f from X to R separating a and x. Finally, Corollary 6
does the job. �

Now, let us introduce the following definition.

Definition 11. Let X be a topological space and C a subset of X. C is
called functionally closed in X (for short F -closed) if d(C) is a closed subset
of X.

Remark 12. Let X be a topological space.

(1) For any subset C of X, C is F -closed if and only if µX(C) is closed
in FH(X).

(2) Any point set of X is F -closed.
(3) If in addition X is an Alexandroff space, then any subset A of X

is F -closed.

Now, we are in a position to characterize T(FH,ρ)-spaces.

Theorem 13. Let X be a topological space. Then the following statements
are equivalent.

(i) X is a T(FH,ρ)-space;
(ii) For any F -closed subset C of X and any x /∈ d(C), x and C have

a Urysohn function.
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Proof. (i) ⇒ (ii) Let C be an F -closed subset of X and x /∈ d(C). Then
µX(x) /∈ µX(C). Now, since C is F -closed, then µX(C) is a closed subset
of FH(X) which is Tychonoff and consequently, there exists a mapping
g ∈ C(FH(X)) such that g(µX(x)) = 0 and g(µX(C)) = {1}. Clearly,
g ◦ µX is a Urysohn function of {x} and C.

(ii) ⇒ (i) Let µX(x) /∈ C̃, where C̃ is a closed subset of FH(X). Then

x /∈ µ−1
X (C̃). Now, since d(µ−1

X (C̃)) = µ−1
X (C̃), then µ−1

X (C̃) is an F -

closed subset of X such that x /∈ d(µ−1
X (C̃)) and thus by (ii) there exists

a mapping f ∈ C(X) such that f(x) = 0 and f(µ−1
X (C̃)) = {1}. By

universality of functionally Hausdorff-reflection let f̃ : FH(X) → R the

unique continuous map such that f̃ ◦ µX = f . Hence, f̃(µx(x)) = 0 and

f̃(C̃) = f̃(µX(µ−1
X (C̃))) = f(µ−1

X (C̃)) = {1}. Finally, f̃ is a Urysohn

function of {µX(x)} and C̃. �

3. The Class of Continuous Maps Orthogonal to all

Functionally Hausdorff Spaces

It is worth noting that reflective subcategories arise throughout mathe-
matics, via several examples such as the free group, free ring, . . . functors
in algebra, various compactification functors in topology, and completion
functors in analysis, (cf. [9, p. 90]).

A morphism f : A → B and an object X in a category C are called
orthogonal [6], if the mapping homC(f,X) : homC(B,X) → homC(A,X)
which takes g to gf is bijective. For a class of morphisms Σ (resp., a class
of objects D), we denote by Σ⊥ the class of objects orthogonal to every f
in Σ (resp., by D⊥ the class of morphisms orthogonal to all X in D) [6].

The orthogonality class of morphisms D⊥ associated with a reflective
subcategory D of a category C satisfies the following identity D⊥⊥ = D

[1, Proposition 2.6]. Thus, it is of interest to give explicitly the class D⊥.
Note also that, if I : D → C is the inclusion functor and F : C → D is a left
adjoint functor of I, then the class D⊥ is the collection of all morphisms of
C rendered invertible by the functor F [1, Proposition 2.3].

This section is devoted to the study of the orthogonal class FunHaus⊥

that characterize morphisms rendered invertible by the functor FH .
The following concepts are introduced by O. Echi and S. Lazaar in [5].

Definition 14. Let f : X → Y be a continuous map.

(1) f is said to be ρ-injective (or ρ-one-to-one) if for each x, y ∈ X; x
and y are completely separated, then so are f(x) and f(y).

(2) f is said to be ρ-surjective (or ρ-onto) if for each y ∈ Y , there
exists x ∈ X such that f(x) and y are not completely separated.

(3) f is said to be ρ-bijective if it is both ρ-injective and ρ-surjective.
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Now, we introduce the following definition.

Definition 15. Let f : X → Y be a continuous map. f is called a function-
ally closed map (for short F -closed map) if it takes every F -closed subset
of X to F -closed subset of Y .

Theorem 16. Let f : X → Y be a continuous map. Then the following
statements are equivalent.

(i) FH(f) is a homeomorphism;
(ii) f is both ρ-bijective and F -closed.

Proof. (i) ⇒ (ii)
• f is ρ-injective. Let x and y be two separated points in X , that is

µX(x) 6= µX(y). Since FH(f) is one-to-one, then FH(µX(x)) 6= FH(µX(y))
which means that µY (f(x)) 6= µY (f(y)) and thus f(x) and f(y) are com-
pletely separated. Therefore, f is ρ-injective.

• f is ρ-surjective. Let y ∈ Y . Since FH(f) is onto, there exists x ∈
X such that FH(f)(µX(x)) = µY (y). Hence, µY (f(x)) = µY (y); and
consequently, f(x) and y are not completely separated. Therefore, f is
ρ-onto.

• f is F -closed. Let C be an F -closed subset of X , then µX(C) is a
closed subset of FH(X) and thus FH(f)(µX(C)) is closed in FH(Y ) or
FH(f)(µX(C)) = µY (f(C)). Therefore, µY (f(C)) is a closed subset of
FH(Y ) which means that f(C) is an F -closed subset of Y .

(ii) ⇒ (i)
• FH(f) is injective. Let x, y ∈ X be such that FH(f)(µX(x)) =

FH(f)(µX(y)). Then µY (f(x)) = µY (f(y)). Hence, f(x) and f(y) are not
completely separated. Since f is ρ-injective, we conclude that x and y are
not completely separated, and thus, µX(x) = µX(y). Therefore, FH(f) is
one-to-one.

• FH(f) is surjective. Let y ∈ Y . Since f is ρ-onto, there exists x ∈ X
such that f(x) and y are not completely separated. Hence, µY (f(x)) =
µY (y) = FH(f)(µX(x)). Thus, FH(f) is onto.

• FH(f) is closed. Let C̃ be a closed subset of FH(X). Since d(µ−1
X (C̃)) =

µ−1
X (C̃), then µ−1

X (C̃) is an F -closed subset of X and by (ii), f(µ−1
X (C̃)) is

an F -closed subset of Y . On the other hand,

FH(f)(C̃) = FH(f)(µX(µ−1
X (C̃))) = (µY ◦f)(µ−1

X (C̃))) = µY (f(µ
−1
X (C̃))).

Finally, µ−1
Y (FH(f)(C̃)) = d(f(µ−1

X (C̃))) is a closed subset of Y (since

f(µ−1
X (C̃)) is F -closed in Y ) which means that FH(f)(C̃) is closed and

consequently, FH(f) is a closed map.
Now, FH(f) is a bijective continuous closed map; so that it is a home-

omorphism. �
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4. Functionally Hausdorff Spectral Spaces

Recall that a topological space X is said to be spectral [8] if the following
axioms hold.

(i) X is a sober space.
(ii) X is compact and has a basis of compact open sets.
(iii) The family of compact open sets of X is closed under finite inter-

sections.

Let Spec(R) denote the set of prime ideals of a commutative ring R with
identity. Recall that, the Zariski topology or the hull-kernel topology for
Spec(R) is defined by letting C ⊆ Spec(R) be closed if and only if there
exists an ideal A of R such that C = {P ∈ Spec(R) : P ⊇ A}. Hochster [8]
has proved that a topological space is homeomorphic to the prime spectrum
of some ring equipped with the Zariski topology if and only if it is spectral.
In lattice theory, a spectral space is characterized by the fact that it is
homeomorphic to the prime spectrum of a bounded (with a 0 and a 1)
distributive lattice.

Spectral spaces are of interest not only in topological ring and lattice
theory, but also in computer science, in particular, in domain theory.

Note that if X is a T1-space, then X is spectral if and only if X is
compact and totally disconnected (i.e., X is a Stone space [8]).

Now, by [11, Lemma 29.6] a compact T2-space is totally disconnected if
and only if whenever x 6= y in X , there is a clopen set of X containing x
not containing y.

Recently, some authors (see for example [2, 3, 5]) have been interested
in particular types of spectral spaces.

Pursuing this kind of investigation for spectral spaces, we are interested
in topological spaces such that the functionally Hausdorff -reflection is spec-
tral.

Definition 17. A topological space X is said to be functionally Hausdorff
Spectral, if FH(X) is a spectral space.

First, we introduce some concepts.

Definition 18. Let X be a topological space and C a subset of X.

(1) C is called a strongly functionally closed subset of X (for short
s-F-closed) if C is a closed subset of X such that C = d(C).

(2) C is called a strongly functionally open subset of X (for short s-F-
open) if C is an open subset of X such that C = d(C).

(3) C is called a strongly functionally clopen subset of X (for short
s-F-clopen) if C is a clopen subset of X such that C = d(C).

Remark 19. Clearly, an s-F-closed (resp., s-F-open) subset of a topological
space is both closed (resp., open) and F-closed (resp., F-open). The converse
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does not hold. Indeed, let X := {0, 1} the Sierpinski space. It is easily seen
that FH(X) is a one point and thus d(1) = d(0) = X. So that {1} (resp.,
{0}) is both closed (resp., open) and F-closed (resp., F-open) which is not
s-F-closed (resp., s-F-open).

Now, we give the main result of this section

Theorem 20. Let X be a topological space. Then the following statements
are equivalent.

(1) FH(X) is spectral;
(2) X satisfies the following properties.

(i) Every s-F-open cover of X has a finite subcover.
(ii) For each completely separated points x, y ∈ X, there exists

an s-F-clopen subset of X containing one of the x, y and not
containing the other.

Proof of Theorem 20. (1) ⇒ (2)
(i) Let {Vi : i ∈ X} an s-F-open cover of X . Since for any i ∈ I, Vi is

s-F-open, then Vi = µ−1
X (µX(Vi)) for any i ∈ I.

On the other hand, the equality X = ∪[Vi : i ∈ I] implies that FH(X) =
µX(X) = ∪[µX(Vi) : i ∈ I] and thus, {µX(Vi) : i ∈ I} is an open cover
of X . Now, since FH(X) is spectral and consequently a compact space,
there exists a finite subset J of I such that FH(X) = ∪[µX(Vi) : i ∈ J ]
and consequently, X = ∪[µ−1

X (µX(Vi)) : i ∈ J ]. Therefore, X has a finite
subcover.

(ii) Let x and y be two completely separated points in X . Then µX(x) 6=
µX(y). Since FH(X) is a spectral T1-space then, it is totally disconnected.
On the other hand FH(X) is a spectral T2-space and consequently, there

exists a clopen subset Ũ of FH(X) containing µX(x) and not containing

µX(y). Set U = µ−1
X (Ũ). Clearly, U is an s-F-clopen subset of X containing

x and not containing y.
(2) ⇒ (1) First let us remark that (i) means that FH(X) is compact.

Indeed, let {Vi : i ∈ I} be an open cover of FH(X). Then {µ−1
X (Vi) : i ∈ I}

is an s-f-open cover of X and thus by (i) there exists a finite subset J
of I such that X = ∪[µ−1

X (Vi) : i ∈ J ]. Hence, FH(X) = µX(X) =

∪[µX(µ−1
X (Vi)) : i ∈ J ] = ∪[Vi : i ∈ J ]. Therefore, FH(X) is a compact

space.
Now, since FH(X) is a compact T1-space, then FH(X) is spectral if

and only if it is totally disconnected. And thus if and only if for any two
distinct points of FH(X), there is a clopen set containing one not the
other (because FH(X) is a T2 compact space). So, let x, y ∈ X such that
µX(x) 6= µX(y). Then x and y are completely separated and by (ii), there
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exists an s-F-clopen set U of X containing x not y. Therefore, µX(U) is a
clopen set of FH(X) containing µX(x) and not containing µX(y). �
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