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Abstract. Sobolev descent has long been established as an efficient
method for numerically solving boundary value problems, ordinary
differential equations and partial differential equations in a small
number of iterations. We demonstrate that for any linear ordinary
differential equation with initial value conditions sufficient to assure a
unique solution, there exists a Hilbert space in which gradient descent
will converge to the solution in one iteration. We provide two ele-
mentary examples, one initial value problem and one boundary value
problem, demonstrating the effectiveness of the theory in numerical
settings. As there are ample efficient numerical methods for solving
such problems, the significance of the paper is in the approach and
the question it raises. Namely, do such spaces exist for wider classes
of differential equations?

1. Introduction

A general discussion of optimization techniques is given in [9] and [19].
Applying steepest descent to solve differential equations was first intro-
duced by Cauchy in [3] and modifications such as conjugate gradient and
variable metric methods were later introduced in [6] to speed up the con-
vergence of numerical implementations. Sobolev descent is a systematic
preconditioning technique where gradients are based on Sobolev spaces de-
termined by the problem at hand rather than on Euclidean space. The
method was introduced by Neuberger in [14]. Sufficient conditions for con-
vergence and a complete discussion of Sobolev descent may be found in
[15]. The extension of the technique to singular ordinary differential equa-
tions by utilizing weighted Sobolev spaces based on the problem at hand,
[11], extends this work. Problem specific applications of Sobolev descent
are given in [4, 5, 7, 12, 13, 18, 20, 21]. In [10] a convergence proof is given
for discrete spaces similar to those in this paper. Existence and uniqueness
arguments for singular problems in Sobolev spaces are given in [2] and [22].

The only example to date of a differential equation and a space in which
convergence occurs in one iteration is the minimal surface problem, [17].
Yet in each of the papers cited above, the choice of the space is integral to
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the success of the method. This fact is illustrated both by the well docu-
mented failure of descent methods based on the Euclidean metric and the
minimal number of iterations required when application specific problems
are solved in carefully constructed spaces as in the references above. Thus
the efficiency of the descent process, as measured in terms of the number
of iterations, is clearly dependent on the choice of the space. Is there an
optimal space in which to perform descent? We prove that for linear ini-
tial value problems the answer is “yes” by creating the space and proving
that convergence occurs in one iteration. We demonstrate that the ap-
proach is computationally effective by numerically solving one simple IVP.
We then apply the numerical method to one simple BVP (Legendre’s) to
demonstrate that the numerical algorithm may also be applied effectively to
BVP’s. MATLAB code is provided for the IVP and available upon request
for the BVP.

General references for Sobolev spaces are [1] and [8].

2. Continuous Descent Space

Let I = [0, 1]. Fix n ∈ N. Let H = Hn,2
I and L = L2

I . Define 〈·, ·〉
and ‖·‖ to be the inner product and norm, respectively, on L. Define
〈·, ·〉H and ‖·‖H to be the inner product and norm, respectively, on H . Fix
p0, p1, . . . , pn−1 ∈ CI and define D : H → L so that for each y ∈ H ,

Dy = y(n) + pn−1y
(n−1) + · · ·+ p0y.

For each k = 1, 2, . . . , n, define Bk : H → L such that Bky = y(k−1)(0) for
every y ∈ H . Define K : H → Ln+1 by

Ky = (Dy,B1y, . . . , Bny) for all y ∈ H.

Let X = H . Define 〈·, ·〉X : X ×X → R by

〈y, z〉X = 〈Ky,Kz〉Ln+1 for all y, z ∈ X.

Define ‖·‖X : X → R
≥0 by

‖y‖X =
√

〈y, y〉X for all y ∈ X.

We will show that (X, 〈·, ·〉X) defines a Hilbert space and that for any given
f ∈ L and g ∈ H , steepest descent based on the gradient induced by this
inner product and applied to φ : X → R where φ(y) = 1

2 ‖Dy − f‖
2
will

converge in one iteration to the unique solution of

Dy = f ; Bky = Bkg, for all k = 1, . . . , n.

The heart of the paper is that once we have defined the gradient ∇Xφ
based on our space (X, 〈·, ·〉X) we will have for any y ∈ X , that Dy =
D∇Xφ(y). From this it follows immediately that φ(y−∇Xφ(y)) =

1
2‖D(y−
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∇Xφ(y))‖
2 = 1

2‖Dy −D∇Xφ(y)‖
2 = 0 and thus convergence to a solution

is guaranteed in one iteration.

Theorem 2.1. (X, 〈·, ·〉X) defines a Hilbert space.

Proof. It is easily shown that 〈·, ·〉X defines an inner product on X . In order
to show that (X, 〈·, ·〉X) is complete, fix y1, y2, . . . to be Cauchy under ‖·‖X .
It follows that ‖Dyi −Dyj‖ → 0 as i, j → ∞. Since L is complete, there
exists f ∈ L so that Dyi →L f as i → ∞. If k ∈ {1, 2, . . . , n} then the
map Bk : H → L maps every function to a constant function. Therefore,
‖Bkyi −Bkyj‖ → 0 as i, j → ∞ implies that Bky1, Bky2, . . . is Cauchy in
R. For each k ∈ {1, 2, . . . , n} let bk ∈ R so that Bkui → bk as i → ∞.
Defining y ∈ X so that Ky = (f, b1, . . . , bn) we have

lim
i→∞

‖y − yi‖X = lim
i→∞

‖Ky −Kyi‖Ln+1

= lim
i→∞

[

‖f −Dyi‖ +

n
∑

k=1

‖bk −Bkyi‖
]

= 0.

Since y ∈ X , we have that X is complete under 〈·, ·〉X . �

Lemmas 2.2, 2.3, and 2.4 define a projection which plays a crucial role
in defining the gradient upon which the descent process is based. Define
Q = {Ky : y ∈ X} ⊆ Ln+1 and let Q⊥ denote the orthogonal complement
of Q in Ln+1. Let

M =

{

(0, v1, . . . , vn) : vk ∈ CI and

∫

I

vk = 0 for all k = 1, 2, . . . , n

}

.

Lemma 2.2. M ⊆ Q⊥.

Proof. Fix p = (g, b1, . . . , bn) ∈ Q and q = (0, v1, . . . , vn) ∈M . Then

〈p, q〉Ln+1 = 〈g, 0〉 +
n
∑

k=1

〈bk, vk〉 =
n
∑

k=1

∫ 1

0

bkvk

=

n
∑

k=1

bk

∫ 1

0

vk =

n
∑

k=1

bk · 0 = 0.

�

Lemma 2.3. For every f ∈ L × (CI)
n
there exists a unique pair (y, v) ∈

X ×M so that Ky + v = f .

Proof. Fix f = (f0, f1, . . . , fn) ∈ L × (CI)
n
. For each k = 1, 2, . . . , n let

vk = fk −
∫

I
fk and bk =

∫

I
fk. Let y satisfy Ky = (f0, b1, . . . , bn). Thus,

Ky+ v = (f0, b1, . . . , bn)+ (0, v1, . . . , vn) = (f0, b1 + v1, . . . , bn + vn). Since
for each k = 1, 2, . . . n we have that bk+vk =

∫

i
fk+(fk−

∫

i
fk) = fk, we have
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Ky+ v = f . If (y, v), (z, w) ∈ X ×M satisfy Ky + v = f and Kz +w = f
then K(y − z) = −(v − w) so

(

D(y − z), (y − z)(0), . . . (y − z)(n)(0)
)

=
(0, v1 − w1, . . . , vn − wn) from which it follows that y = z and v = w. �

Define P : L× (CI)
n
→ Q so that for each f ∈ (CI)

n+1
, Pf = Ky where

y is guaranteed by the proof of the previous theorem. Since Q and M are
mutually orthogonal and Q ⊕M is dense in Ln+1, then Q ⊕ Q⊥ = Ln+1.
Thus, we may extend P by continuity so that P : Ln+1 → Q.

Lemma 2.4. P 2 = P and 〈Pf, g〉Ln+1 = 〈f, Pg〉Ln+1 for every f, g ∈ Ln+1.

Proof. Fix f ∈ Ln+1. Let y ∈ X be the unique element which satisfies
Pf = Ky. Let z ∈ X be the unique element which satisfies P (Ky) = Kz.
By definition of P , we may define v ∈M to be the unique element so that
Kz+ v = Ky. Since z = y and v = 0 satisfy Kz+ v = Ky, then z must be
y and we have that Kz = Ky, hence P 2f = Pf . Therefore P 2 = P .

Fix f = (f0, f1, . . . , fn) and g = (g0, g1, . . . , gn) to be elements of Ln+1.
First note that for any k,

〈∫

I

fk, gk

〉

=

∫

I

(∫

I

fk

)

gk =

(∫

I

fk

)∫

I

gk

=

(∫

I

gk

)∫

I

fk =

∫

I

(∫

I

gk

)

fk =

〈

fk,

∫

I

gk

〉

.

Then

〈Pf, g〉Ln+1 = 〈f0, g0〉 +

n
∑

k=1

〈∫

I

f, g

〉

= 〈g0, f0〉 +

n
∑

k=1

〈

fk,

∫

I

gk

〉

= 〈f, Pg〉Ln+1 .

�

Define the function π : Q → X so that π(Ky) = y for every y ∈ X .

Fix f ∈ L and b1, . . . , bn ∈ R. Define φ : X → R by φ(y) = 1
2 ‖Dy − f‖

2

for every y ∈ X . Since X and L are Hilbert spaces, for each y ∈ X , the
map φ′(y) is a bounded linear functional on both (L, 〈·, ·〉) and (X, 〈·, ·〉X).
Hence, we may define ∇φ(y) and ∇Xφ(y) so that for every h ∈ X we have

〈∇φ(y), h〉 = φ′(y)h = 〈∇Xφ(y), h〉X .

We now show that gradient descent within X preserves the initial con-
ditions and produces, in a single iteration, a zero of φ, yielding a solution
to Ky = (f, b1, . . . , bn).

Theorem 2.5. For every y ∈ X, the function u = y − ∇Xφ(y) satisfies

φ(u) = 0 and Bku = Bky, k = 1, . . . , n.

18 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 1
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Proof. Fix y ∈ X . Then for any h ∈ X we have

φ′(y)(h) = 〈Dy − f,Dh〉

= 〈(Dy − f, 0, . . . , 0) ,Kh〉Ln+1

2

= 〈(Dy − f, 0, . . . , 0) , P (Kh)〉Ln+1

2

= 〈P (Dy − f, 0, . . . , 0) ,Kh〉Ln+1

2

= 〈πP (Dy − f, 0, . . . , 0) , π(Kh)〉X

= 〈πP (Dy − f, 0, . . . , 0) , h〉X .

Thus, ∇Xφ(y) = πP (Dy − f, 0, . . . , 0). Define z ∈ X so that

Kz = P (Dy − f, 0, . . . , 0) .

Then Dz = Dy − f and Bkz = 0 for every k ∈ {1, 2, . . . , n}. Moreover,
z = π(Kz) = ∇Xφ(y). Define u = y − z. Then

φ(u) = φ(y − z) =
1

2
‖D(y − z)− f‖

2
=

1

2
‖Dy −Dz − f‖

2

=
1

2
‖Dy − (Dy − f)− f‖

2
= 0

and

Bku = Bk(y − z) = Bky −Bkz = Bky − 0 = Bky, for all k = 1, . . . , n.

�

3. Discrete Example

Discrete Sobolev descent is detailed for general systems in [12] and we
give only a brief treatment here to demonstrate the single-step convergence.
As there are ample methods for solving linear initial value problems, the
significance of the paper lies in the existence of an inner product space
where convergence occurs in a single iteration.

Consider y′′ + y = 0 on [a, b] = [0, 2π] with y(0) = 0 and y′(0) = 2. Let
N be the number of points in our partition of [a, b] and δ = b−a

N−1 . We first

define the discrete version of our differential operator Du = (D2 +D0)u =
u′′ + u in the usual way. Let D0 and D2 ∈ L(RN ,RN−2) satisfying

D0(x) =







x1+2x2+x3

4
...

xN−2+2xN−1+xN

4






and D2(x) =







x1−2x2+x3

δ2

...
xN−2−2xN−1+xN

δ2






.
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Next, we define the discrete version of our initial conditions,
Hu = (u(0), u′(0)). Let H0 and H1 ∈ L(RN ,RN−2) such that

H0(x) =







x1
...
x1






and H1(x) =







x2−x1

δ
...

x2−x1

δ






.

Let A = DtD+Ht
0H0+H

t
1H1. Let 〈·, ·〉 represent the usual dot product

and 〈x, y〉X = 〈Dx,Dy〉+〈H0x,H0y〉+〈H1x,H1y〉. Then for all x, y ∈ R
N

we have 〈Ax, y〉 = 〈x, y〉X . The discrete version of the operator φ from the

previous section is given by φ(y) = δ
2‖Dy‖

2 = δ
2

∑N−2
k=1 (Dy)2k. Applying

the Riesz Representation Theorem in these two inner product spaces we
see that:

(1) For all x, y ∈ X , 〈∇φ(x), y〉 = φ′(x)(y) = δ 〈Dx,Dy〉 = δ 〈DtDx, y〉.
Hence, ∇φ(y) = δDtDy.

(2) For all x, y ∈ X , 〈∇φ(x), y〉 = φ′(x)(y) = δ 〈∇Xφ(x), y〉X =
δ 〈A∇Xφ(x), y〉.

Therefore ∇Xφ and ∇φ are related by A∇Xφ(x) = ∇φ(x) for any x ∈ X .
This simple application of the Riesz Representation Theorem allows us

to compute ∇Xφ(y) = πP (Dy, 0, . . . , 0) by solving a sparse linear system
without explicitly producing either π or P . In the case where the partition
of the interval has N elements and D has order n, A is an N × N matrix
with 2n+ 1 non-zero diagonals.

Algorithm

(1) Choose an initial vector y satisfying the initial conditions.
(2) Define D for the differential equation.
(3) Define Hk, k = 1, 2, . . . , n− 1 for the initial conditions.
(4) Compute the matrix, A = DtD+Ht

0H0+H
t
1H1+ · · ·+Ht

n−1Hn−1.
(5) Compute ∇φ(y) = DtDy.
(6) Solve A∇Xφ(y) = ∇φ(y) for ∇Xφ(y).
(7) Now s = y −∇Xφ(y) is the (single-iteration) solution.

The graphs in Figure 1 show the initial function y0(t) = 2t on [0, 2π]
and the resulting solution after one iteration, y1(t) = 2 sin(t). We demon-
strate the result using 10 divisions and 1000 divisions to demonstrate one
of the more powerful features of the method. When solving more diffi-
cult problems, for example partial differential equations, it is significant
that the algorithm provides reasonable precision on a very small number
of divisions. The graphs show the initial estimate (the straight line), the
approximate solution and the true solution, although on the second graph
the approximate and true solution are indistinguishable.
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Figure 1. y′′ + y = 0, y(0) = 0, y′(0) = 2, N = 10 and
N = 1000.

Assuming y is our approximate solution and z is the true solution, Table
1 lists:

(1) φ(y) = δ
2

∑N−2
k=1 (Dy)2k,

(2) the average absolute error, 1
N

∑N

k=1 |zk − yk|,
(3) the maximum absolute error, max {|zk − yk| : k = 1, 2, . . . , N − 2},

(4) the average divided difference error 1
N−1

∑N−2
k=1 |(Dy)k|, and

(5) the maximum divided difference error

max {|(Dy)k| : k = 1, 2, . . . , N − 2} .

While the errors in Table 1 grow as the number of divisions grows, this
feature is managed more efficiently by solving the second order equation as
the standard first order system,

u′(t)− v(t) = 0, v′(t) + u(t) = 0, u(0) = 0, and v(0) = 2,

and minimizing the corresponding function

ψ(u, v) =
1

2

(

‖u′ − v‖
2
+ ‖v′ + u‖

2
)

.

The numerical results for the system are given in Table 2. A list of other
experiments is given in Section 5.

4. An Elementary Boundary Value Problem

While we do not develop theory for boundary value problems, we demon-
strate a parallel numerical approach which may be easily implemented for a
wide variety of boundary value problems. We consider Legendre’s equation

((1− t2)u′)′ + 2u = 0
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Table 1. Numerical Results: u′′ + u = 0, u(0) = 0, u′(0) = 2.

y′′ + y = 0 y(0) = 0 y′(0) = 2

Divisions φ(y) Avg Abs Err Max Abs Err Avg Div Err Max Div Err

N = 10 1.8× 10−28 2.4× 10−1 5.3× 10−1 5.6× 10−15 1.6× 10−14

N = 1000 1.1× 10−14 2.0× 10−5 4.4× 10−5 4.4× 10−8 1.2× 10−7

Table 2. Numerical Results: u′−v = 0, v′+u = 0, u(0) =
0, v(0) = 2.

u′ − v = 0 v′ + u = 0 u(0) = 0 v(0) = 2

Divisions ψ(u, v) Avg Abs Err Max Abs Err Avg Div Err Max Div Err

N = 10 9.1× 10−30 3.9× 10−3 6.2× 10−3 3.6× 10−15 1.1× 10−14

N = 1000 1.6× 10−24 3.2× 10−7 5.0× 10−7 1.3× 10−12 5.5× 10−12

on [0, 1] with boundary conditions u(0) = 0 and u(1) = 1, and u ∈ C2
I .

General solutions are of the form u(t) = c1t+
c2
2 t ln(1+t

1−t
) for some c1, c2 ∈

R and only u(t) = t satisfies the given boundary conditions.

The finite difference approximation of Legendre’s equation is defined for
the expanded form (1 − t2)u′′ − 2tu′ + 2u = 0. Let N be the number of
points in the uniform partition of [0, 1] and let δ = 1

N−1 . Define D0 as in

Section 3 and define the weighted operators D1, D2 ∈ L(RN ,RN−2) so that

D1(x) =







δ(−x1+x3)
2δ
...

(N−1)δ(−xN−2+xN )
2δ







and D2(x) =









(1−δ2)(x1−2x2+x3)
δ2

...
(1−((N−1)δ)2)(xN−2−2xN−1+xN )

δ2









.

Let D = D2 − 2D1 + 2D0. Define H0 as in Section 3 and define H1 ∈
L(RN ,RN−2) so that

H1(x) =







xN

δ
...

xN

δ.







Let A = DtD +Ht
0H0 +Ht

1H1. The descent algorithm parallels the algo-
rithm for the IVP presented in Section 3, thus is not repeated here. Table
3 shows the results obtained in one step starting with the initial function,
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y = sin(t)/ sin(1). As with the second order IVP, variational techniques
as developed in [12] will resolve the increase in error associated with the
second-order divided differences.

5. Conclusions and Future Work

While the inner product is dependent on the uniqueness of solutions, even
when solving problems without initial conditions, numerical experiments
are successful in finding a solution. Thus, even in the case where the space
is constructed only based on a semi-inner product, the numerics still work.

Numerical experiments by the second author indicate that this process
may be extended to a large class of differential equations under necessary
and sufficient supplementary conditions. The following is a list of such
problems where machine precision was obtained after a single iteration.

(1) Stieltjes integral condition: Fix c ∈ R and define g : [0, 1] → R to
be strictly increasing. The test problem is y′ = y on the interval

[0, 1] under the restriction
∫ 1

0 y dg = c.
(2) Singular ODEs: Fix c ∈ R. The test problem is ty′ = y, y(1) = c,

on the interval [0, 1].
(3) Laplace’s equation: The test problem is u11+u22 = 0 on the domain

[0, 1]2 under Dirichlet conditions restricting that the function satisfy
given function values on the boundary of [0, 1]2.
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Table 3. Numerical Results: Legendre’s.

((1 − t2)u′)′ + 2u = 0 u(0) = 0 u(1) = 1

Divisions φ(y) Avg Abs Err Max Abs Err Avg Div Err Max Div Err

N = 10 2.5× 10−27 5.2× 10−14 7.2× 10−14 6.5× 10−14 1.1× 10−13

N = 1000 1.9× 10−13 6.2× 10−7 1.0× 10−6 4.9× 10−7 9.9× 10−7

6. Appendix: MATLAB Code

% Solves y’’+ y = 0, y(0) = 0, y’(0)=2

function yppy

n = 10;

a = 0;

b = 2*pi;

del = (b-a)/(n-1);

fprintf(’Start program\n’)

fprintf(’n = %d, a = %g, b = %g \n’,n,a,b)

t = linspace(a,b,n)’;

y = ones(size(t));

y = 2*t;

D0 = zeros(n-2,n);

D2 = zeros(n-2,n);

tmp0 = [1, 2, 1] / 4;

tmp2 = [1, -2, 1] / del / del;

for k=1:n-2

D0(k, k:k+2) = tmp0;

D2(k, k:k+2) = tmp2;

end

D = D2 + D0;

H0 = zeros(n-2,n);

H0(:,1) = 1;

H1 = zeros(n-2,n);

tmp1 = [-1,1]/del;

for k=1:n-2

H1(k, 1:2) = tmp1;

end

B=D’*D;

A = B + H0’*H0 + H1’*H1;

Euc_grad = B*y;

Sob_grad = linsolve(A, Euc_grad);

s = y - Sob_grad;

soln = zeros(size(t));
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soln = 2*sin(t);

phi_err = 1/2*sum((D*s).^2)*del;

fprintf(’norm of Ds = %g \n’, phi_err);

avg_abs_err = sum( abs( soln-s ) )/n;

fprintf(’average absolute error = %g \n’, avg_abs_err);

max_abs_err = max( abs( soln-s ) );

fprintf(’max absolute error = %g \n’, max_abs_err);

avg_div_diff_err = sum( abs( D*s ) )/(n-1);

fprintf(’avg divided difference error = %g \n’, avg_div_diff_err);

max_div_diff_err = max( abs( D*s ) );

fprintf(’max divided difference error = %g \n’, max_div_diff_err);

plot(t,y,’r’, t,s,’g’, t, soln,’b’) % plot initial, approx, true

fprintf(’end program \n\n’);

end
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