HAMILTONIAN-CONNECTED GRAPHS WITH LARGE NEIGHBORHOODS AND DEGREES

ZHAO KEWEN, HONG-JIAN LAI, AND JU ZHOU

ABSTRACT. For a simple graph G, let $NC(G) = \min\{|N(u) \cup N(v)| : u, v \in V(G), uv \notin E(G)\}$. In this paper we prove that if $NC(G) + \delta(G) \geq |V(G)|$, then either G is Hamiltonian-connected, or G belongs to a well-characterized class of graphs. The former result by Dirac, Ore and Faudree et al. are extended.

1. INTRODUCTION

Graphs considered in this paper are finite and simple. Undefined notations and terminologies can be found in [1]. In particular, we use V(G), $E(G), \kappa(G), \delta(G), \text{ and } \alpha(G) \text{ to denote the vertex set, the edge set, the}$ connectivity, the minimum degree and the independence number of G, respectively. If G is a graph and $u, v \in V(G)$, then a path in G from u to v is called a (u, v)-path of G. If $v \in V(G)$ and H is a subgraph of G, then $N_H(v)$ denotes the set of vertices in H that are adjacent to v in G. Thus, $d_H(v)$, the degree of v relative to H, is $|N_H(v)|$. We also write d(v) for $d_G(v)$ and N(v) for $N_G(v)$. If C and H are subgraphs of G, then $N_C(H) = \bigcup_{u \in V(H)} N_C(u)$, and G - C denotes the subgraph of G induced by V(G) - V(C). For vertices $u, v \in V(G)$, the distance between u and v, denoted by d(u, v), is the length of a shortest (u, v)-path in G, or ∞ if no such path exists. Let $P_m = x_1 x_2 \cdots x_m$ denote a path of order m. Define $N_{P_m}^+(u) = \{x_{i+1} \in V(P_m) : x_i \in N_{P_m}(u)\}$ and $N_{P_m}^-(u) = \{x_{i-1} \in V(P_m) : u_{i-1} \in V(P_m) : u_{i-1} \in V(P_m)\}$ $x_i \in N_{P_m}(u)$. That means if $x_1 \in N_{P_m}(u)$, then $|N_{P_m}(u)| = |N_{P_m}(u)| - 1$ and if $x_m \in N_{P_m}(u)$, then $|N_{P_m}^+(u)| = |N_{P_m}(u)| - 1$.

For a graph G, define $NC(\tilde{G}) = \min\{|N(u) \cup N(v)| : u, v \in V(G), uv \notin E(G)\}$ and $NCD(G) = \min\{|N(u) \cup N(v)| + d(w) : u, v, w \in V(G), uv \notin E(G), wv \text{ or } wu \notin E(G)\}.$

Let G and H be two graphs. We use $G \cup H$ to denote the disjoint union of G and H and $G \bigvee H$ to denote the graph obtained from $G \cup H$ by joining every vertex of G to every vertex of H. We use K_n and K_n^c to denote the complete graph on n vertices and the empty graph on n vertices, respectively. Let G_n denote the family of all simple graphs of order n. For

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

notational convenience, we also use G_n to denote a simple graph of order n. As an example, $G_2 \in \{K_2, K_2^c\}$. Define $G_2 : G_n$ to be the family of 2-connected graphs each of which is obtained from $G_2 \cup G_n$ by joining every vertex of G_2 to some vertices of G_n so that the resulting graph G satisfies $NCD(G) \geq |V(G)| = n + 2$. For notational convenience, we also use $G_2 : G_n$ to denote a member in the family.

A graph G is Hamiltonian if it has a spanning cycle, and Hamiltonianconnected if for every pair of vertices $u, v \in V(G)$, G has a spanning (u, v)-path. There have been intensive studies on sufficient degree and/or neighborhood union conditions for Hamiltonian graphs and Hamiltonianconnected graphs. The following is a summary of these results that are related to our study.

Theorem 1.1. Let G be a simple graph on n vertices.

- (i) (Dirac, [2]) If $\delta(G) \ge n/2$, then G is Hamiltonian.
- (ii) (Ore, [3]) If $d(u) + d(v) \ge n$ for each pair of nonadjacent vertices $u, v \in V(G)$, then G is Hamiltonian.
- (iii) (Faudree et al., [5]) If G is 3-connected, and if $NC(G) \ge (2n+1)/3$, then G is Hamiltonian-connected.
- (iv) (Faudree et al., [6]) If G is 2-connected, and if $NC(G) + \delta(G) \ge n$, then G is Hamiltonian.
- (v) (Wei, [7]) If G is a 2-connected, and if $\min\{d(u) + d(v) + d(w) |N(u) \cap N(v) \cap N(w)| : u, v, w \in V(G), uv, vw, wu \notin E(G)\} \ge n+1$, then G is Hamiltonian-connected with some well characterized exceptional graphs.

Motivated by the results above, this paper aims to investigate the Hamiltonian and Hamiltonian-connected properties of graphs with relatively large NCD(G). The main theorem is the following.

Theorem 1.2. If G is a 2-connected graph with n vertices and if $NC(G) + \delta(G) \ge n$, then one of the following must hold:

- (i) G is Hamiltonian-connected,
- (ii) $G \in \{G_2 : (K_s \cup K_h), G_{n/2} \lor K_{n/2}^c, G_2 : (K_s \cup K_h \cup K_t), G_3 \lor (K_{(n-3)/3} \cup K_{(n-3)/3} \cup K_{(n-3)/3})\}.$

Let $G = G_2 : (K_s \cup K_h \cup K_t)$, and let x be a vertex in K_s and y a vertex in K_h . Then d(x) + d(y) < |V(G)|. Also, $G_3 \bigvee (K_s \cup K_h \cup K_t)$ satisfies the condition that $d(x) + d(y) \ge n$ for any two nonadjacent vertices x, y if and only if s = h = t = 1. Thus, Corollary 1.3 below follows from Theorem 1.2 immediately and it extends Theorem 1.1(ii).

Corollary 1.3. If G is a graph of order n satisfying $d(x) + d(y) \ge n$ for every pair of nonadjacent vertices $x, y \in V(G)$, then G is Hamiltonianconnected or $G \in \{G_2 : (K_s \cup K_h), G_{n/2} \lor K_{n/2}^c\}$.

MISSOURI J. OF MATH. SCI., SPRING 2012

Z. KEWEN, H.-J. LAI, AND J. ZHOU

Since none of G_2 : $(K_s \cup K_h)$, $G_{n/2} \bigvee K_{n/2}^c$, G_2 : $(K_s \cup K_h \cup K_t)$, and $G_3 \bigvee (K_s \cup K_h \cup K_t)$ satisfies the condition that $d(x) + d(y) \ge n + 1$ for every pair of nonadjacent vertices x, y, Theorem 1.2 also implies the following result of Ore [4].

Corollary 1.4 (Ore, [4]). If G is a 2-connected graph of order n satisfying $d(x) + d(y) \ge n+1$ for every pair of nonadjacent vertices $x, y \in V(G)$, then G is Hamiltonian-connected.

As $G_2: (K_s \cup K_h), G_{n/2} \bigvee K_{n/2}^c$, and $G_3 \bigvee (K_s \cup K_h \cup K_t)$ are all Hamiltonian, Theorem 1.2 implies Theorem 1.5.

Theorem 1.5. If G is a 2-connected graph with n vertices such that $NCD(G) \ge n$, then G is Hamiltonian.

Clearly, we have $NCD(G) \ge NC(G) + \delta(G)$. Thus, if $NC(G) + \delta(G) \ge n$, we have $NCD(G) \ge n$. And clearly if $\max\{s, h, t\} \ne \min\{s, h, t\}$, then $NC(G) + \delta(G)$ of $G_3 \bigvee (K_S \cup K_h \cup K_t)$ must be less than or equal to n - 1. Thus, Theorem 1.5 implies the following result of Hamilton-connected graph under Faudree et al. condition.

Corollary 1.6. If G is a 2-connected graph with n vertices such that $NC(G) + \delta(G) \ge n$, then G is Hamiltonian-connected or $G \in \{G_2 : (K_s \cup K_h), G_{n/2} \bigvee K_{n/2}^c, G_2 : (K_s \cup K_h \cup K_t), G_3 \bigvee (K_{(n-3)/3} \cup K_{(n-3)/3} \cup K_{(n-3)/3})\}.$

2. Proof of Corollary 1.6.

For a path $P_m = x_1 x_2 \cdots x_m$, we use $[x_i, x_j]$ to denote the section $x_i x_{i+1} \cdots x_j$ of the path P_m if i < j, and to denote the section $x_i x_{i-1} \cdots x_j$ of the path P_m if i > j. For notational convenience, we also use $[x_i, x_j]$ to denote the vertex set of this path. If P_1 is an (x, y)-path and P_2 is a (y, z)-path in a graph G such that $V(P_1) \cap V(P_2) = \{y\}$, then P_1P_2 denotes the (x, z)-path of G induced by $E(P_1) \cup E(P_2)$.

Let G be a 2-connected graph on n vertices such that

$$NCD(G) \ge n.$$
 (1)

We shall assume that G is not Hamiltonian-connected to show that Theorem 1.2(ii) must hold. Thus, there exist $x, y \in V(G)$ such that G does not have a spanning (x, y)-path. Let

$$P_m = x_1 x_2 \cdots x_m$$
 be a longest (x, y) -path in G , (2)

where $x_1 = x$ and $x_m = y$. Since P_m is not a Hamilton-path, $G - P_m$ has at least one component.

Lemma 2.1. Suppose that H is a component of $G - P_m$. Then each of the following holds.

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

- (i) For all i with 1 < i < m, if $x_i \in N_{P_m}(H) \setminus \{x_1, x_m\}$, then $x_{i+1} \notin N_{P_m}(H)$ and $x_{i-1} \notin N_{P_m}(H)$; if $x_1 \in N_{P_m}(H)$, then $x_2 \notin N_{P_m}(H)$, and if $x_m \in N_{P_m}(H)$, then $x_{m-1} \notin N_{P_m}(H)$.
- (ii) If $x_i, x_j \in N_{P_m}(H)$ with $1 \le i < j < m$, then $x_{i+1}x_{j+1} \notin E(G)$; if $x_i, x_j \in N_{P_m}(H)$ with $1 < i < j \le m$, then $x_{i-1}x_{j-1} \notin E(G)$. Consequently, both $N_{P_m}^+(H)$ and $N_{P_m}^-(H)$ are independent sets.
- (iii) Let $x_i, x_j \in N_{P_m}(H)$ with $1 \leq i < j < m$. If $x_t x_{j+1} \in E(G)$ for some vertex $x_t \in [x_{j+2}, x_m]$, then $x_{t-1}x_{i+1} \notin E(G)$ and $x_{t-1} \notin N_{P_m}(H)$; if $x_t x_{j+1} \in E(G)$ for some vertex $x_t \in [x_{i+1}, x_j]$, then $x_{t+1}x_{i+1} \notin E(G)$.
- (iii)' Let $x_i, x_j \in N_{P_m}(H)$ with $1 < i < j \leq m$. If $x_t x_{i-1} \in E(G)$ for some vertex $x_t \in [x_1, x_{i-2}]$, then $x_{t+1}x_{j-1} \notin E(G)$ and $x_{t+1} \notin N_{P_m}(H)$; if $x_t x_{i-1} \in E(G)$ for some vertex $x_t \in [x_{i+1}, x_j]$, then $x_{t-1}x_{j-1} \notin E(G)$.
- (iv) If $x_i, x_j \in N_{P_m}(H)$ with $1 \leq i < j < m$, then no vertex of $G (V(P_m) \cup V(H))$ is adjacent to both x_{i+1} and x_{j+1} ; if $x_i, x_j \in N_{P_m}(H)$ with $1 < i < j \leq m$, then no vertex of $G (V(P_m) \cup V(H))$ is adjacent to both x_{i-1} and x_{j-1} .
- (v) Suppose that $u \in V(H)$ and $\{x_1, x_m\} \subseteq N_{P_m}(u)$. If $x_i, x_j \in N_{P_m}(H)$ with $1 \leq i < j < m$, then for any $v \in V(G) \setminus (N_{P_m}^+(H) \cup \{u\})$, $vx_{i+1} \in E(G)$ or $vx_{j+1} \in E(G)$; if $x_i, x_j \in N_{P_m}(H)$ with $1 < i < j \leq m$, then for any $v \in V(G) \setminus (N_{P_m}^-(H) \cup \{u\})$, $vx_{i-1} \in E(G)$ or $vx_{j-1} \in E(G)$.

Proof. (i), (ii) and (iv) follow immediately from the assumption that P_m is a longest (x_1, x_m) -path in G. It remains to show that (iii) and (v) must hold. Since $x_i, x_j \in N_{P_m}(H)$, there exist $x'_i, x'_j \in V(H)$ such that $x_i x'_i, x_j x'_i \in E(G)$. Let P' denote an (x'_i, x'_j) -path in H.

(iii) Suppose that the first part of (iii) fails. Then there exists a vertex $x_t \in \{x_{j+2}, x_{j+3}, \ldots, x_m\}$ such that $x_t x_{j+1} \in E(G)$ and $x_{t-1} x_{i+1} \in E(G)$. Then $[x_1, x_i]P'[x_j, x_{i+1}][x_{t-1}, x_{j+1}][x_t, x_m]$ is a longer (x_1, x_m) -path, contrary to (2). Hence, $x_t x_{j+1} \notin E(G)$. Next, we assume that x_{t-1} is adjacent to some vertex $x'_{t-1} \in V(H)$. Let P'' denote an (x'_{t-1}, x'_j) -path in H. Then $[x_1, x_j]P''[x_{t-1}, x_{j+1}][x_t, x_m]$ is a longer (x_1, x_m) -path, contrary to (2). The proof for (iii)' is similar, and so it is omitted.

(v) For vertices $x_i, x_j \in N_{P_m}(H)$ with $1 \leq i < j < m$, by Lemma 2.1(i), we have $x_{i+1} \notin N(u), x_{j+1} \notin N(u)$ and by Lemma 2.1(ii), we have $x_{i+1}x_{j+1} \notin E(G)$. Since $N_{P_m}^+(H)$ is an independent set, then $N(v_{i+1}) \cup N(v_{j+1}) \subseteq V(G) - N_{P_m}^+(H) \cup \{u\}$. Furthermore, $d(u) \leq |N_{P_m}(H)| = |N_{P_m}^+(H) \cup \{u\}|$, and so we have $|N(v_{i+1}) \cup N(v_{j+1})| + d(u) \leq |V(G)| - |N_{P_m}^+(H) \cup \{u\}| + d(u) \leq n$. Since $x_{i+1}x_{j+1} \notin E(G), ux_{i+1} \notin E(G), ux_{j+1} \notin E(G)$, by (1), $|N(v_{i+1}) \cup N(v_{j+1})| + d(u) \geq n$ and so we have $N(v_{i+1}) \cup V(v_{i+1}) \cup N(v_{j+1})| = N(v_{i+1}) = N$

MISSOURI J. OF MATH. SCI., SPRING 2012

 $N(v_{j+1}) = V(G) - N_{P_m}^+(H) \cup \{u\}, \text{ which implies for all } v \in V(G) \setminus (N_{P_m}^+(H) \cup \{u\}), vx_{i+1} \in E(G) \text{ or } vx_{j+1} \in E(G). \text{ Similarly, if } x_i, x_j \in N_{P_m}(H) \text{ with } 1 < i < j \leq m, \text{ then for any } v \in V(G) \setminus (N_{P_m}^-(H) \cup \{u\}), vx_{i-1} \in E(G) \text{ or } vx_{j-1} \in E(G). \text{ This proves (v).}$

Lemma 2.2. Each of the following holds.

- (i) If there is a component H of $G P_m$ such that $N_{P_m}(H) = \{x_1, x_m\}$, then $G[\{x_2, x_3, \dots, x_{m-1}\}]$ is a complete subgraph.
- (ii) If $N_{P_m}(G-P_m) = \{x_1, x_m\}$, then $G-P_m$ has at most 2 components.
- (iii) If $N_{P_m}(G P_m) = \{x_1, x_m\}$, then every component of $G P_m$ is a complete subgraph.
- (iv) If $N_{P_m}(G P_m) = \{x_1, x_m\}$, then $G \in \{G_2 : (K_s \cup K_h), G_2 : (K_s \cup K_h \cup K_t)\}$.

Proof. (i) Suppose, to the contrary, that $G[\{x_2, x_3, \ldots, x_{m-1}\}]$ is not a complete subgraph. Then there exist $x_i, x_j \in \{x_2, x_3, \ldots, x_{m-1}\}$ such that $x_i x_j \notin E(G)$. Since $N_{P_m}(G - P_m) = \{x_1, x_m\}$, then $(N(x_i) \cup N(x_j)) \cap (V(H) \cup \{x_i, x_j\}) = \emptyset$ and so $|N(x_i) \cup N(x_j)| \leq |V(G) \setminus V(H)| - |\{x_i, x_j\}|$. Let $u \in V(H)$. Then $ux_i \notin E(G)$ and $ux_j \notin E(G)$. Furthermore, we have $d(u) \leq |V(H) \setminus \{u\}| + |\{x_1, x_m\}|$, and so $|N(x_i) \cup N(x_j)| + d(u) \leq |V(G) \setminus V(H)| - |\{x_i, x_j\}| + |V(H) \setminus \{u\}| + |\{x_1, x_m\}| \leq n - 1$, contrary to (1).

(ii) Suppose that $G - P_m$ has at least three components H_1 , H_2 , and H_3 . Let $u \in V(H_1)$ and $v \in V(H_2)$. Then $uv \notin E(G)$. Since $N_{P_m}(G - P_m) = \{x_1, x_m\}$, then we have $ux_2 \notin E(G)$, $vx_2 \notin E(G)$. Again by $N_{P_m}(G - P_m) = \{x_1, x_m\}$, we have $N(u) \cup N(v) \subseteq (V(H_1) - \{u\}) \cup (V(H_2) - \{v\}) \cup \{x_1, x_m\}$ and $N(x_2) \subseteq V(P_m) - \{x_2\}$ and so $|N(u) \cup N(v)| + d(x_2) \leq |V(H_1) \setminus \{u\}| + |V(H_2) \setminus \{v\}| + |\{x_1, x_m\}| + |V(P_m) \setminus \{x_2\}| = |V(H_1)| + |V(H_2)| + |V(P_m)| - 1 \leq n - 1$, contrary to (1).

(iii) Let H be a component of $G - P_m$ such that $u, v \in V(H)$ but $uv \notin E(H)$. Since $N_{P_m}(G - P_m) = \{x_1, x_m\}$, then $ux_2 \notin E(G)$ and $vx_2 \notin E(G)$ and $N(u) \cup N(v) \subseteq (V(H) - \{u, v\}) \cup \{x_1, x_m\}$. Thus, $|N(u) \cup N(v)| + d(x_2) \leq |V(H) \setminus \{u, v\}| + |\{x_1, x_m\}| + |V(P_m) \setminus \{x_2\}| \leq n - 1$, contrary to (1).

(iv) The statement follows from (ii) and (iii).

Lemma 2.3. Let H be a component of $G - P_m$ such that $N_{P_m}(H) = \{x_1, x_i, x_m\}$ and $u \in V(H)$. Then each of the following holds:

- (i) If there are $x_p, x_q \in V(P_m) \setminus N_{P_m}(H)$ such that $x_p x_q \notin E(G)$, then for any vertex $v \in V(G - H) \setminus \{x_p, x_q\}$, either $x_p v \in E(G)$ or $x_q v \in E(G)$.
- (ii) $G[\{x_2, x_3, \dots, x_{i-1}\}]$ and $G[\{x_{i+1}, x_{i+2}, \dots, x_{m-1}\}]$ are complete subgraphs.

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

HAMILTONIAN-CONNECTED GRAPHS

(iii) If $G - P_m = H = \{u\}$, then $G \in \{G_3 \bigvee (K_1 \cup K_h \cup K_t)\}$.

Proof. (i) Let $x_p, x_q \in V(P_m) \setminus N_{P_m}(H)$ such that $x_p x_q \notin E(G)$. Then $ux_p \notin E(G)$ and $ux_q \notin E(G)$. Suppose, to the contrary, that there is $v_k \in V(G-H) \setminus \{x_p, x_q\}$ such that $x_p x_k \notin E(G)$ and $x_q x_k \notin E(G)$. Then we have $|N(x_p) \cup N(x_q)| + d(u) \leq |V(G)| - |V(H)| - |\{x_p, x_q, x_k\}| + d(u) = |V(G)| - |V(H)| \leq n - 1$, contrary to (1).

(ii) To prove that $G[\{x_2, x_3, \ldots, x_{i-1}\}]$ is a complete subgraph, we need to prove the following claims.

<u>Claim 1</u>. $v_2v_k \in E(G)$ for any $i-1 \ge k \ge 4$; $v_{i-1}v_l \in E(G)$ for any $3 \ge l \ge i-3$.

We prove that $v_2v_k \in E(G)$ for any $i-1 \geq k \geq 4$ by induction on (i-1)-k. First, we prove $x_2x_{i-1} \in E(G)$, that is, the case when (i-1)-k=0. Suppose, to the contrary, $x_2x_{i-1} \notin E(G)$. Since $x_{i+1} \in V(P_m) \setminus \{x_2, x_{i-1}\}$, then by (i), either $x_{i+1}x_2 \in E(G)$ or $x_{i+1}x_{i-1} \in E(G)$. By Lemma 2.1(ii), $x_{i+1}x_2 \notin E(G)$ and so $x_{i+1}x_{i-1} \in E(G)$. Similarly, we must have $x_{m-1}x_2 \in E(G)$. Since every vertex in $\{x_{i+2}, x_{i+3}, \ldots, x_{m-1}\}$ must be adjacent to either x_2 or x_{i-1} , then there exist two vertices $x_h, x_{h+1} \in \{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\}$ such that x_h, x_{h+1} are adjacent to x_2, x_{i-1} (or x_{i-1}, x_2), respectively. It follows that G has a longer (x_1, x_m) -path

 $\begin{array}{l} x_1u[x_i,x_{t-1}][x_2,x_{i-1}][x_t,x_m] \quad (\text{or } x_1u[x_i,x_{t-1}][x_{i-1},x_2][x_t,x_m]), \text{ contrary}\\ \text{to (2). This shows that } x_2x_{i-1} \in E(G). \text{ Now suppose that } x_2x_k \in E(G)\\ \text{for any } k \geq s > 4. \text{ We need to prove that } x_2x_{s-1} \in E(G). \text{ Suppose,}\\ \text{to the contrary that } x_2x_{s-1} \notin E(G). \text{ Since } x_{i+1} \in V(P_m) \setminus \{x_2,x_{s-1}\},\\ \text{by (i), either } x_{i+1}x_2 \in E(G) \text{ or } x_{i+1}x_{s-1} \in E(G). \text{ By Lemma 2.1(ii),}\\ x_2x_{i+1} \notin E(G) \text{ and so } x_{i+1}x_{s-1} \in E(G). \text{ Thus, } G \text{ has a longer } (x_1,x_m)\text{-}\\ \text{path } x_1u[x_i,x_s][x_2,x_{s-1}][x_{i+1},x_m], \text{ contrary to (2). Hence, } x_2x_{s-1} \in E(G)\\ \text{and so } v_2v_k \in E(G) \text{ for any } i-1 \geq k \geq 4 \text{ by induction. Similarly, we can}\\ \text{inductively prove that } v_{i-1}v_l \in E(G) \text{ for any } 3 \leq l \leq i-3. \end{array}$

<u>Claim 2</u>. $x_p x_q \in E(G)$ for any $2 \le p < q \le i - 1$.

By Claim 1, $v_2v_k \in E(G)$ for any $i-1 \ge k \ge 4$ and $v_{i-1}v_l \in E(G)$ for any $3 \ge l \ge i-3$.

Now suppose that for any $2 \leq p < p'$ and $i-1 \geq q > q'$, where p < p' < q' < q, we have $x_p x_k \in E(G)$ for any $2 \leq k \leq i-1$ and $x_q x_l \in E(G)$ for any $2 \leq l \leq i-1$. We want to prove that $x_{p'} x_{q'} \in E(G)$. Suppose, to the contrary, that $x_{p'} x_{q'} \notin E(G)$. Since $x_{i+1} \in V(P_m) \setminus \{x_{p'}, x_{q'}\}$, by (i), either $x_{i+1} x_{p'} \in E(G)$ or $x_{i+1} x_{q'} \in E(G)$. If $x_{i+1} x_{p'} \in E(G)$, then G has a longer (x_1, x_m) -path $x_1 u[x_i, x_{p'+1}][x_2, x_{p'}][x_{i+1}, x_m]$ and if $x_{i+1} x_{q'} \in E(G)$, then G has a longer (x_1, x_m) -path $x_1 u[x_i, x_{q'+1}][x_2, x_{q'}][x_{i+1}, x_m]$, contrary

MISSOURI J. OF MATH. SCI., SPRING 2012

to (2) in either case. Hence, $x_{p'}x_{q'} \in E(G)$ and so $x_px_q \in E(G)$ for any $2 \leq p < q \leq i-1$ by induction.

By Claim 2, $G[\{x_2, x_3, \ldots, x_{i-1}\}]$ is a complete subgraph.

Similarly, $G[\{x_{i+1}, x_{i+2}, \dots, x_{m-1}\}]$ is also a complete subgraph.

(iii) To prove (iii), we consider the following cases.

<u>Case 1</u>. There exists a vertex $x_t \in \{x_2, x_3, \dots, x_{i-1}\}$ adjacent to some vertex $x_h \in \{x_{i+1}, x_{i+2}, \dots, x_{m-1}\}$.

Let $L = \min\{|\{x_2, x_3, \ldots, x_{i-1}\}|, |\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\}|\}$. First suppose that L = 1. Without loss of generality, let $|\{x_2, x_3, \ldots, x_{i-1}\}| = 1$, that is i = 3. If $x_h \neq x_{m-1}$, then G has a Hamilton (x_1, x_m) -path $x_1 u x_3 x_2 [x_h, x_4] [x_{h+1}, x_m]$, contrary to (2). Thus, $x_h = x_{m-1}$. Since $x_1, x_3 \in N_{P_m}(u)$, then by Lemma 2.1(ii), we have $x_2 x_4 \notin E(G)$ and so $x_{m-1} \neq x_4$. Since $x_2 x_4 \notin E(G)$, then by (i), either $x_2 x_m \in E(G)$ or $x_4 x_m \in E(G)$. If $x_2 x_m \in E(G)$, then G has a Hamilton (x_1, x_m) -path $x_1 u [x_3, x_{m-1}] x_2 x_m$ and if $x_4 x_m \in E(G)$, then G has a Hamilton (x_1, x_m) -path

 $x_1ux_3x_2[x_{m-1}, x_4]x_m$, contrary to (2) in either case.

Hence, we must have $L \geq 2$. If $x_t \notin \{x_2, x_{i-1}\}$ or $x_h \notin \{x_{i+1}, x_{m-1}\}$, then by the facts that $G[\{x_2, x_3, \ldots, x_{i-1}\}]$ and $G[\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\}]$ are complete subgraphs, G has a Hamilton (x_1, x_m) -path

 $\begin{array}{l} x_1u[x_i,x_{i+1}][x_{i-1},x_2]x_i[x_h,x_{i+1}][x_{h+1},x_m], \mbox{ contrary to (2). Now let } x_i \in \{x_2,x_{i-1}\} \mbox{ and } x_h \in \{x_{i+1},x_{m-1}\}. \mbox{ Since } x_2,x_{i+1} \in N_{P_m}^+(u) \mbox{ and } x_{i-1}, x_{m-1} \in N_{P_m}^-(u), \mbox{ then by Lemma 2.1(ii)}, \ x_2x_{i+1} \notin E(G) \mbox{ and } x_{i-1}x_{m-1} \notin E(G). \mbox{ Then either } x_{i-1}x_{i+1} \in E(G) \mbox{ or } x_2x_{m-1} \in E(G). \mbox{ First assume that } x_{i-1}x_{i+1} \in E(G). \mbox{ If } x_{i-2}x_{i+2} \notin E(G), \mbox{ then by (i), either } x_ix_{i-2} \in E(G), \mbox{ whence } x_1ux_ix_{i-2}[x_{i-3},x_2]x_{i-1}x_{i+1}[x_{i+2},x_m] \mbox{ is a Hamilton } (x_1,x_m)\mbox{-path or } x_ix_{i+2} \in E(G), \mbox{ whence } [x_1,x_{i-1}]x_{i+1}[x_{i+3},x_{m-1}]x_{i+2}x_iux_m \mbox{ is a Hamilton } (x_1,x_m)\mbox{-path, contrary to (2) in either case. If } x_{i-2}x_{i+2} \in E(G), \mbox{ then } x_2 = x_{i-2} \mbox{ and } x_{i+2} = x_{m-1} \mbox{ and so } i = 4, m = 7. \mbox{ Then } G \mbox{ has a Hamilton } (x_1,x_m)\mbox{-path } x_1x_2x_6x_5x_3x_4ux_7, \mbox{ contrary to (2).} \end{array}$

Now assume that $x_2x_{m-1} \in E(G)$. If $x_3x_{m-2} \in E(G)$, then 3 = i - 1and m - 2 = i + 1, that is i = 4 and m = 7. Then G has a Hamilton (x_1, x_m) -path $x_1ux_4x_5x_3x_2x_6x_7$, contrary to (2). If $x_3x_{m-2} \notin E(G)$, by (i), either $x_3x_m \in E(G)$, whence G has a Hamilton (x_1, x_m) -path $x_1u[x_i, x_{m-1}x_2[x_4, x_{i-1}]x_3x_m$ or $x_{m-2}x_m \in E(G)$, whence G has a Hamilton (x_1, x_m) -path $x_1u[x_i, x_2]x_{m-1}[x_{m-3}, x_{i+1}]x_{m-2}x_m$, contrary to (2) in either case.

<u>Case 2</u>. There is no vertex in $\{x_2, x_3, \ldots, x_{i-1}\}$ adjacent to a vertex in $\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\}$.

Since $N_{P_m}(u) = \{x_1, x_i, x_m\}$, then $ux_h \notin E(G)$ and by Lemma 2.1(i),

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

 $x_{2}u \notin E(G)$. By the assumption of Case 2, $x_{2}x_{h} \notin E(G)$ and $N(x_{2}) \cup N(u) \subseteq \{x_{1}, x_{3}, x_{4}, \ldots, x_{i}, x_{m}\}$ and for any $x_{h} \in \{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\}, N(x_{h})\{x_{1}, x_{i}, x_{i+1}, \ldots, x_{h-1}, x_{h+1}, x_{m-1}, x_{m}\}$. Then by (1), we have

$$n \le |N(x_2) \cup N(u)| + d(x_h)$$

$$\le |\{x_1, x_3, \dots, x_i, x_m\}| + |\{x_1, x_i, x_{i+1}, \dots, x_{h-1}, x_{h+1}, x_{m-1}x_m\}$$

$$\le n.$$

Thus, x_h must be adjacent to every vertex in $N_{P_m}(u)$. Since x_h is arbitrary, every vertex in $\{x_{i+1}, x_{i+2}, \ldots, x_m\}$ must be adjacent to every vertex in $N_{P_m}(u) = \{x_1, x_i, x_m\}$. Similarly, every vertex in $\{x_2, x_3, \ldots, x_{i-1}\}$ must be adjacent to every vertex in $N_{P_m}(u) = \{x_1, x_i, x_m\}$. This implies $G \in$ $\{G_3 \bigvee (K_1 \cup K_h \cup K_t)\}$.

Lemma 2.4. Suppose that $V(G - P_m) = \{u\}, d(u) \ge 4$, and $\{x_1, x_m\} \subseteq N_G(u)$. Then $G \in \{G_{n/2} \bigvee K_{n/2}^c\}$.

Proof. Without loss of generality, let $N_G(u) = \{x_1, x_i, x_j, \dots, x_r, x_m\}$, where $1 < i < j \le r < m$. Then j = r if d(u) = 4.

<u>Case 1</u>. $x_2 x_{m-1} \in E(G)$.

Since $x_{m-2} \in V(P_m) \setminus N_{P_m}^-(u)$ and 1 < i < j < m, then by Lemma 2.1(v), either $x_{i-1}x_{m-2} \in E(G)$ or $x_{j-1}x_{m-2} \in E(G)$. Without loss of generality, suppose $x_{i-1}x_{m-2} \in E(G)$. Then $x_1u[x_i, x_{m-2}][x_{i-1}, x_2]x_{m-1}x_m$ is a Hamilton (x_1, x_m) -path, a contradiction.

<u>Case 2</u>. $x_2 x_{m-1} \notin E(G)$.

Then we consider two subcases: $x_{r+1} \neq x_{m-1}$ and $x_{r+1} = x_{m-1}$.

Subcase 2.1. $x_{r+1} \neq x_{m-1}$.

Since $x_{m-1} \in V(P_m) \setminus N_{P_m}^+(u)$ and 1 < i < m, then by Lemma 2.1(v), either $x_2x_{m-1} \in E(G)$ or $x_{i+1}x_{m-1} \in E(G)$. By the assumption of case $2, x_2x_{m-1} \notin E(G)$ and so we must have $x_{i+1}x_{m-1} \in E(G)$. Since $x_{r+1} \in V(P_m) \setminus N_{P_m}^-(u)$ and 1 < i < j < m, by Lemma 2.1(v), $x_{r+1}x_{i-1} \in E(G)$ or $x_{r+1}x_{j-1} \in E(G)$ (if d(u) = 4, then j = r). Then we consider the following two subcases.

<u>Subcase 2.1.1</u>. $x_{r+1}x_{i-1} \in E(G)$.

Since $x_i \in V(P_m) \setminus N_{P_m}^-(u)$ and 1 < j < m, then by Lemma 2.1(v),

MISSOURI J. OF MATH. SCI., SPRING 2012

Z. KEWEN, H.-J. LAI, AND J. ZHOU

either $x_i x_{j-1} \in E(G)$, whence G has a Hamilton (x_1, x_m) -path $[x_1, x_i][x_{j-1}, x_{i+1}]x_{m-1}[x_{i-2}, x_j]ux_m$ or $x_i x_{m-1} \in E(G)$, whence G has a Hamilton (x_1, x_m) -path $[x_1, x_{i-1}][x_{r+1}, x_{m-1}]$ $[x_i, x_r]ux_m$, contrary to (2) in either case.

<u>Subcase 2.1.2</u>. $x_{r+1}x_{j-1} \in E(G)$.

Since $x_{r+2} \in V(P_m) \setminus N_{P_m}^+(u)$ and 1 < i < m, by Lemma 2.1(v), either $x_{r+2}x_2 \in E(G)$, whence by the fact that $x_{r+1}x_{j-1} \in E(G)$, G has a Hamilton (x_1, x_m) -path $x_1u[x_j, x_{r+1}][x_{j-1}, x_2]$ $[x_{r+2}, x_m]$, or $x_{r+2}x_{i+1} \in E(G)$, whence G has a Hamilton (x_1, x_m) -path

 $[x_1, x_i]u[x_j, x_{r+1}][x_{j-1}, x_{i+1}][x_{r+2}, x_m]$, contrary to (2) in either case.

<u>Subcase 2.2</u>. $x_{r+1} = x_{m-1}$.

Note that both $x_{r+1} = x_{m-1} \in N_{P_m}^+(u)$ and $x_{r+1} = x_{m-1} \in N_{P_m}^-(u)$. Let $x_i, x_j \in N_{P_m}(u)$ be such that $N_{P_m}(u) \cap \{x_{i+1}, x_{i+2}, \dots, x_{j-1}\}) = \emptyset$, then we claim that $x_{i+1} = x_{j-1}$.

Otherwise, since $x_{i+1} \in V(P_m) \setminus N_{P_m}^-(u)$ and 1 < i < m, then by Lemma 2.1(v), $x_{i-1}x_{i+1} \in E(G)$ or $x_{m-1}x_{i+1} \in E(G)$. Since $x_{r+1} = x_{m-1}$, then $x_{i+1}x_{m-1} \notin E(G)$ and so $x_{i+1}x_{i-1} \in E(G)$. Since $x_{i+2} \in V(P_m) \setminus N_{P_m}^+(u)$ and 1 < i < r < m, then by Lemma 2.1(v), $x_{i+2}x_2 \in E(G)$, whence G has a Hamilton (x_1, x_m) -path $x_1ux_ix_{i+1}[x_{i-1}, x_2][x_{i+2}, x_m]$, or $x_{i+2}x_{m-1} \in E(G)(x_{i+2}x_{r+1} \in E(G))$, whence G has a Hamilton (x_1, x_m) path $[x_1, x_{i-1}]x_{i+1}x_iu[x_r, x_{i+2}]x_{r+1}x_m$, contrary to (2) in either case. Therefore, $N_{P_m}(u) = \{x_1, x_3, x_5, x_7, \dots, x_{n-1}\}$. Since P_m is a longest (x_1, x_m) path, then $\{u, x_2, x_4, x_6, \dots, x_{n-2}\}$ is an independent set. Since for any $x_p, x_q \in \{x_2, x_4, x_6, \dots, x_{n-2}\}$, we have $n \leq |N(x_p) \cup N(x_q)| + d(u) \leq$ $|\{x_1, x_3, x_5, x_7, \dots, x_{n-1}\}| + d(u) = n$, then every vertex in $\{x_2, x_4, x_6, \dots, x_{n-2}\}$ must be adjacent to every vertex in $\{x_1, x_3, x_5, x_7, \dots, x_{n-1}\}$. Thus, we can get $G \in \{G_{n/2} \bigvee K_{n/2}^c\}$.

Lemma 2.5. Suppose that for any $u \in V(G - P_m)$, both $\{x_1, x_m\} \subseteq N_{P_m}(u)$ and $N_{P_m}(G - P_m) \neq \{x_1, x_m\}$. If there exists a component H of $G - P_m$ such that $|V(H)| \ge 2$, then $G \in \{G_3 \setminus (K_s \cup K_h \cup K_t)\}$.

Proof. Without loss of generality, let $N_{P_m}(H) = \{x_1, x_i, x_j, \dots, x_r, x_m\}$.

<u>Claim 1</u>. $|N_{P_m}(H)| = 3$.

Otherwise, since G is a 2-connected graph, then $|N_{P_m}(H)| = 2$ or $|N_{P_m}(H)| \ge 4$. If $|N_{P_m}(H)| = 2$, then $N_{P_m}(H) = \{x_1, x_m\}$. By Lemma 2.2(i), $G[\{x_2, x_3, \ldots, x_{m-1}\}]$ is a complete subgraph. Since $N_{P_m}(G - P_m) \neq 1$

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

HAMILTONIAN-CONNECTED GRAPHS

 $\begin{cases} x_1, x_m \} \text{ and } G \text{ is 2-connected, then } G - P_m \text{ has a component } S \text{ such that } \\ x_i \in N_{P_m}(S) \setminus \{x_1, x_m\} \text{ and } x_j \in N_{P_m}(S). \text{ Without loss of generality, suppose that } 1 < i < j \leq m. \text{ Since } x_i, x_j \in N_{P_m}(H), \text{ there exist } x'_i, x'_j \in V(H) \\ \text{ such that } x_i x'_i, x_j x'_j \in E(G). \text{ Let } P' \text{ denote an } (x'_i, x'_j)\text{-path in } H. \text{ Hence, } \\ G \text{ has a longer } (x_1, x_m)\text{-path } [x_1, x_{i-1}][x_{i+1}, x_{j-1}]x_iP'[x_j, x_m], \text{ contrary to } \\ (2). \text{ Now suppose } |N_{P_m}(H)| \geq 4 \text{ and } u \in V(H). \text{ Let } v \in V(H) \setminus \{u\}. \text{ By Lemma 2.1(v), } vx_2 \in E(G) \text{ or } vx_{i+1} \in E(G). \text{ Since } x_1 \in N_{P_m}(v), \text{ then by Lemma 2.1(i), } x_2 \notin N_{P_m}(v) \text{ and so } x_{i+1}v \in E(G). \text{ Since } |N_{P_m}(H)| \geq 4, \\ \text{ then there is } x_j \in N_{P_m}(H) \setminus \{x_1, x_i, x_m\}. \text{ By the same argument, we have } \\ x_{j+1}v \in E(G) \text{ and so } [x_1, x_i]u[x_j, x_{i+1}]v[x_{j+1}, x_m] \text{ is a longer } (x_1, x_m)\text{-path, contrary to } (2). \end{cases}$

Let $N_{P_m}(H) = \{x_1, x_i, x_m\}$. By Lemma 2.3(ii), we have the following Claim 2.

<u>Claim 2</u>. $G[\{x_2, x_3, \ldots, x_{m-1}\}]$ and $G[\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\}]$ are all complete subgraphs.

Since G is 2-connected and $|V(H)| \geq 2$, then there are $x'_1, x'_i \in V(H)$ such that $x'_1 \neq x'_i$ and $x_1x'_1, x_ix'_i \in E(G)$ or there are $x''_i, x''_m \in V(H)$ such that $x''_i \neq x''_m$ and $x_ix''_i, x_mx''_m \in E(G)$. Without loss of generality, suppose there are $x'_1, x'_i \in V(H)$ such that $x'_1 \neq x'_i$ and $x_1x'_1, x_ix'_i \in E(G)$. Let P' denote an (x'_1, x'_i) -path in H.

<u>Claim 3</u>. $G - P_m$ is a connected subgraph.

Otherwise, let S be another component of $G - P_m$. By Lemma 2.3(i), every vertex in S must be adjacent to one of x_2 and x_{i+1} . Since every vertex in S is adjacent to x_1 , by Lemma 2.1(i), no vertex in S can be adjacent to x_2 and so every vertex in S must be adjacent to x_{i+1} . If $x_2x_{i+2} \in E(G)$, then we can get a longer (x_1, x_m) -path $x_1P'[x_i, x_2][x_{i+2}, x_m]$, contrary to (2). Then we have $x_2x_{i+2} \notin E(G)$. By Lemma 2.3(i) and Lemma 2.1(i) again, every vertex in S must be adjacent to x_{i+2} , contradicting Lemma 2.1(i).

<u>Claim 4</u>. H is a complete subgraph.

Otherwise, let $u, v \in V(H)$ such that $uv \notin E(G)$. Then we have $|N(x_2) \cup N(x_{i+1})| + d(u) \leq |V(P_m)| + |V(H)| - |\{x_2, x_{i+1}, u, v\}| + |N_{P_m}(H)| \leq n - 1$, contrary to (1).

<u>Claim 5</u>. For any $u \in V(H)$, u must be adjacent to every vertex of $N_{P_m}(H)$.

MISSOURI J. OF MATH. SCI., SPRING 2012

Otherwise, there exists $u \in V(H)$ such that $ux_i \notin E(G)$. Then $|N(x_2) \cup N(x_{i+1})| + d(u) \leq |V(P_m) \setminus \{x_2, x_{i+1}\}| + |V(H) \setminus \{u\}| + |N_{P_m}(H) \setminus \{x_i\}| \leq n-1$, contrary to (1). Similarly, for every vertex u in $\{x_2, x_3, \ldots, x_{i-1}\}$ or $\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\}$, u must be adjacent to every vertex in $N_{P_m}(H) = \{x_1, x_i, x_m\}$. Then by Claim 1, Claim 2, Claim 3, Claim 4 and Claim 5, we have $G \in \{G_3 \setminus (K_s \cup K_h \cup K_t)\}$.

Proof of Theorem. Let G be a 2-connected graph such that (1) holds. Suppose that G is not Hamiltonian-connected and so we may assume that there exist $x, y \in V(G)$ such that G has no Hamilton (x, y)-path and such that (2) holds. We want to show that $G \in \{G_2 : (K_s \cup K_h), G_{n/2} \lor K_{n/2}^c, G_2 : (K_s \cup K_h \cup K_t), G_3 \lor (K_s \cup K_h \cup K_t)\}$. We consider the following cases.

<u>Case 1</u>. There exists a vertex u in $G - P_m$ such that ux_1 or $ux_m \notin E(G)$.

Without loss of generality, suppose $ux_m \notin E(G)$. Let G^* be the component of $G - P_m$ containing u. Since G is 2-connected, then $|N_{P_m}(G^*)| \ge 2$.

<u>Subcase 1.1</u>. $|N_{P_m}(G^*)| \ge 3.$

In this case, there exist two distinct vertices $x_{i+1}, x_{j+1} \in N^+ P_m(G^*)$ such that $x_{i+1}x_{j+1} \notin E(G)$. Then we have the following claim.

<u>Claim</u>. For any vertex $v \in N_{G-P_m}(u) \cup N_{P_m}^+(u)$, $vx_{i+1} \notin E(G)$ and $vx_{j+1} \notin E(G)$.

By Lemma 2.1(ii), for any vertex $v \in N^+P_m(u)$, $vx_{i+1} \notin E(G)$ and $vx_{j+1} \notin E(G)$. Now suppose there is $v \in N_{G-P_m}(u)$ such that $vx_{i+1} \in E(G)$ or $vx_{j+1} \in E(G)$. Without loss of generality, suppose that $vx_{i+1} \in E(G)$. Since $x_i \in N_{P_m}(G^*)$, there exists $x'_i \in V(G^*)$ such that $x_i x'_i \in E(G)$. Let P' denote an (x'_i, v) -path in G^* . Then we get a longer (x_1, x_m) -path $[x_1, x_i]P_1[x_{i+1}, x_m]$, contrary to (2).

Since $x_{i+1}, x_{j+1} \in N^+ P_m(G^*)$, by Lemma 2.1(i), $ux_{i+1} \notin E(G)$ and $ux_{j+1} \notin E(G)$. By the above Claim, we have $|N(x_{i+1}) \cup N(x_{j+1})| \leq |V(G)| - |N_{G-P_m}(u) \cup N_{P_m}^+(u)| - |\{u\}|$. Since $|N_{P_m}^+(u)| = |N_{P_m}(u)|$, then $|N_{G-P_m}(u) \cup N_{P_m}^+(u)| = |N_{G-P_m}(u) \cup N_{P_m}(u)| = |N(u)|$ and so $|N(x_{i+1}) \cup N(x_{j+1})| \leq |V(G)| - |N(u)| - |\{u\}| = n - |N(u)| - 1$, which implies $|N(x_{i+1}) \cup N(x_{j+1})| + d(u) \leq n - 1$, contrary to (1).

<u>Subcase 1.2</u>. $|N_{P_m}(G^*)| = 2.$

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1

HAMILTONIAN-CONNECTED GRAPHS

If $N_{P_m}(G^*) \neq \{x_1, x_m\}$, then by the argument similar to that in above Subcase 1.1, we can obtain a contradiction. Then we have $N_{P_m}(G^*) = \{x_1, x_m\}$. By Lemma 2.2(i), $G[\{x_2, x_3, \ldots, x_{m-1}\}]$ is a complete subgraph.

If there exists a vertex $x_i \in V(P_m) \setminus \{x_1, x_m\}$ satisfying the condition x_i is adjacent to some vertex of $G - P_m$, then there exists a component H of $G - P_m - G^*$ such that x_i is adjacent to some vertex of H. Since G is 2-connected, then there exist $x_{i+1}, x_{j+1} \in N_{P_m}^+(H)$ or $x_{i-1}, x_{j-1} \in N_{P_m}^-(H)$. Since $G[\{x_2, x_3, \ldots, x_{m-1}\}]$ is a complete subgraph, then $x_{i+1}x_{j+1}$ and $x_{i-1}x_{j-1} \in E(G)$, contrary to Lemma 2.1(ii). Then we have $N_{P_m}(G - P_m) = \{x_1, x_m\}$. By Lemma 2.2(iv), we have $G \in \{G_2 : (K_s \cup K_h), G_2 : (K_s \cup K_h \cup K_t)\}.$

<u>Case 2</u>. For any vertex u in $G - P_m$, u is adjacent to x_1 and x_m .

If $N_{P_m}(G - P_m) = \{x_1, x_m\}$, by Lemma 2.2(iv), we have $G \in \{G_2 : (K_s \cup K_h), G_2 : (K_s \cup K_h \cup K_t)\}$. In the following, we suppose that $N_{P_m}(G - P_m) \neq \{x_1, x_m\}$. Then there exists a component G^* of $G - P_m$ such that $N_{P_m}(G^*) \cap (V(P_m) \setminus \{x_1, x_m\}) \neq \emptyset$.

<u>Subcase 2.1</u>. $|V(G - P_m)| = |\{u\}| = 1.$

Since u is adjacent to x_1 and x_m and $N_{P_m}(u) \cap (V(P_m) \setminus \{x_1, x_m\}) \neq \emptyset$, then $d(u) \geq 3$. If d(u) = 3, then by Lemma 2.3(iii), $G \in \{G_3 \bigvee (K_1 \cup K_h \cup K_t)\}$. If $d(u) \geq 4$, then by Lemma 2.4, $G \in \{G_{n/2} \bigvee K_{n/2}^c\}$.

Subcase 2.2. $|V(G - P_m)| \ge 2$.

If there exists a component H of $G - P_m$ such that $|V(H)| \ge 2$, then by Lemma 2.5, $G \in \{G_3 \setminus (K_s \cup K_h \cup K_t)\}$. Now we suppose that for every component H of $G - P_m$, |V(H)| = 1.

<u>Claim</u>. For any vertex $u \in V(G - P_m)$, $N_{P_m}(u) \leq 3$.

Otherwise, let $N_{P_m}(u) \ge 4$ and $N_{P_m}(u) = \{x_1, x_i, x_j, \dots, x_m\}$ with 1 < i < j < m. Since $|V(G-P_m)| \ge 2$, there exists a vertex $v \in V(G-P_m) \setminus \{u\}$. By Lemma 2.1(v), $vx_2 \in E(G)$ or $vx_{i+1} \in E(G)$. Since $x_1 \in N_{P_m}(v)$, then by Lemma 2.1(i), $vx_2 \notin E(G)$ and so $vx_{i+1} \in E(G)$. Similarly, $vx_{j+1} \in E(G)$, contrary to Lemma 2.1(iv).

Since $N_{P_m}(G^*) \cap (V(P_m) \setminus \{x_1, x_m\}) \neq \emptyset$, then there exists $v \in V(G - P_m)$ such that $|N_{P_m}(v)| = 3$. Without loss of generality, let $N_{P_m}(v) = \{x_1, x_i, x_m\}$. Let $w \in V(G - P_m) \setminus \{v\}$. By Lemma 2.1(v), either $wx_2 \in E(G)$ or $wx_{i+1} \in E(G)$. Since $x_1 \in N_{P_m}(w)$, then $wx_2 \notin E(G)$ and

MISSOURI J. OF MATH. SCI., SPRING 2012

Z. KEWEN, H.-J. LAI, AND J. ZHOU

so $wx_{i+1} \in E(G)$. Similarly, $wx_{i-1} \in E(G)$. Then $x_{i-1}, x_{i+1}, x_1, x_m \in N_{P_m}(w)$, namely, $|N_{P_m}(w)| \ge 4$, contrary to the claim that for any vertex $u \in V(G - P_m)$, $N_{P_m}(u) \le 3$.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, American Elsevier, New York, 1976.
- [2] G. A. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc., 2 (1952), 69–81.
- [3] O. Ore, Note on Hamiltonian Circuits, Amer. Math. Monthly, 67 (1960), 55.
- [4] O. Ore, Hamilton-connected Graphs, J. Math. Pures Appl., 42 (1963), 21-27.
- [5] R. J. Faudree, R. J. Gould, M. S. Jacobson, and R. H. Schelp, Neighborhood Unions and Hamiltonian Properties in Graphs, J. Combin. Theory, Ser. B, 47 (1989), 1–9.
- [6] R. J. Faudree, R. J. Gould, M. S. Jacobson, and L. Lesniak, Neighborhood Unions and Highly Hamilton Graphs, Ars Combinatoria, 31 (1991), 139–148.
- [7] B. Wei, Hamiltonian Paths and Hamiltonian Connectivity in Graphs, Discrete Math., **121** (1993), 223–228.

MSC2010: 05C38, 05C45

Department of Mathematics, Qiongzhou University, Wuzhishan, Hainan, 572200, China

E-mail address: kewen.zhao@yahoo.com.cn

Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310 $\,$

E-mail address: hjlai@math.wvu.edu

Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310

MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1