
ON LEGENDRE MULTIPLIER SEQUENCES

KELLY BLAKEMAN, EMILY DAVIS, TAMÁS FORGÁCS,
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Abstract. In this paper we give a complete characterization of lin-
ear, quadratic, and geometric Legendre multiplier sequences. We also
prove that all Legendre multiplier sequences must be Hermite multi-
plier sequences, and describe the relationship between the Legendre
and generalized Laguerre multiplier sequences. We conclude with a
list of open questions for further research.

1. Introduction

A set of polynomials Q = {qk}∞k=0 is called simple if deg qk = k for
all k ∈ N ∪ {0}. Given a simple set of polynomials Q = {qk}∞k=0 and
a sequence of real numbers {γk}∞k=0, one can define a linear operator T
on R[x] by declaring T [qk(x)] = γkqk(x) for all k ∈ N ∪ {0}. We call
{γk}∞k=0 a Q-multiplier sequence if T [p] has only real zeros whenever p
has only real zeros. In the case when Q is the standard basis, we follow
the existing literature by using the terminology ‘multiplier sequence’ or
‘classical multiplier sequence’ without a reference to Q.

Whether a sequence {γk}∞k=0 is aQ-multiplier sequence depends crucially
on the choice of the set Q. In [8] Piotrowski has shown that every Q-
multiplier sequence is a classical multiplier sequence if Q is any simple set
of polynomials (see Theorem 2 in Section 2). There has been recent progress
in giving conditions under which multiplier sequences for a simple set Q are

also multiplier sequences for another simple set Q̃, with Q̃ not necessarily
the standard basis (see [5]), although the theory in this much generality is
still incomplete. In this paper, we focus our attention on the simple set of
Legendre polynomials and their corresponding multiplier sequences.

Definition 1. The Legendre polynomials Len(x) are defined by the follow-

ing generating function

1√
1− 2xt+ t2

=

∞∑

k=0

Lek(x)t
k.

The choice of the Legendre polynomials is motivated by the fact that
the Legendre and Hermite polynomials are both defined using generating
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functions of the form

G(2xt− t2) =

∞∑

k=0

gk(x)t
k.

As a consequence, the Legendre and Hermite polynomials satisfy very simi-
lar differential equations [10, p. 132] suggesting that Legendre and Hermite
multiplier sequences might be closely related. Since the Hermite multiplier
sequences have been completely characterized by Piotrowski in [8], we had
hoped to achieve a similar result for the Legendre multiplier sequences.

The rest of the paper is organized as follows. Section 2 gives a brief
review of relevant results in the literature. In Section 3 we investigate the
properties of Legendre multiplier sequences and show that the set of Le-
gendre multiplier sequences is a subset of the Hermite multiplier sequences.
Section 4 contains the classification of all linear, quadratic, and geometric
Legendre multiplier sequences. Section 5 concludes with some open ques-
tions.

2. Background

In the late 1800’s Laguerre and Jensen were already investigating the
existence of classical multiplier sequences, but it was not until 1914 that a
complete characterization of all such sequences would emerge in a paper by
Pólya and Schur [9].

Definition 2. A real entire function

ϕ(x) =

∞∑

k=0

γk
k!

xk

is said to belong to the Laguerre-Pólya class L − P if and only if it is the

locally uniform limit in C of real polynomials having only real zeros.1 If, in

addition, γk ≥ 0 for k = 0, 1, 2, . . ., we will write ϕ ∈ L− P+.

Theorem 1. (Pólya-Schur [9]) Let {γk}∞k=0 be a sequence of non-negative

real numbers. The following are equivalent:

(1) {γk}∞k=0 is a multiplier sequence.

(2) For each n, the polynomial T [(1 + x)n] :=

n∑

k=0

(
n

k

)
γkx

k ∈ L−P+.

(3) T [ex] :=
∞∑

k=0

γk
k!

xk ∈ L − P+.

1The Laguerre-Pólya class is usually defined as a set of functions with a particular
Weierstrass factorization. For the sake of exposition we opted for this simpler, but
equivalent definition.
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The following theorem of Piotrowski relates multiplier sequences for any
simple set Q to classical multiplier sequences.

Theorem 2 (Piotrowski, 2007). Let Q = {qk(x)}∞k=0 be any simple set of

polynomials. If the sequence {γk}∞k=0 is a Q-multiplier sequence, then it is

also a classical multiplier sequence.

We shall make use of Theorem 2 repeatedly as we look for properties
every Legendre multiplier sequence has to satisfy.

As we mentioned in the introduction, if {qk(x)}∞k=0 is a simple set of real
polynomials and {γk}∞k=0 is any sequence of real numbers, then the opera-
tor defined by T [qk(x)] = γkqk(x) for all k ∈ N ∪ {0} is a linear operator
on the polynomial ring R[x]. The following theorem of Piotrowski guaran-
tees that every linear operator on R[x] has a unique differential operator
representation.

Theorem 3. Let T : R[x] → R[x] be a linear operator. Then there exists a

unique set of complex polynomials {pk(x)}∞k=0 such that

T [f(x)] =

∞∑

k=0

pk(x)f
(k)(x)

for all f ∈ R[x].

Example 1. Consider the sequence Γ = {k}∞k=0. Since x(xk)′ = kxk for

k = 0, 1, 2, . . ., we see that this sequence has the differential operator rep-

resentation Γ = xD, where D denotes differentiation with respect to x.
Rolle’s Theorem implies that differentiation preserves the reality of zeros.

Since multiplication by x only introduces another zero at 0, it follows that

xD is a reality preserving operator. Thus, {k}∞k=0 is a classical multiplier

sequence.

Should we choose to study the reality preserving properties of a sequence
through its differential operator representation, we need to be able to decide
whether a given differential operator is reality preserving. We have a deep
result of Borcea and Brändén from 2009 to aid us in this endeavor.

Theorem 4 (Borcea-Brändén [2]). A linear operator T : R[x] → R[x] pre-
serves reality of zeros if and only if either

(1) T has range of dimension at most two and is of the form T [f ] =
α(f)P + β(f)Q, where α and β are linear functionals on R[x], and
P and Q are polynomials with only real interlacing zeros, or

(2) T [e−xw] =
∞∑

k=0

(−w)nT [xn]

n!
∈ A, or
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(3) T [exw] =
∞∑

k=0

wnT [xn]

n!
∈ A

where A denotes the set of entire functions in two variables which are uni-

form limits on compact subsets of polynomials in the set

A = {f ∈ R[x,w]|f(x,w) 6= 0 whenever Im (x) > 0 and Im (w) > 0}.

We close this section by recalling two theorems regarding the reality of
zeros of cubic and quartic polynomials for the reader’s convenience. We
make heavy use of these theorems in Section 4, when we investigate Le-
gendre multiplier sequences interpolated by polynomials.

Theorem 5. [6, p. 154] Let f(x) = ax3 + bx2 + cx + d. Consider the

discriminant of f(x), ∆ = b2c2 − 4b3d− 4ac3 + 18abcd− 27a2d2.

(1) If ∆ > 0, then f has all real roots.

(2) If ∆ < 0, then f has one real root and two complex conjugate roots.

Theorem 6. [6, p. 167–170] Let g(x) = ax4 + bx3 + cx2 + dx + e be a

quartic function, where a, b, c, d, e ∈ R. Consider the discriminant of g(x).

(1) If ∆ > 0, then g has either all real or all complex roots.

Consider the depressed quartic h(x) = z4 + qz2 + rz + s.
(a) If q < 0 and q2 − 4s > 0, then the roots of the cubic resolvent

are all positive and the roots of the given quartic are all real.

(b) If q < 0 and q2 − 4s > 0 do not both hold, then only one root

of the cubic resolvent is positive and no roots are real.

(2) If ∆ = 0, then there may or may not be complex roots.

(3) If ∆ < 0, then g has two real roots and two complex conjugate roots.

3. Properties of Legendre Multiplier Sequences

We begin this section with the definition of a Legendre multiplier se-
quence.

Definition 3. Let {γk}∞k=0 be a sequence of real numbers. If

n∑

k=0

akγkLek(x)

has only real zeros whenever

p(x) =
n∑

k=0

akLek(x)

has only real zeros, we say that {γk}∞k=0 is a Legendre multiplier sequence.
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In the introduction we defined the Legendre polynomials via a generating
function. Alternatively, the nth Legendre polynomial Len(x) can also be
obtained from Rodrigues’ formula (see for example [10, p. 162]):

Len(x) =
1

2nn!
Dn[(x2 − 1)n]. (1)

An immediate consequence of equation (1) is that degLen(x) = n. There-
fore, the Legendre polynomials form a simple set. In addition,

∫ 1

−1

Len(x)Lem(x)dx =

{
0 if n 6= m;
2

2n+ 1
if n = m,

and hence they also form an orthogonal set on the interval [−1, 1]. Orthog-
onality and simplicity of {Lek(x)}∞k=0 has profound consequences regarding
the zeros of the Legendre polynomials (see [11, p. 43–45]). In particular:

(i) Len(x) has n simple real zeros in [−1, 1] for n = 0, 1, 2, . . ..
(ii) Len(x) and Len−1(x) have interlacing zeros for n = 1, 2, 3, . . ..
(iii) aLen(x) + bLen−1(x) has only real zeros for any a, b ∈ R, n =

0, 1, 2, . . ..

Property (iii) above says that any sequence of the form

(. . . , 0, 0, a, b, 0, 0, 0, . . .), a, b ∈ R

is a Legendre multiplier sequence. In addition to these, every constant
sequence is also a Legendre multiplier sequence. We refer to these two types
of sequences as trivial Legendre multiplier sequences. In the remainder of
this paper we only consider nontrivial multiplier sequences, unless explicitly
stated otherwise.

Since the Legendre polynomials form a simple set, by Theorem 2 every
Legendre multiplier sequence is also a classical multiplier sequence. As
such, Legendre multiplier sequences inherit a list of properties from the
classical multiplier sequences, which we list in the next lemma.

Lemma 1. Let {γk}∞k=0 be a Legendre multiplier sequence. The following

statements hold:

(i) If there exists integers n > m ≥ 0 such that γm 6= 0 and γn = 0,
then γk = 0 for all k ≥ n.

(ii) The terms of {γk}∞k=0 are either all of the same sign or they alter-

nate in sign.

(iii) The terms of {γk}∞k=0 satisfy Turán’s inequality:

γ2
k − γk−1γk+1 ≥ 0 (k = 1, 2, 3, . . .).
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The remainder of this section is dedicated to showing that the set of
Legendre multiplier sequences form a strict subset of the Hermite multi-
plier sequences. A similar result for generalized Laguerre multiplier se-
quences was proved by Forgács and Piotrowski in [4]. In the interest of
self-containment, we outline their argument here, mostly without proof,
noting that we merely made the necessary changes to obtain the result
about Legendre multiplier sequences.

Lemma 2. Let p and q be real polynomials with deg(q) < deg(p).

(i) If p has only simple real zeros then there exists ε > 0 such that

p(x) + bq(x) has only real zeros whenever |b| < ε.
(ii) If p has some non-real zeros then there exists ε > 0 such that p(x)+

bq(x) has some non-real zeros whenever |b| < ε.

Lemma 3. For n ≥ 2 and b ∈ R, define

fn,b,α(x) := Len(x) + bLen−2(x), and

En := {b ∈ R | fn,b,α(x) has only real zeros}.
Then max(En) exists, and is a positive real number.

Proposition 1. Suppose that {γk}∞k=0 is a nontrivial Legendre multiplier

sequence. Then there exists an m ∈ Z such that γk = 0 for all k < m and

γk 6= 0 for all k ≥ m.

Theorem 7. If the sequence of non-negative real numbers {γk}∞k=0 is a

nontrivial Legendre multiplier sequence, then γk ≤ γk+1 for all k ≥ 0.

Proof. Let TLe denote the operator associated to the Legendre multiplier
sequence {γk}∞k=0. Suppose n ≥ 2 and that γn−2 6= 0. By Proposition 1,
we have γn 6= 0. Using the notation of Lemma 3, the function

fn,β∗

n
,α(x) = Len(x) + β∗

nLen−2(x) (β∗

n = max(En))

has only real zeros. It follows that

TLe[fn,β∗

n
,α(x)] = γnLen(x) + γn−2β

∗

nLen−2(x)

= γn

(
Len(x) +

γn−2

γn
β∗

nLen−2(x)

)

also has only real zeros. By Lemma 3, we must have
γn−2

γn
β∗

n ≤ β∗

n, which

gives 0 <
γn−2

γn
≤ 1. On the other hand, by Lemma 1, we have

γ2
n−1 − γnγn−2 ≥ 0, (n ≥ 2),

which means

(
γn−1

γn−2

)2

≥ γn
γn−2

≥ 1. In other words, γn−1 ≥ γn−2 and the

proof is complete. �
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It follows that any nontrivial Legendre multiplier sequence with non-
negative terms is non-decreasing. By Lemma 1 we conclude that the terms
of any nontrivial Legendre multiplier sequence are non-decreasing in magni-
tude. In [8] Piotrowski proved that any classical multiplier sequence whose
terms are non-decreasing in magnitude is a Hermite multiplier sequence.
Since every trivial Legendre multiplier sequence is also a Hermite multi-
plier sequence, we have the following theorem.

Theorem 8. The set of Legendre multiplier sequences forms a strict subset

of the set of Hermite multiplier sequences.

Proof. We have already established containment. To see that this contain-
ment is strict, we note that

{
rk
}
∞

k=0
is a Legendre multiplier sequence if

and only if |r| = 1 (see Theorem 12 in Section 4), while this sequence is a
Hermite multiplier sequence for any |r| ≥ 1. �

We conclude this section with a diagram outlining the relationship be-
tween classical, Hermite, (generalized) Laguerre, and Legendre multiplier
sequences.

4. Polynomial type and Geometric Legendre Multiplier
Sequences

In this section we classify linear and quadratic Legendre multiplier se-
quences. This line of investigation is motivated by the fact that sequences
interpolated by polynomials form a large class of multiplier sequences for
the standard and the Hermite bases, as the following two theorems demon-
strate. The first one is due to Laguerre [3, p. 23], while the analogous
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result for the Hermite basis is due to Turán [12, p. 289] and Bleecker and
Csordas [1, Theorem 2.7].

Theorem 9. If g ∈ L−P with zeros in the interval (−∞, 0], then {g(k)}∞k=0

is a classical multiplier sequence. In particular, if g is any real polynomial

with only real, non-positive zeros, then {g(k)}∞k=0 is a classical multiplier

sequence.

Theorem 10. If g ∈ L − P+, then {g(k)}∞k=0 is a Hermite multiplier

sequence. In particular, if g is a real polynomial with only real, negative

zeros, then {g(k)}∞k=0 is a Hermite multiplier sequence.

4.1. Linear Sequences. An immediate consequence of Theorems 9 & 10
is the fact that there are both classical and Hermite multiplier sequences
which are interpolated by linear polynomials. As an example, we mention
the sequence {k}∞k=0, which is a Hermite, and hence also classical multiplier

sequence. There are also linear generalized Laguerre (or L(α)-) multiplier
sequences for any α > −1 (see [4]). In light of these results, it is somewhat
surprising that there are no linear Legendre multiplier sequences.

Proposition 2. {γk}∞k=0 = {k + α}∞k=0 is not a Legendre multiplier se-

quence for any α ∈ R.

Proof. Let Γα be the operator defined by Γα[Len(x)] = (n + α)Len(x) for
n = 0, 1, 2, . . ., and consider the function f(x) = (1 + x)3 expanded in the
Legendre basis:

f(x) =
2

5
Le3(x) + 2Le2(x) +

18

5
Le1(x) + 2Le0(x).

Applying the operator Γα to f(x) we obtain

Γα[f(x)] =
2

5
(3 + α)Le3(x) + 2(2 + α)Le2(x)

+
18

5
(1 + α)Le1(x) + 2αLe0(x)

=
1

5
(5x3 − 3x)(α+ 3) + (3x2 − 1)(α+ 2)

+
18

5
x(α + 1) + 2α.

The discriminant of Γα[f(x)] is given by ∆ = − 108
125 (421+ 172α+20α2),

which is negative for all α ∈ R. It follows that Γα[f(x)] has complex roots
for any α ∈ R, and hence {k + α}∞k=0 is not a Legendre multiplier sequence
for any α ∈ R. �
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4.2. Quadratic Sequences. Similarly to the linear case, Theorems 9 &
10 guarantee the existence of quadratic classical and Hermite multiplier
sequences. In this section we classify all quadratic Legendre multiplier
sequences. Recall that every quadratic Legendre multiplier sequence

{
k2 + αk + β

}
∞

k=0

is a classical multiplier sequence. This fact gives us the first restrictions on
the coefficients α and β.

Proposition 3.
{
k2 + αk + β

}
∞

k=0
is a classical multiplier sequence if and

only if α ≥ −1 and 0 ≤ β ≤ 1

4
(α + 1)2.

Proof. By Theorem 1, {γk}∞k=0 is a classical multiplier sequence if and only
if

T [ex] =

∞∑

k=0

γk
k!

xk ∈ L − P+.

Let Γ denote the operator corresponding to the sequence
{
k2 + αk + β

}
∞

k=0
.

We then have

Γ[ex] =

∞∑

k=0

k2 + αk + β

k!
xk = [x2 + (α+ 1)x+ β]ex,

which belongs to the class L − P+ if and only if α ≥ −1 and 0 ≤ β ≤
1

4
(α+ 1)2. �

We show that
{
k2 + αk + β

}
∞

k=0
is a Legendre multiplier sequence if and

only if α = 1 and β ∈ [0, 1]. We begin by first addressing the case when
α 6= 1, after which we examine the case of α = 1.

Proposition 4. If α 6= 1, then
{
k2 + αk + β

}
∞

k=0
is not a Legendre mul-

tiplier sequence for any β.

Proof. Let Γ =
{
k2 + αk + β

}
∞

k=0
. Let α ≥ −1 and α 6= 1. Define

f(α, β, x) = Γ[(1 + x)4]

=
4

5
(5x3 − 3x)(3α+ β + 9) +

16

7
(3x2 − 1)(2α+ β + 4)

+
1

35
(35x4 − 30x2 + 3)(4α+ β + 16) +

32

5
x(α+ β + 1) +

16

5
β,

and denote the discriminant of f with respect to x by ∆xf(α, β, x). As a
consequence of Theorem 2 and Proposition 3, we need only consider α and
β contained in the set

A =

{
(α, β)

∣∣∣ α ≥ −1, 0 ≤ β ≤ (α+ 1)2

4

}
,
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which is shown in Figure 1. Case 1 examines the region shaded in Figure
2, and Case 2 examines the region in Figure 3. Figure 4 demonstrates
that these cases taken together establish that

{
k2 + αk + β

}
∞

k=0
is not a

Legendre multiplier sequence for any (α, β) ∈ A with α 6= 1.

Figure 1 Figure 2

Figure 3 Figure 4

Case 1. Let β = r(1 − α) with r ≤ 1. As r ranges through the indicated
values, these lines cover the shaded area in Figure 2. Given the restrictions
on α, a calculation shows that

∆r

[
∂

∂r
∆xf

(
α, r(1 − α), x

)]
< 0,

where ∆r and ∆x denote the discriminants with respect to r and x. It

follows that the function
∂

∂r
∆xf

(
α, r(1 − α), x

)
, which is quadratic in r,

has no real zeros. We check that

∂

∂r
∆xf

(
α, r(1 − α), x

)∣∣∣
r=0

> 0,

and conclude that
∂

∂r
∆xf

(
α, r(1 − α), x

)
is everywhere positive. Conse-

quently,

∆xf
(
α, r(1 − α), x

)

16 MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1
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is monotone increasing in r, which, together with the fact that

∆xf
(
α, r(1−α), x

)∣∣∣
r=1

< 0, implies that ∆xf
(
α, r(1−α), x

)
< 0 for any

r ≤ 1. Therefore f
(
α, r(1 − α), x

)
has complex zeros for any r ≤ 1 and

α ≥ −1, α 6= 1.

Case 2. Let β = rα with r ≥ 0 and 0 < α < 1. As r ranges through
the indicated values, these lines cover the shaded area in Figure 3. A cal-
culation shows that,

∆r

[
∂

∂r
∆xf

(
α, rα, x

)]
< 0 (0 < α < 1).

It follows that the function
∂

∂r
∆xf

(
α, rα, x

)
, which is quadratic in r, has

no real zeros. We check that when 0 < α < 1,

∂

∂r
∆xf

(
α, rα, x

)∣∣∣
r=0

> 0,

and conclude that
∂

∂r
∆xf

(
α, rα, x

)
is positive for all r ∈ R. It follows that

∆xf
(
α, rα, x

)
is monotone increasing, which, together with the fact that

∆xf
(
α, rα, x

)∣∣∣
r=2

< 0 implies that

∆xf
(
α, rα, x

)
< 0

for any 0 ≤ r ≤ 2. Therefore, f
(
α, rα, x

)
has complex zeros for any

0 ≤ r ≤ 2 and 0 < α < 1.

Case 3. Let α = 0 and let Γ be the operator corresponding to the se-
quence

{
k2 + β

}
∞

k=0
. The discriminant of Γ[(1 + x)3] is negative when

β > 9.8149. On the other hand, the discriminant of Γ[(1 + x)4] is neg-
ative when β < 11.7649. These facts and Theorems 5 & 6 imply that{
k2 + β

}
∞

k=0
is not a Legendre multiplier sequence.

It follows that when α 6= 1,
{
k2 + αk + β

}
∞

k=0
is not a Legendre multi-

plier sequence for any β. �

We now consider the case when α = 1. From Proposition 3 we know
that if

{
k2 + k + β

}
∞

k=0
is a classical multiplier sequence, then β ∈ [0, 1].

It remains to show that if β ∈ [0, 1], then
{
k2 + k + β

}
∞

k=0
is a Legendre

multiplier sequence. We first treat the cases when β = 0 and β = 1. Finally
we deal with the case when β ∈ (0, 1).

Lemma 4.
{
k2 + k

}
∞

k=0
is a Legendre multiplier sequence.
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Proof. The Legendre polynomials satisfy Legendre’s differential equation:

(1− x2)Le′′n(x)− 2xLe′n(x) + n(n+ 1)Len(x) = 0. (2)

It follows that the linear operator Γ defined by Γ[Len(x)] = n(n+1)Len(x)
has the differential operator representation T = [(x2 − 1)D + 2x]D. We
proceed to show that T preserves the reality of zeros. To this end, consider
(x2 − 1)f(x), where f(x) has only real zeros. We know that differentiation
preserves the reality of zeros. Therefore,

D[(x2 − 1)f(x)] = 2xf(x) + (x2 − 1)f ′(x)

= [(x2 − 1)D + 2x]f(x)

has only real zeros. It follows that the operator (x2 − 1)D + 2x preserves
the reality of zeros. The result follows. �

Lemma 5.
{
k2 + k + 1

}
∞

k=0
is a Legendre multiplier sequence.

Proof. The differential operator associated to
{
k2 + k + 1

}
∞

k=0
is T = (x2−

1)D2+2xD+1. We show that T preserves the reality of zeros. By Theorem
4 it suffices to show that T [exw] has no zeros in the region Ω := {(x,w)
Im (x) > 0, Im (w) > 0}. We evaluate

T [exw] = [(x2 − 1)D2 + 2xD + 1][exw]

= exw((xw)2 − w2 + 2xw + 1).

Since exw is nowhere zero, the zeros of T [exw] are those of (xw)2 − w2 +
2xw + 1. Solving

(xw)2 − w2 + 2xw + 1 = 0

for w we obtain

w1,2 =
1

x± 1
=

x̄± 1

|x± 1|2 .

It follows that if Im (x) > 0, then Im (w1,2) < 0. Therefore, T [exw] has
no zeros in the region Ω, and we conclude that T preserves the reality of
zeros. Thus

{
k2 + k + 1

}
∞

k=0
is a Legendre multiplier sequence. �

Proposition 5. If 0 < β < 1, then the operator T = β+2xD+(x2−1)D2

preserves the reality of zeros.

Proof. According to Theorem 4, the operator T preserves the reality of
zeros as long as the polynomial

f(z, w) = (z2 − 1)w2 − 2zw + β = w2z2 − 2wz + β − w2

18 MISSOURI J. OF MATH. SCI., VOL. 24, NO. 1



ON LEGENDRE MULTIPLIER SEQUENCES

does not vanish whenever Im(w) > 0 and Im(z) > 0. Solving f(z, w) = 0
for z we obtain 2

z1,2 =
2w ±

√
4w2 − 4(w2)(β − w2)

2w2
=

1±
√
(1− β) + w2

w
.

Suppose first that w = ki, where k > 0. In this case (1 − β) + w2 is a real

number. If this number is positive, then 1 ±
√
(1− β) + w2 is real, and

hence z1,2 = −ik1,2. If (1 − β) + w2 < 0, then z1,2 = −ik ± k̃

k
for some

k̃ ∈ R, and hence Im(z1,2) < 0.
We break the rest of the proof into two cases.

Case 1. 0 <Arg(w) < π/2. Since 0 < β < 1, we have

π

2
> Arg(w) > Arg

(√
(1− β) + w2

)
> Arg

(√
w2 + 1

)
> 0, (3)

and similarly,

−π < Arg
(
−
√
w2 + 1

)
< Arg

(
−
√
(1− β) + w2

)
< Arg(−w) < −π

2
.

(4)
Equation (3) immediately implies that

−π

2
< Arg

(
1 +

√
(1− β) + w2

w

)
< 0. (5)

Using equation (4) we deduce that

Arg
(
1−

√
w2 + 1

)
< Arg

(
1−

√
(1 − β) + w2

)
< 0,

and consequently,

Arg

(
1−

√
w2 + 1

w

)
< Arg

(
1−

√
(1− β) + w2

w

)
< 0.

The identity
1−

√
1 + w2

w
= − w

1 +
√
w2 + 1

together with the fact that

Arg(w) >Arg(1 +
√
1 + w2) implies that

−π < Arg

(
1−

√
(1− β) + w2

w

)
< 0. (6)

2We take
√

(1− β) + w2 to be the complex number with the imaginary part of the

same sign as that of w.
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Equations (5) and (6) together establish that Im(z1,2) < 0.

Case 2. π/2 <Arg(w) < π. Since 0 < β < 1, we have

π > Arg
(√

w2 + 1
)
> Arg

(√
(1− β) + w2

)
> Arg(w) >

π

2
, (7)

and similarly,

−π

2
< Arg(−w) < Arg

(
−
√
(1− β) + w2

)
< Arg

(
−
√
w2 + 1

)
< 0. (8)

Equation (7) implies that

Arg

(
1 +

√
w2 + 1

w

)
> Arg

(
1 +

√
(1− β) + w2

w

)
> Arg

(
1 + w

w

)
.

We see that

Arg

(
1 + w

w

)
> Arg

(
1

w

)
> −π.

The identity
1 +

√
1 + w2

w
= − w

1−
√
w2 + 1

together with the fact that

Arg(−w) <Arg(1−
√
1 + w2) implies that

−π < Arg

(
1 +

√
(1− β) + w2

w

)
< 0. (9)

Using equation (8) we deduce that

Arg (1− w) < Arg
(
1−

√
(1 − β) + w2

)
< 0,

and consequently,

Arg

(
1− w

w

)
< Arg

(
1−

√
(1− β) + w2

w

)
< 0.

Note that

−π = Arg

(−w

w

)
< Arg

(
1− w

w

)
,

which implies that

−π < Arg

(
1−

√
(1− β) + w2

w

)
< 0. (10)

Equations (9) and (10) together establish that Im(z1,2) < 0. �

We have thus proved the following.

Proposition 6. If α = 1 and β ∈ [0, 1], then
{
k2 + αk + β

}
∞

k=0
is a

Legendre multiplier sequence.
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Propositions 4 and 6 together characterize all quadratic Legendre mul-
tiplier sequences.

Theorem 11.
{
k2 + αk + β

}
∞

k=0
is a Legendre multiplier sequence if and

only if α = 1 and β ∈ [0, 1].

4.3. Geometric Sequences. We now look at the geometric sequences
{rk}∞k=0, where r ∈ R \ {0}. It is known that sequences of this form are
classical multiplier sequences, but are Hermite multiplier sequences if and
only if |r| ≥ 1. It has also been shown by Forgács and Piotrowski [4] that
the only such Laguerre multiplier sequence is the constant sequence {1}∞k=0.

Theorem 12. If r 6= 0, then {rk}∞k=0 is a Legendre multiplier sequence if

and only if |r| = 1.

Proof. Assume first that |r| = 1. If r = 1, then the sequence
{
rk
}
∞

k=0
is

trivial. Suppose now that

p(x) =

n∑

k=0

aiLei(x)

has only real zeros. Then

p(−x) =

n∑

k=0

aiLei(−x) =

n∑

k=0

ai(−1)iLei(x)

also has only real zeros, which implies that
{
−1k

}
∞

k=0
is a Legendre multi-

plier sequence.
For the converse assume that |r| 6= 1. If 0 < |r| < 1, the sequence{

rk
}
∞

k=0
is not a Hermite multiplier sequence, and hence by the results in

Section 3 it cannot be a Legendre multiplier sequence.
If |r| > 1, we apply the sequence {rk}∞k=0 to the polynomial p(x) =

(x+ 1)4. We thus obtain the polynomial

p̃(x) =
16

5
+
32

5
rx+

16

7
r2(−1+3x2)+

4

5
r3(−3x+5x3)+

1

35
r4(3−30x2+35x4).

The discriminant of p̃(x) with respect to x is given by

∆ =
16384

10504375
(44044r12 − 147576r14

+ 180624r16 − 96991r18 + 22329r20 − 2565r22 + 135r24).

By Theorem 6 part (1)(b) we conclude that p̃(x) has complex roots. Hence{
rk
}
∞

k=0
is not a Legendre multiplier sequence when |r| > 1. �
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5. Open questions

In this paper we partially classified Legendre multiplier sequences. We
exhibited general properties of Legendre multiplier sequences and showed
that the Legendre multiplier sequences are a strict subset of the Hermite
multiplier sequences. We then gave a complete characterization of linear,
quadratic, and geometric Legendre multiplier sequences. We conclude the
paper with a short list of open questions:

(1) We know that a large class of cubic sequences fail to be Legendre
multiplier sequences. There is overwhelming numerical evidence to
suggest that there are no cubic Legendre sequences, a conjecture
based on the complete lack of linear Legendre multiplier sequences.

(2) As a generalization of the first problem, we propose that there are
no Legendre multiplier sequences of any odd degree. This claim is
supported by the differential equation

(x2 + 1)Le′′n(x) − 2xLe′n(x) = n(n+ 1)Len(x), (11)

where the coefficient of the non-differentiated term is of even degree
in n, although we have no numerical evidence beyond the cubic
sequences.

(3) Given a sequence of real numbers {γk}∞k=0, consider the operator
Γ defined by Γ[Len(x)] = γnLen(x). Both Γ and the operator
T = (x2−1)D2−2xD (as in the left hand side of equation (11)) are
diagonal with respect to the Legendre basis and hence ΓT = TΓ.
Can one characterize all differential operators which commute with
T , and give sufficient and/or necessary conditions for such operators
to correspond to Legendre multiplier sequences? (This approach
was suggested by David Cardon at Brigham Young University.)

(4) It is known that the falling factorial sequence

{
Γ(k + 1)

Γ(k − n+ 1)

}
∞

k=0

= {k(k − 1) · · · (k − n+ 1)}∞k=0

is a classical, Hermite and generalized Laguerre multiplier sequence
for every n ∈ N but it is not a Legendre multiplier sequence. We
suspect however that the sequence

{
Γ(k(k + 1) + 1)

Γ(k(k + 1)− n+ 1)

}
∞

k=0

is a Legendre multiplier sequence, although none of the methods
we are familiar with yield a proof of this fact.
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1950) Congr. des Math. Hongr., 27, Akadémiai Kiadó, Budapest, 1952, 279–290.
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