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Abstract. Let Ap be the Banach space of all continuous functions
on the torus T = {z ∈ C||z| = 1} whose Fourier coefficients are in `p.
We show that Ap is not an algebra for all 1 < p < 2.

1. Introduction

A compact subset K ⊂ T is said to be Helson if K is a closed subset
of the torus on which every continuous function has a sequence of Fourier

coefficients in `1. A Carleson set is a Helson set for which f̂(n) = 0 for
all n < 0 for all continuous functions f . In 1960 Wik [9] proved the more
interesting relationship that all Helson sets are Carleson sets. Later in 1968
A. Bernard [1] gave a much more concise proof of this fact. His proof was
an application of the following theorem.

Theorem 1.1. (Bernard [1]) Let A be a complex Banach function algebra
on K. If ReA = {Ref |f ∈ A} is uniformly closed then A = C(K).

Bernard’s proof is a combination of this theorem and the fact that A1,
the space of all continuous functions on the torus T with summable Fourier
coefficients, has the property that ReA1 = ReA1+, where A1+ = {f ∈

A1|f̂(n) = 0 for all n < 0}. In 1972, M. Gregory [2] introduced the
notion of p-Helson and p-Carleson sets. For these variations on Helson and
Carleson sets the Fourier coefficients need to be in `p rather than `1. Hence
a 1-Helson set is the original Helson set. Gregory [2] asked the natural
question: “is every p-Helson set a p-Carleson set?” He noted that since
every closed subset of the torus is a 2-Helson set and all 2-Carleson sets
have Lebesgue measure zero, the answer is no for p = 2. But what of the
case 1 < p < 2?

We define Ap to be the space of all continuous functions on T with pth
power summable Fourier coefficients again under pointwise multiplication.
For p ≥ 1, Ap is a Banach function space under the norm ‖ · ‖ = max{‖ ·
‖∞, ‖̂·‖`p} (Ap is not complete in either norm alone if 1 < p < 2). The
Banach spaces studied here are different than the Banach algebras Ap(G)
studied by Larsen, Liu, and Wang [3] and Warner [8]. Their spaces of
functions are all integrable functions on a locally compact abelian group G
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whose Fourier transforms are in Lp(Ĝ). Also, the multiplication in Ap(G)
is convolution rather than pointwise multiplication.

Can we apply Bernard’s technique to determine if p-Helson and p-Carleson
sets are the same for 1 < p < 2? If so the only fact to be checked would
be whether or not ReAp = ReAp+. However, as this paper will procede to
show, we cannot use Bernard’s technique since Ap is not an algebra on the
range 1 < p < 2. It has been shown [4] that Ap is not a Banach algebra for
any 1 < p < p0, for a certain p0, 1 < p0 < 2. In this paper we extend that
result to the entire range 1 < p < 2 via the following theorem.

Theorem 1.2. The Banach space, Ap, is not closed under pointwise mul-
tiplication for 1 < p < 2.

In the definition of Ap the underlying space is T. What if the domain
of the functions in Ap was an arbitrary locally compact group G? De-
fine Ap(G) to be the set of all continuous functions on G whose Fourier

transforms are in Lp(Ĝ), where Ĝ is the Pontrjagin dual of G and the un-

derlying measure is a left Haar measure on Ĝ. With the Lp conjecture in
mind, Theorem 1.2 and the discussion following leads one to the following
conjecture.

Conjecture 1.3. If G is a locally compact group and 1 < p < 2 then Ap(G)

is closed under pointwise multiplication if and only if Ĝ is compact.

The Lp conjecture states: If p > 1 and Ĝ is a locally compact group,

Lp(Ĝ) is closed under convolution if and only if Ĝ is compact. For Ĝ abelian

and p > 1, the Lp conjecture was first proven by Żelazko and Urbanik [10],

[7]. For p > 2 and Ĝ not necessarily abelian, the conjecture was proven by

Rajagopalan [5] and Żelazko [11], and a self contained proof of the entire
Lp conjecture was given by Saeki [6]. Conjecture 1.3 is slightly stronger, as
the Lp conjecture is an immediate corollary in the range 1 < p < 2.

Throughout the remainder of the paper Ap = Ap(T).
As in the original paper we will use a well-known fact from Banach

function space theory. For completeness, we give the proof here.

Theorem 1.4. Let A be a Banach function space. If A is closed under
multiplication then there exists a constant M such that for all u, v ∈ A,
‖uv‖ ≤ M‖u‖‖v‖.

Proof. For each v ∈ A define the linear operator Λv : A → A by Λvu = uv.
By the closed graph theorem Λv is continuous. Define the linear operator
Γ: A → B(A) by Γ(v) = Λv. Another application of the closed graph
theorem implies that Γ is continuous. Thus,
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‖uv‖ = ‖Λvu‖ ≤ ‖Λv‖‖u‖ = ‖Γ(v)‖‖u‖ ≤ ‖Γ‖‖v‖‖u‖.

�

In order to obtain an example to illustrate that Ap is not closed under
pointwise multiplication we need a family of polynomials gn such that

lim
n→∞

‖g2n‖

‖gn‖2
= ∞. (1.1)

If ‖ĝ2n‖p ≤ ‖g2n‖∞ or if ‖ĝ2n‖p ≤ ‖ĝn‖
2
∞

then ‖g2n‖ ≤ ‖gn‖
2. So we are

looking for polynomials gn with relatively small sup norms such that g2n
has coefficients with relatively large pth power sums. A natural approach
then is to use Riesz products to ensure no cancelation among positive and
negative terms when squaring. This is precisely what was done in the earlier
work. In this example we use a variation of a Reisz product to obtain the
full result.

2. Generalized Reisz Product

We begin with a result which allows us to extend results about degree 3
polynomials to polynomials of arbitrarily high degree.

Theorem 2.1. Let f(z) be a third degree polynomial on the torus T with
real coefficients, and let

gn(z) =

n∏

j=0

f(z7
j

).

Then

‖gn‖∞ ≤ ‖f‖n
∞
, (2.1)

‖ĝn‖p = ‖f̂‖np , (2.2)

and

‖ĝ2n‖p = ‖f̂2‖np . (2.3)

Proof. Inequality (2.1) is a direct consequence of a well-known fact about
sup norms.

Let f(z) = a+ bz + cz2 + dz3. Write gn(z) = gn−1(z)f(z
7
n

), and notice

that gn−1(z) is a polynomial of degree at most 7
n
−1

2
. Therefore, the terms

agn−1(z), bz
7
n

gn−1(z), cz
2·7

n

gn−1(z), and dz3·7
n

gn−1(z) have no common
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powers of z. So

‖ ̂gn−1(z)f(z7
n)‖pp

= ‖ ̂agn−1(z)‖
p
p + ‖ ̂bz7

n
gn−1(z)‖

p
p + ‖ ̂cz2·7

n
gn−1(z)‖

p
p + ‖ ̂dz3·7

n
gn−1(z)‖

p
p

= ‖ĝn−1‖
p
p(a

p + bp + cp + dp)

= ‖ĝn−1‖
p
p‖f̂‖

p
p.

Equation (2.2) then follows by induction and taking pth roots.
Let f2(z) = a2 + a1z+ a2z

2 + a3z
3 + a4z

4 + a5z
5 + a6z

6. Write g2n(z) =
g2n−1(z)f

2(z7
n

), and notice that g2n−1(z) is a polynomial of degree at most

7n−1. So when g2n−1(z) and f2(z7
n

) are multiplied there will be no common

powers of z between the terms a2gn−1(z), a1z
7
n

gn−1(z), a2z
2·7

n

gn−1(z),
a3z

3·7
n

gn−1(z), a4z
4·7

n

gn−1(z), a5z
5·7

n

gn−1(z), and a6z
6·7

n

gn−1(z). So us-
ing the same calculations as for (2.2), we see

‖ ̂g2n−1(z)f
2(z7n)‖pp = ‖ĝ2n−1‖

p
p‖f̂

2‖pp.

Equation (2.3) then follows by inductions and taking pth roots. �

3. Choosing Coefficients

With Theorem 2.1 in hand we can now look for a degree 3 polynomial,

f(x), such that ‖f‖∞ is small and ‖f̂2‖p is large. We are now charged with
determining the coefficients of f(z) = a+ bz + cz2 + dz3. Since constants
factor out of norms we may as well assign one of the coefficients to be one.
Therefore we can write f(z) = a+ bz + cz2 + z3. Next we choose a, b and
c to create a relatively small sup norm. Let z ∈ T, that is z = eiθ where
θ ∈ R thus,

|f(z)|2 = a2+b2+c2+1+2(bc+ab+c) cos θ+2(b+ac) cos(2θ)+2a cos(3θ).

Also,

‖f‖2
∞

≤ a2 + b2 + c2 + 1 + 2|bc+ ab+ c|+ 2|b+ ac|+ 2|a|.

In order for this to be small we choose a, b and c so that

bc+ ab+ c = 0

b+ ac = 0.

The above system of equations is satisfied when

b = a2 − 1

c =
1

a
− a.

Notice that we could have made the sup norm even smaller if we had insisted

also that a = 0. However, that would force f(z) to be z3 and ‖f̂2‖p = 1
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that is not nearly large enough. Our polynomial, f(z), still needs to have
a large sum of pth power coefficients when squared, however we still have
yet to chose a. We will use that remaining choice to make the `p norm of
the coefficients of f2(z) large. Let fa(z) = a+ (a2 − 1)z + ( 1

a
− a)z2 + z3.

A few calculations give the following results.

‖fa‖
2
∞

= a4 + 2a+
1

a2
,

‖f̂a‖
2p
p =

(
ap + 1

ap

)2 (
ap + (a2 − 1)p

)2
,

‖f̂2
a‖

p
p = a2p + (2a3 − 2a)p + (a4 − 4a2 + 3)p +

(
2a3 − 6a+

2

a

)p

+

(
4a2 − 4 +

1

a2

)p

+

(
2a−

2

a

)p

+ 1.

We can use the generalized binomial theorem to give asymptotic descrip-
tions of these three norms.

‖fa‖
2p
∞

= a4p + 2pa4p−3 + o(a4p−3) (3.1)

‖f̂a‖
2p
p = a4p + 4a3p − 2pa4p−2 + o(a3p) (3.2)

‖f̂2
a‖

p
p = a4p + 2p+1a3p + o(a3p) (3.3)

The next two theorems will show that given 1 < p < 2 we can choose a

large enough so that fa will have the desired property.

Theorem 3.1. For all 1 < p < 2 there exists a constant Bp such that for

all a ≥ Bp we have ‖f̂a‖
2
p < ‖f̂2

a‖p.

Proof. For p > 1, 2p+1 > 4. Therefore this theorem is a direct consequence
of (3.2) and (3.3). �

Theorem 3.2. For all 1 ≤ p < 2 there exists a constant Cp such that for

all a ≥ Cp we have ‖fa‖∞ < ‖f̂a‖p.

Proof. Using (3.2) we see for p < 2, we have ‖f̂a‖
2p
p = a4p + 4a3p + o(a3p).

Similarly, using (3.1) we see for p < 2, we have ‖fa‖
2p
∞

= a4p + o(a3p).

Therefore, there exists an a large enough so that ‖fa‖∞ < ‖f̂a‖p. �

Note that in equation (3.2) we include the term −2pa4p−2 to illustrate
that this proof will not work for the case p = 2.

For any 1 < p < 2, Let a > max{Bp, Cp} where Bp is obtained from
Theorem 3.1 and Cp is obtained from Theorem 3.2. For such a value of a
we have

‖fa‖
2
∞

< ‖f̂a‖
2
p < ‖f̂2

a‖p.
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Let gn(z) =
∏n

j=0
fa(z

7
j

). We now verify the necessary limit

lim
n→∞

‖g2n‖

‖gn‖2
= lim

n→∞

‖ĝ2n‖p
‖ĝn‖2p

= lim
n→∞

‖f̂2
a‖

n
p

‖f̂a‖2np
= ∞.

Therefore Ap is not an algebra for 1 < p < 2, and we have proven Theorem
1.2.
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