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Abstract. In this paper we introduce Tac spaces as a generalization

of TD spaces and we present some properties of these spaces related to

subspaces, quotients, continuous functions, and homeomorphisms. Also,

we show that the property Tac does not imply T0 and T0 does not imply

Tac.

1. Introduction. To each topological space X , we can naturally

associate the subspaces γ (X) = {x ∈ X | {x} is closed} and ε (X) = {x ∈

X | {x}∩ γ (X) = ∅}, known as the closed points and free points subspaces

of X , respectively [1]. With them, one can obtain a sufficient condition to

determine the compactness of X and they can be used to characterize the

compactness of the T0 spaces [1]. γ and ε can also be studied as operators

of Top in Top or Top(X) in P (X). In this framework, we obtain that

both operators are idempotent and mutually orthogonal [5], among other

properties. In this work, we associate with X , the subspaces δ (X) = {x ∈

X | {x}′ is closed in X} and λ (X) = {x ∈ X | {x}′ ∩ δ(X) = ∅}, called the

ac-closed points and the ac-free points subspaces of X , respectively. The

properties of the composition of these operators are presented and they are

used to define Tac spaces, which are a generalization of TD spaces. These are

different from TUD spaces. Finally, some topological notions are studied,

such as preservation under continuous functions, under homeomorphisms,

and for subspaces.

2. Preliminaries. To facilitate the development, some definitions

and propositions are presented. They will be used later. The proofs that

are not given here can be consulted in [3, 4, 6].

Definition 2.1. Let (X, T ) be a topological space and A ⊆ X . A point

x ∈ X is said to be an accumulation point of A if for every open set V

containing x, (V − {x}) ∩ A 6= ∅. The set of accumulation points of A is

the derived set of A (denoted A′). In some cases to avoid confusion, we will

denote with {x}′
M

the set of accumulation points of {x} in M .

Proposition 2.2. Let (X, T ) be a topological space. If Y is a subspace

of X and A ⊆ Y , then A′

Y
= A′

X
∩ Y .
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Definition 2.3. A topological space (X, T ) is called:

a) T2 if for any x, y ∈ X with x 6= y, there exists disjoint open sets U, V

containing x and y, respectively.

b) T1 if for any x, y ∈ X with x 6= y, there are open sets U, V with x ∈ U ,

y /∈ U , and y ∈ V , x /∈ V .

c) TD if for any x ∈ X , {x}′ is closed.

d) TUD if for any x ∈ X , {x}′ is the union of disjoint closed sets.

e) T0 if for any x, y ∈ X with x 6= y, there is an open set that contains

one of them but it does not contain the other one.

It can be proved that T2 =⇒ T1 =⇒ TD =⇒ TUD =⇒ T0. For this reason,

the axioms TD and TUD are considered as separation axioms between T0

and T1; a detailed study of this topic is presented in [3].

Proposition 2.4. If (X, T ) is T0, then the relation ≤T , defined by

x ≤T y if and only if x ∈ {y}
T

, is an order.

Definition 2.5. A poset (X,≤) has enough minimals, if for any x ∈ X ,

there exists a y such that y ≤ x and there is no z ∈ X such that z < y.

3. The Subspaces δ(X) and λ(X). In this section the subspaces

δ(X) and λ(X) are introduced. Some of their properties are also shown.

Since δ(X) is a TD space, the operator δ is an idempotent and γ(X) ⊆

δ(X)∩ λ(X). Finally, a sufficient condition is presented so that δ(λ(X)) =

λ(δ(X)) = λ(X). This allows us to define Tac spaces in the following

section.

Definition 3.1. Let (X, T ) be a topological space. The subspaces δ(X)

and λ(X) are defined as:

δ(X) = {x ∈ X | {x}′ is closed in X}

λ(X) = {x ∈ X | {x}′ ∩ δ(X) = ∅}.

The elements of δ(X) are called ac-closed points and the elements of λ(X)

are called ac-free points.

In the following proposition, some properties of the operators δ and λ are

proved.
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Proposition 3.2. Let (X, T ) be a topological space. Then,

a) δ(δ(X)) = δ(X)

b) δ(λ(X)) ⊆ λ(X)

c) λ(δ(X)) = δ(X) ∩ λ(X)

d) λ(δ(X)) ⊆ λ(X)

e) λ(λ(X)) ⊆ λ(X)

Proof. a) The fact that δ(δ(X)) = δ(X) follows inmediately from

Definition 3.1.

Suppose that x ∈ δ(X) and x /∈ δ(δ(X)). If x ∈ δ(X), then {x}′
X

is closed

in X . Therefore, {x}′
X
∩δ(X) is closed in δ(X). As {x}′

δ(X) = {x}′
X
∩δ(X),

one has that {x}′
δ(X) is closed in δ(X), which is false.

Statements b) and e) are evident from the definitions.

c) Let x ∈ λ(δ(X)), then x ∈ δ (X) and {x}′
δ(X) ∩ δ (X) = ∅. It is known

that {x}′
δ(X) = {x}′

X
∩ δ (X), then {x}′

δ(X) ∩ δ (X) = ({x}′
X
∩ δ (X)) ∩

δ (X) = {x}′
X
∩ δ (X) = ∅. Therefore, x ∈ λ (X).

Let x ∈ δ(X)∩λ(X), then x ∈ δ(X) and x ∈ λ(X). Hence, {x}′
X
∩δ (X) =

∅. Thus, ({x}′
X
∩ δ (X)) ∩ δ (X) = ∅ and {x}′

δ(X) ∩ δ (X) = ∅.

d) This is a direct consequence of part c).

Corollary 3.3. For any topological space (X, T ), δ(X) is a TD space.

Proof. This follows inmediately from the previous proposition, part

a).

We notice that the operator δ is idempotent. In the case of λ, it is partially

satisfied. We have not been able to provide either a counterexample or a

complete proof for the remaining part. The strict implications in cases b)

and d) will allow us to define the Tac spaces.

The following example shows that the implications obtained in b) and d) of

Proposition 3.2 are strict. For the other implication of e), we neither have

a counterexample nor a proof.

Example 3.4. If X = {1, 2, 3, 4}, T = {∅, X, {3}, {3, 4}}, then δ (X) =

{3, 4} and λ (X) = {1, 2, 4}, Tδ(X) = {∅, δ (X) , {3}}. Thus, {3}′
δ(X) = {4}

and {4}′
δ(X) = ∅. Since λ (δ (X)) = {x ∈ δ (X) | {x}′

δ(X) ∩ δ (δ (X)) = ∅}

we have that λ (δ (X)) = {4}. Therefore, λ (X) 6⊆ λ (δ (X)).

Now Tλ(X) = {φ, λ (X) , {4}} so {1}′
λ(X) = {2} is not closed, {2}′

λ(X) = {1}

is not closed, and {4}′
λ(X) = {1, 2} is closed in λ (X).
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Since δ (λ (X)) = {x ∈ λ (X) | {x}′
λ(X) is closed in λ (X)}, we have that

δ (λ (X)) = {4}. Consequently, λ (X) 6⊆ δ (λ (X)).

In the next proposition we give a sufficient condition to obtain the remaining

implications in Proposition 3.2.

Proposition 3.5. Let (X, T ) be a topological space. If λ (X) ⊆ δ (X),

then:

a) λ (X) ⊆ δ (λ(X))

b) λ (X) ⊆ λ (δ(X))

c) λ (X) ⊆ λ (λ(X)).

Proof. a) Let x ∈ λ (X). Since λ (X) ⊆ δ (X), {x}′
X

is closed in X .

From Proposition 2.2, we have {x}′
λ(X) = {x}′

X
∩ λ (X). Since {x}′

X
is

closed in X , {x}′
λ(X) is closed in λ (X). Therefore, x ∈ δ (λ(X)).

b) Let x ∈ λ (X). Then {x}′
X

∩ δ (X) = ∅. Now, from Proposition 2.2,

we have {x}′
δ(X) = {x}′

X
∩ δ (X). Then {x}′

δ(X) ∩ δ (X) = ∅. Therefore,

x ∈ λ (δ(X)).

c) Let x ∈ λ (X) and suppose {x}′
λ(X) ∩ δ (λ(X)) 6= ∅. Then from part

a), we have {x}′
λ(X) ∩ λ(X) 6= ∅. Now, using Proposition 2.2 we obtain

{x}′
X

∩ λ(X) 6= ∅ and since λ (X) ⊆ δ (X), we have {x}′
X

∩ δ(X) 6= ∅.

Hence, x /∈ λ (X), which is false.

In the next proposition we show the relation between the set of closed points

(γ (X) according to [5]) and the subspaces δ (X) and λ (X). Notice that if

δ (X) = X , then λ (X) = γ (X).

Proposition 3.6. Any closed point is an ac-closed point and an ac-free

point.

Proof. Let x be a closed point, then {x}′ = ∅; therefore, x is an

ac-closed point. Also, ∅ ∩ δ (X) = ∅. Therefore, x is an ac-free point.

In the next example we show that the converse of the previous proposition is

not certain. That is, there exist ac-closed points and ac-free points that are

not closed points. Therefore, the set of closed points is strictly contained

in the set of points that are ac-closed points and ac-free points.

Example 3.7. If X = {1, 2, 3, 4} and T = {∅, X, {3}, {3, 4}}, then

δ (X) = {3, 4} and λ (X) = {1, 2, 4}. Therefore, we have that 4 is an

ac-closed point and an ac-free point, but it is not a closed point.
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4. Tac Spaces. In the previous section we showed that if λ (X) ⊆

δ (X), the other implications of Proposition 3.2 are satisfied. This condition

gives birth to the Tac spaces, which are defined in this paper. They will be

the objects of study in this section.

Definition 4.1. A topological space (X, T ) is a Tac space if λ (X) ⊆

δ (X).

Notice that any TD space is Tac and, in particular T1 and T2 spaces are

Tac. The following example shows a finite Tac space.

Example 4.2. If X = {1, 2, 3, 4, 5, 6} and

T = {∅, X, {1}, {1, 2}, {1, 3}, {4, 5}, {1, 2, 3}, {1, 4, 5}, {4, 5, 6}, {1, 2, 4, 5},

{1, 3, 4, 5}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {1, 4, 5, 6}, {1, 2, 3, 4, 5}}

then δ (X) = {1, 2, 3, 6} and λ (X) = {2, 3, 6}.

From the previous example, note that if A = {3, 4, 5} then TA = {∅, A, {3},

{4, 5}}. We have that δ (A) = {3} and λ (A) = {3, 4, 5}. Therefore, (A, TA)

is not a Tac space. Therefore, not every subspace of a Tac space is Tac space.

This property is inherited by closed subspaces as shown in Proposition 4.4.

Proposition 4.3. Let (X, T ) be a topological space and A ⊆ X . If A is

a closed set, then λ (A) ⊆ λ (X).

Proof. Suppose that a /∈ λ (X) and a ∈ λ (A). Then {a}′
X
∩ δ (X) 6= ∅.

Therefore, there exists a b ∈ {a}′
X

and b ∈ δ (X). If b /∈ A then b ∈ X −A.

But it is an open set and a /∈ Ac. Therefore, b /∈ {a}′
X

, which is false. Then

b ∈ A and this implies that b ∈ {a}′
A
. Since b ∈ δ (X), {b}′

X
is closed and

{b}′
A

= {b}′
X
∩A is closed in A. Therefore, b ∈ δ (A). Then b ∈ {a}′

A
∩δ (A)

and this implies that a /∈ λ (A).

Proposition 4.4. Any closed subspace of a Tac space is a Tac space.

Proof. For any closed subset A in X , we will show that λ (A) ⊆ δ (A).

Let a ∈ λ (A). Since A is closed, from Proposition 4.3, we have that

λ (A) ⊆ λ (X). Then a ∈ λ (X). Since X is a Tac space, λ (X) ⊆ δ (X).

Thus, a ∈ δ (X) and {a}′
X

is closed. Then {a}′
A

= {a}′
X
∩ A is closed in

A. Therefore, a ∈ δ (A).

There exist spaces satisfying the condition λ (λ (X)) = λ (X), but they are

not Tac spaces. This is observed in the next example.
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Example 4.5. Let X be the set of natural numbers. The open sets in

X are ∅, X , and sets of form {n, n + 1, . . . } with n ≥ 3. Thus,

{1}′ = {2} {2}′ = {1} {3}′ = {1, 2} {4}′ = {1, 2, 3} {5}′ = {1, 2, 3, 4} . . . .

Then, δ (X) = {3, 4, 5, . . .} and λ (X) = {1, 2, 3}.

We can observe that this space is not a Tac space.

The subspace topology for λ (X) is: Ωλ(X) = {∅, λ (X) , {3}}. Thus,

{1}′
λ(X) = {2}, {2}′

λ(X) = {1}, {3}′
λ(X) = {1, 2}. Then, δ (λ (X)) = {3}.

The subspace topology for δ (X) is: Tδ(X) = {∅, δ (X)} ∪ {{n, n + 1, n +

2, . . . } | n > 3}. Thus, {3}′
δ(X) = ∅, {4}′

δ(X) = {3}, {5}′
δ(X) = {3, 4}. In

general {m}′
δ(X) = {3, 4, . . . , m − 1} with m ≥ 4. Then, λ (δ (X)) = {3}.

Therefore, we have λ (λ (X)) = {1, 2, 3} = λ (X).

In the following examples we show that the property Tac is neither preserved

under continuous image nor for quotients.

Example 4.6. The topological space (Z, T ), where T is the right topol-

ogy, is a Tac space. The identity function i: (Z, T ) → (Z, Ω), where Ω is the

indiscrete topology, is a continuous function. But the image of i is not a

Tac space.

Example 4.7. For the ring Z, the topological space Spec (Z) with

Zariski’s topology is a Tac space since δ (Spec (Z)) = Spec (Z) −

{{0}} = λ (Spec (Z)). Now the quotient topology for the quotient space

Spec (Z) / ∼, where ∼ is the relation defined by x ∼ y if and only if x and

y are maximals, is the indiscrete topology. Thus, Spec (Z) / ∼ is not a Tac

space.

Proposition 4.8. The property Tac is a topological invariant.

Proof. Let X, Y be homeomorphic topological spaces and X be a Tac

space. If y ∈ λ(Y ), then {y}′ ∩ δ(Y ) = ∅. Now there exists x ∈ X such

that f(x) = y. Then {f(x)}′ = {y}′. Therefore,

{f(x)}′ ∩ δ(Y ) = {y}′ ∩ δ(Y ) = ∅

f−1({f(x)}′ ∩ δ(Y )) = ∅

f−1 ({f(x)}′) ∩ f−1 (δ(Y )) = ∅.
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Since f is an homeomorphism we have that {f(x)}′ = f({x}′). The last

equality becomes {x}′ ∩ δ(X) = ∅. Thus, x ∈ λ(X). Then, x ∈ δ(X) and

{x}′ is a closed set. Therefore, f(x) ∈ f(δ(X)), f(x) ∈ δ(Y ), and f(x) = y

implies y ∈ δ(Y ).

In [3], a diagram of implications is presented showing the separation axioms

between T0 and T1. This diagram will be modified by inserting the Tac

spaces as in the following figure.

TD =⇒ Tac

⇓

TUD =⇒ T0

The next three examples show that Tac 6⇒ TUD, Tac 6⇒ T0, and T0 6⇒ Tac.

Example 4.9. For the topological spaces of Example 4.2, we have

δ (X) = {1, 2, 3, 6} and λ (X) = {2, 3, 6}. Thus, this space is not a Tac

space. We observe that {4}′ = {5, 6} is not the union of disjoint closed

sets. Thus, this space is neither a TUD space nor a TD space. Since 4 and 5

cannot be separated, this space is not a T0 space. In conclusion, Tac 6⇒ T0.

Example 4.10. Let R be the set of real numbers with the topology

generated by the base β = {(−∞, x) | x ∈ R}. For x < y, we have that

(−∞, y) is an open set that contains to x and not to y. For x ∈ R we have

{x}′ = (x,∞) which is not closed. Thus, δ (X) = ∅ and λ (X) = R. Then,

this space is a T0 space but it is not a Tac space. Therefore, T0 6⇒ Tac.

A natural question which arises from the above is whether or not TD =

TUD∩Tac. The answer is negative as we will show in the following example.

Example 4.11. As mentioned in Example 4.7, Spec (Z) is a Tac space,

because δ (Spec (Z)) = λ (Spec (Z)). Also, Spec (Z) is a TUD space. How-

ever, it is not a TD space.

Another interesting question is to determine when a T0 space is a Tac space

or vice versa. The next result shows a partial answer to this question.

Proposition 4.12. Let (X, T ) be a T0 space. If (X,≤T ) has enough

minimals, then X is a Tac space.
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Proof. We see that λ (X) ⊆ δ (X). If x /∈ δ (X), then {x}′ is not

closed. Now there exists a minimal y ∈ X and hence, a closed point such

that y ≤T x. Thus, y ∈ {x}′ and y ∈ {x}′ ∩ δ (X). Therefore, x /∈ λ (X).
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