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Abstract. Let G be a finite metabelian p-group whose non-linear
irreducible character degrees lie between p® and p?, where 1 < a < b. In
this paper it is shown that the nilpotence class of G is bounded by a function
of pand b — a.

1. Introduction. Let G be a finite p-group and, as usual, write c¢d(G)
to denote the set of degrees of irreducible complex characters of G. It is
an old result of Isaacs and Passman [3] that if cd(G) = {1,p°} with e > 1,
then G has nilpotence class at most p. On the other hand if cd(G) = {1, p},
the class of G can be arbitrarily large. More generally, it is known that for
some choices of S, where S is a finite set of powers of p, if ¢d(G) = S, then
the nilpotence class of G is bounded by some integer n(S) that depends
on S [2, 5, 6]. It is also shown that n(S) does not depend only on p [5].
Slattery in [6] showed that if G is a metabelian p-group, p® < x(1) < p® for
all non-linear y in Irr(G) and b < 2a — 2, then ¢(G), the nilpotence class of
G, is bounded by a function of p and b — a. However, by Theorem A of [2],
it is not really necessary and we only need 1 < a < 2b.

In this paper we will prove the following Theorem.

Main Theorem. Given a prime p and integers a and b with 1 < a < b,
let G be a metabelian p-group such that p® < y(1) < p® for all non-linear
X in Irr(G). Then the nilpotence class of G is bounded in terms of p and
b—a.

Using a result in [1] and arguing as in the proof of the main result of
[4], we conclude that if cd(G) contains p, then ¢(G) can be arbitrarily large.
Thus, the hypothesis that a > 1 is really necessary.

Our result improves a theorem in [2], where Isaacs and Moret6 proved
that in the situation of Theorem 1.1, the nilpotence class of G is bounded
in terms of pP.

2. Proof of the Main Theorem. We will use the following two
results.

Lemma 2.1. [2] Let G be a metabelian p-group and let p® be the largest
irreducible character degree of G. If p & ¢d(G), then ¢(G) <2+ (e — 1)p©.

Lemma 2.2. Suppose that G is a p-group and that p € c¢d(G). Let
1 < L« G with G/L cyclic. Then ¢(L) = ¢(G).



Proof. This is an immediate corollary of lemmas in [6] and [2].

To state the Theorem in a more precise way, we shall introduce some
convenient notation. Given a finite p-group G, we define

log,, (min(cd(G)\{1}, if G is non-abelian

G =
a(@) { 2 if G is abelian

)

and

5(G) = log, (b(G)) — al(G),

where b(G) is the largest irreducible character degree of G.
We will also need the following key lemma.

Lemma 2.3. Let G be a finite p-group and suppose that A is an abelian
normal subgroup of G with |G : A| = b(G). Let H and K be subgroups of
G, where AC H C K and |K : H| = p. Then

(i) a(K) <a(H)+ 1.
(i) 6(H) < §(K).

Proof. Since |G : H| < b(G), we deduce that H is non-abelian. Let
¢ € Trr(H) with (1) = p®). If a(K) > a(H) + 1, then ©¥ has a linear
constituent A. Hence, ¢(1) = Ag (1) = 1. This contradiction proves (i).
Using Theorem [1, 6.19], we conclude that A < L < G, then b(L) = p”,
where p® = b(G)/|G : L|. In particular, it follows that b(H) < b(K), and
hence by (i), we have §(H) < §(K), and the proof is complete.

Now, we are able to prove our main result.

Proof of the Main Theorem. Following the proof of Theorem 2.7 of
[2], we proceed by induction on |G| and we observe that the hypotheses
on G are inherited by homomorphic image G/N, where N < G. Since
§(G/N) < §(G) and the function 2 + (§(G) + 1)p*(©*2 is monotonic in
§(@), it follows that ¢(G/N) < 2+ (6(G) +1)p?(©)+2 for every non-identity
normal subgroup N. Therefore, we can assume that G has a unique minimal
normal subgroup, and thus, Z(G) is cyclic and G has a faithful irreducible
character x. Because G is metabelian, it follows that x is induced from a
linear character of a subgroup A 2D G’, and since A < G, we see that all
irreducible constituents of x 4 are linear. But y is faithful and therefore, A
is abelian and hence, no irreducible character of G has degree larger than
|G : Al = x(1). In particular, it implies that |G : A| = b(G).

We may now assume

A:G0<G1<"'<Gb(g)=G.

Since a(G1) = 1 [1] and a(G) > 2, Lemma 2.3(i) implies that a(G;) = 2
for some i. Fix m with a(G,,) = 2 and observe that by the previous
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lemma that p & cd(G;) for i = m,... ,b(G). Using Lemma 2.2, we deduce
¢(Gnm) = ¢(G), and it follows by Lemma 2.1 that

(Gm) <2+ (6(Gry) + 1)pPEmt2,
But Lemma 2.3(ii) implies that 6(G,,) < 6(G). Hence,
¢(G) <2+ (6(G) + 1)p>@+2,
That is, the nilpotence class of G is bounded in terms of p and b — a.
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