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Abstract. Every real polynomial with all real, distinct zeros has a

corresponding ratio vector that measures the distribution of critical num-

bers relative to the zeros. We prove several results on the ratio vectors of

Chebyshev polynomials, as well as polynomials with equally spaced zeros,

and contrast the behaviors of these families of polynomials.

Introduction. Real polynomials of degree n with n distinct real zeros

form a beautiful class of functions. By Rolle’s Theorem, between every pair

of zeros lies exactly one critical number, and the polynomial will oscillate

between relative minima and relative maxima as we proceed from one crit-

ical number to the next. Important examples of such functions abound –

the classical orthogonal polynomials are particularly notable.

In [2], P. Andrews used the Polynomial Root-Dragging Theorem [1] to

prove that for a degree n polynomial p(x) with distinct real zeros r1 < r2 <

· · · < rn and critical numbers c1 < c2 < · · · < cn−1, then

1

n − i + 1
<

ci − ri

ri+1 − ri

<
i

i + 1
, i = 1, . . . , n.

(This result was also proved by G. Peyser in 1967, almost 30 years prior to

Andrews’ work, using a different argument. While both were published in

the Monthly, it appears that Peyser’s work is less well-known.) An imme-

diate consequence of Andrews’ result is that no polynomial (with distinct

real zeros) of degree greater than 2 can have all of its critical numbers lying

exactly halfway between consecutive roots; in particular, the leftmost crit-

ical number must lie less than halfway between the first two roots, and the

rightmost critical number must lie more than halfway across the interval

formed by the last two roots.

Letting σi = ci−ri

ri+1−ri

and σ = (σ1, . . . , σn−1), σi is called the ith ratio

of p, and σ is the ratio vector of the polynomial p. Andrews showed that for

every cubic polynomial, σ1 < σ2; in [3], A. Horwitz proved that for every

quartic polynomial, σ1 < σ2 < σ3, and termed such polynomials as having

a “monotonic ratio vector.” Horwitz went on to show that every degree n

polynomial with n equally spaced real zeros (an “equispaced” polynomial)
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has a monotonic ratio vector, but that for every degree n ≥ 5, there exist

polynomials with non-monotonic ratio vectors.

In this paper, we consider the famous Chebyshev polynomials and

compare them to polynomials with equally spaced zeros. In particular, we

show that the ratio vector of every Chebyshev polynomial is monotonic

(Theorem 1), and also address the distribution of the ratios as n increases

without bound (Theorems 2, 3). Moreover, we take a closer look at the ratio

vector of equispaced polynomials, and prove similar results to Theorems 2

and 3 on Chebyshev polynomials (Theorems 4, 5). While many results on

the distribution of zeros of certain families of polynomials are known, the

propositions presented here focus on the distribution of critical numbers,

and do so relative to the zeros of the polynomial under consideration. We’ll

see that the critical numbers of Chebyshev polynomials stay very near the

midpoint of consecutive roots, while for polynomials with equally spaced

zeros, certain critical numbers tend toward the outer roots of the interval

in which they lie.

Chebyshev Polynomials. Chebyshev polynomials are a classic ex-

ample of orthogonal polynomials. In particular, they are a special case of

ultraspherical Jacobi polynomials, and are orthogonal with respect to the

inner product 〈f, g〉 =
∫ 1

−1
f(x)g(x) 1√

1−x2
dx. The roots of Chebyshev poly-

nomials find important applications in numerical analysis, since using the

roots as interpolatory nodes helps minimize the oscillations of interpolating

polynomials [4].

The degree n Chebyshev polynomial is defined by Tn(x) =

cos(n arccos(x)). It follows that the roots, rj , and the critical numbers,

cj , of Tn (in increasing order) are

rj = − cos

(

(2j − 1)π

2n

)

, j = 1, . . . , n, (1)

and

cj = − cos

(

jπ

n

)

, j = 1, . . . , n − 1. (2)

Knowing both the roots and critical numbers explicitly, these formulas allow

us to easily consider properties of the ratio vector, σ. One is that every

Chebyshev polynomial has a monotonic ratio vector.
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Theorem 1. For every n ≥ 3, the Chebyshev polynomial Tn(x) has a

monotonically increasing ratio vector.

Proof. Let Tn(x) be a Chebyshev polynomial of fixed degree n ≥ 3

and j ∈ {1, . . . , n− 1}. Using (1) and (2) and angle sum trig identities, we

observe that

σj =
cj − rj

rj+1 − rj

=
cos
(

2jπ
2n

)

− cos
(

(2j−1)π
2n

)

cos
(

(2j+1)π
2n

)

− cos
(

(2j−1)π
2n

) =

cos
(

2jπ
2n

)

− cos
(

2jπ
2n

)

cos
(

−π
2n

)

+ sin
(

2jπ
2n

)

sin
(

−π
2n

)

cos
(

2jπ

2n

)

cos
(

π
2n

)

− sin
(

2jπ

2n

)

sin
(

π
2n

)

− cos
(

2jπ

2n

)

cos
(

π
2n

)

+ sin
(

2jπ

2n

)

sin
(

−π
2n

) .

Some simplification reveals that

σj = −
1

2
cot

(

jπ

n

)

[

1 − cos
(

π
2n

)

sin
(

π
2n

)

]

+
1

2
. (3)

Since cot
(

jπ

n

)

is a decreasing function of j, we see that − 1
2 cot

(

jπ

n

)

is

increasing in j. Therefore, σj will increase as j increases, and the ratio

vector of any Chebyshev polynomial is monotonically increasing.

Moreover, (3) tells us that the ratios between positive roots of a Cheby-

shev polynomial increase at an increasing rate, in accordance with the con-

cavity of the negative cotangent function.

At this point, we have two prominent examples of families of polyno-

mials with monotone ratio vectors: the aforementioned polynomials with

equally spaced zeros and the Chebyshev polynomials. Numerical testing of

many examples of ultraspherical Jacobi polynomials leads us to conjecture

that every ultraspherical Jacobi polynomial has a monotone ratio vector,

lacking the simplicity of closed forms for the roots and critical numbers of

the Chebyshev polynomials; it is clear that other methods will be required

to prove this hypothesis.

However, there is much more we can say about Chebyshev polynomi-

als, as well as those with equally spaced zeros. Numerical investigation of

ratio vectors of these families reveals some interesting patterns: in both

types of functions, the ratios in intervals between consecutive roots near

the origin appear to approach 1
2 , while the ratios nearest the outer root of
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the respective polynomials behave very differently. In the next sections, we

explore these phenomena in more detail.

Select Ratios of Chebyshev Polynomials. We first consider what

we will call the “inner” ratios of a Chebyshev polynomial. In particular,

for an odd Chebyshev polynomial of degree 2n+1, it is natural to examine

σn+1, the first “positive” ratio between roots rn+1 = 0 and rn+2. We’ll go

on to consider σn+j for a given fixed j and, in each case, allow the degree

of the polynomial to increase. It turns out that all such ratios decrease

monotonically to 1
2 as n increases without bound. We’ll then examine the

“outer” ratios, σ2n−j , j = 0, 1, . . . , looking at those among the outermost

roots and find an intriguing pattern there as well. Similar results hold for

the even case.

We briefly note that for an odd polynomial of degree 2n + 1, it is

straightforward to verify that σn−j + σn+j+1 = 1 (j = 1, . . . , n − 1), due

to symmetry. For an even polynomial of degree 2n, σn = 1/2, and σn−j +

σn+j = 1 (j = 1, . . . , n − 1). As such, it always suffices to consider the

“positive” ratios between positive roots.

Theorem 2. Let T2n+1(x) be a degree 2n + 1 Chebyshev polynomial.

Then for each j ∈ N,

lim
n→∞

σn+j =
1

2
.

Proof. Let T2n+1(x) be an odd Chebyshev polynomial of degree 2n+1

and j be a natural number. Recalling (3), and replacing n by 2n + 1 and j

by n + j, we have that

σn+j = −
1

2
cot

(

(n + j)π

2n + 1

)





1 − cos
(

π
4n+2

)

sin
(

π
4n+2

)



+
1

2
. (4)

Note that (for sufficiently large n)

−
1

2
cot

(

(n + j)π

2n + 1

)
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is a positive number that decreases to zero as n → ∞. It is straightforward

to verify that

1 − cos
(

π
4n+2

)

sin
(

π
4n+2

)

is a positive decreasing function of n, so therefore, the nonconstant portion

of (4) decreases to zero.

Hence, σn+j is a decreasing function of n and limn→∞ σn+j = 1
2 for

each fixed j > 0.

A similar argument proves that the inner ratios of even Chebyshev

polynomials tend to 1/2. In that case, we note that σn, the “center” ratio,

is precisely 1/2 for all n, because that particular critical number is always

zero, centered between the first positive and first negative root.

We next look at the “outer” ratios of Tn(x) and find a pattern in their

behavior. Here it is no longer necessary to distinguish between the odd and

even cases, and it again suffices to consider the ratios to the right of the

origin.

Theorem 3. Let j be a natural number and Tn(x) a degree n Chebyshev

polynomial. Consider the jth ratio from the rightmost root of Tn, σn−j .

Then

lim
n→∞

σn−j =
4j + 1

8j
.

Proof. Let j be a natural number with n sufficiently large. Using (1)

and (2), we substitute cn−j , rn−j , and rn−j+1 appropriately, and take the

limit as n → ∞. Hence,

lim
n→∞

σn−j = lim
n→∞

cn−j − rn−j

rn−j+1 − rn−j

= lim
n→∞

− cos
(

2(n−j)π
2n

)

+ cos
(

(2(n−j)−1)π
2n

)

− cos
(

(2(n−j+1)−1)π
2n

)

+ cos
(

(2(n−j)−1)π
2n

)

= lim
n→∞

cos
(

π − 2jπ
2n

)

− cos
(

π − (2j+1)π
2n

)

cos
(

π − (2j−1)π
2n

)

− cos
(

π − (2j+1)π
2n

) . (5)

5



Following two applications of L’Hôpital’s Rule and some simplification, we

find that

lim
n→∞

σn−j

= lim
n→∞

− cos
(

π − 2jπ

2n

)

[2j]
2
+ cos

(

π − (2j+1)π
2n

)

[2j + 1]
2

− cos
(

π − (2j−1)π
2n

)

[2j − 1]
2

+ cos
(

π − (2j+1)π
2n

)

[2j + 1]
2
.

As n approaches ∞, each of the expressions involving the cosine function

tend to −1, so it follows that

lim
n→∞

σn−j =
(2j)2 − (2j + 1)2

(2j − 1)2 − (2j + 1)2
=

4j + 1

8j
. (6)

This result shows that the overall distribution of critical numbers in

Chebyshev polynomials of large degree is very “centered”: the leftmost

ratios can go as low as 3/8, the center ratios all approach 1/2 as n gets

large, and the outermost ratios only end up as large as 5/8, with a strict

pattern of increase and decrease as one moves in from the extremes. In

fact, 5/8 is an upper bound on the rightmost ratio, and therefore, on all

ratios of a Chebyshev polynomial. It is not difficult to prove this bound by

setting j = 1 in (5).

This near centering of the critical numbers of Chebyshev polynomials

stands in contrast to the behavior of odd and even polynomials with equally

spaced zeros, where the ratios eventually range from arbitrarily close to zero

to as near to 1 as we like.

Select Ratios of Polynomials with Equally Spaced Zeros. In

[5], K. MacLean proved that for odd polynomials with equally spaced zeros,

the outermost critical number approaches the outermost root. That is,

for the odd polynomials with roots at 0,±1, . . . ,±n, and critical numbers

±c0, . . . ,±cn−1, limn→∞(n− cn−1) = 0. Said differently, this says that the

outermost ratio of such an “equispaced” polynomial approaches 1 as the

degree of the polynomial is allowed to increase without bound.

In what follows, we first generalize the argument in [5] to show that for

any fixed j, the j outermost positive ratios all tend to 1 as the degree of the
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polynomial increases without bound. In addition, we prove a result regard-

ing the positive ratios near the origin, showing that, like the Chebyshev

polynomials, these all decrease to 1/2 as n increases.

For the rest of the paper we modify our notation slightly. For an odd

polynomial we let

p(x) = x

n
∏

i=1

(x2 − r2
i ),

where 0 < r1 < · · · < rn are the distinct real, non-negative roots of p.

When convenient, we will call r0 = 0. In addition, we denote the critical

numbers by ±c0, . . . ,±cn−1, where the positive critical numbers increase

with the index n. As noted earlier, due to symmetry about the origin, we

can simply consider “positive” ratios

σi =
ci − ri

ri+1 − ri

,

i = 0, . . . , n − 1. If needed, we refer to the corresponding negative ratio,

σ−i, given by

σ−i =
−ci + ri+1

−ri + ri+1
,

and again remark that σ−i + σi = 1.

Theorem 4. Let

p(x) = x

n
∏

i=1

(x2 − i2)

be an odd polynomial with equally spaced zeros, and choose a natural

number j. Then lim
n→∞

σn−j = 1.

Proof. Let j ∈ N and n be sufficiently large. Consider the critical

point cn−j between the roots n − j and n − j + 1. For some εn such that

0 < εn < 1, we have that cn−j = n − j + 1 − εn. The corresponding ratio,

σn−j , is given by 1− εn, so we simply need to show that εn → 0 as n → ∞.
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Observe that

p′(x)

p(x)
=

1

x + n
+ · · · +

1

x + 1
+

1

x
+

1

x − 1
+ · · · +

1

x − n
=

n
∑

i=−n

1

x − i
.

Since cn−j = n − j + 1 − εn is a critical point of p(x), we have

p′(n − j + 1 − εn)

p(n − j + 1 − εn)
= 0 =

n
∑

i=−n

1

n − j + 1 − εn − i
. (7)

Rewriting the righthand equation in (7) and breaking it into two separate

sums, it follows that

j−1
∑

i=0

1

i + εn

=
1

2n − j + 1 − εn

+ · · · +
1

1 − εn

.

Since εn > 0 and
1

i + εn

<
1

εn

for all i ≥ 1,

j−1
∑

i=0

1

εn

>

j−1
∑

i=0

1

i + εn

=
1

2n− j + 1 − εn

+· · ·+
1

1 − εn

>
1

2n − j + 1
+· · ·+

1

1
.

(8)

Hence, we find that

j

εn

>

2n−j+1
∑

i=1

1

i
.

Since

2n−j+1
∑

i=1

1

i

diverges as n → ∞, we conclude that εn goes to 0. Thus, lim
n→∞

σn−j = 1.
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Next, as with the Chebyshev polynomials, we examine the positive

ratios near the origin and consider the behavior of these values as the degree

of an odd polynomial with equally spaced zeros increases without bound.

Specifically, we will consider the jth ratio to the right of the origin, denoting

this by σj . Note particularly that, due to the indexing of r0 = 0, there is a

“zeroth” ratio, σ0, that measures the ratio of the critical number between

r0 = 0 and r1 = 1.

Theorem 5. Let

En(x) = x

n
∏

i=1

(x2 − i2)

be an odd polynomial of degree 2n + 1 with equally spaced zeros, and j be

a fixed nonnegative integer. If σj denotes the jth positive ratio of En(x),

then

lim
n→∞

σj =
1

2
.

Proof. Since En(x) has roots located at integer values, we first see that

lim
n→∞

σj = lim
n→∞

cj − rj

rj+1 − rj

= lim
n→∞

cj − j

j + 1 − j
= lim

n→∞
cj − j. (9)

Thus, our problem of finding the limit of the jth positive ratio has

been narrowed to the problem of finding the limit of the jth positive critical

number as n → ∞. For clarity, we will denote this critical number by cj,n,

and remark explicitly that cj,n ∈ [j, j + 1].

Let n ≥ j + 1 be a natural number. We first show that cj,n ∈ [j +
1
2 , j +1). The upper bound is obvious. For the lower bound, assume to the

contrary that cj,n < j + 1
2 . Hence, cj,n = j + tn, where 0 < tn < 1

2 . It

follows that

σj = cj,n − j = tn <
1

2
.

Since En is odd, the corresponding negative ratio σ−j is 1− tn > 1/2.

This contradicts the known fact that polynomials with equally spaced zeros

have monotonic ratio vectors. Thus, cj,n is bounded below by j + 1
2 .
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Next, we proceed to show that as the degree of En(x) increases, where

En(x) remains an odd polynomial with equally spaced zeros, cj,n decreases

monotonically. We consider

E′
n(x)

En(x)
=

n
∑

i=1

2x

x2 − i2
+

1

x
(10)

and note that evaluating (10) at cj,n gives

E′
n(cj,n)

En(cj,n)
=

n
∑

i=1

2cj,n

c2
j,n − i2

+
1

cj,n

= 0. (11)

Now consider En+1(x), a polynomial of degree 2n + 3, where En+1(x)

has additional roots at ±(n + 1). Evaluating at cj,n, we find that, by (11),

E′
n+1(cj,n)

En+1(cj,n)
=

n+1
∑

i=1

2cj,n

c2
j,n − i2

+
1

cj,n

=

n
∑

i=1

2cj,n

c2
j,n − i2

+
1

cj,n

+
2c2

j,n

c2
j,n − (n + 1)2

=
2cj,n

c2
j,n − (n + 1)2

.

Since 0 ≤ j < cj,n < j + 1 ≤ n < n + 1, it follows that c2
j,n < (n + 1)2, so

E′
n+1(cj,n)

En+1(cj,n)
< 0. (12)

The jth positive critical number of En+1(x) is cj,n+1, so we know that

E′
n+1(cj,n+1)

En+1(cj,n+1)
= 0. (13)
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Since
E′

n+1(x)

En+1(x) is a strictly decreasing function between its asymptotes, (12)

and (13) together imply that cj,n+1 < cj,n. Hence, as we increase the degree

of En, the critical point between j and j + 1 will decrease monotonically.

Having already proved cj,n is bounded below by j + 1/2, it follows that for

each integer j ≥ 0, there exists some Lj ∈ [j + 1/2, j + 1) such that

lim
n→∞

cj,n = Lj .

We conclude by showing that Lj is in fact j+1/2. Multiplying (11) through

by cj,n and subtracting 1, we find that

n
∑

i=1

2c2
j,n

c2
j,n − i2

= −1. (14)

Letting n → ∞ in (14), we observe that

lim
n→∞

(

n
∑

i=1

2c2
j,n

c2
j,n − i2

)

= −1. (15)

It is now natural to consider the function

f(L) =

∞
∑

i=1

2L2

L2 − i2
.

Using the calculus of residues as applied to the summation of real series [7],

it is possible to show that

f(L) =

∞
∑

i=1

2L2

L2 − i2
= π cot(πL) − 1. (16)

(The authors thank Paul Fishback for suggesting this elegant argument.)
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This shows that f is continuous on (j, j + 1) for all nonnegative integers j

and, along with (15), allows us to conclude that

π cot(πLj) − 1 =
∞
∑

i=1

2L2
j

L2
j − i2

= −1. (17)

Recalling that Lj ∈ (j, j+1), it follows immediately that Lj = 2j+1
2 = j+ 1

2

for each j ≥ 0. Thus, cj,n → Lj = j + 1
2 , and therefore, each of the first

j positive ratios tend to 1
2 as we increase the degree of the polynomial

without bound.

Results similar to Theorems 4 and 5 hold in the case that En is an

even polynomial with equally spaced zeros.

Conclusion. These results on the ratio vectors of Chebyshev and eq-

uispaced polynomials provide some insight into the very different behavior

of these functions, as shown in Figure 1. Because the ratios of Chebyshev

polynomials are always close to 1/2, it seems that the function is naturally

minimizing the amount of room it has available to grow until it reaches a

turning point. This is also seen in the “equioscillatory” behavior of the poly-

nomial. Equispaced polynomials, on the other hand, push the outer critical

numbers near the outermost roots, in some sense allowing more space for

the function to increase or decrease until having to turn. Of course, these

phenomena are due directly to the (very different) distribution of zeros,

from which the respective distributions of critical numbers follows.
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Figure 1: Degree 9 equispaced and Chebyshev polynomials. The equis-

paced polynomial is scaled to have all its zeros in [−1, 1]; the Chebyshev

polynomial is scaled to be monic.
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