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Abstract. A bijection between topological spaces, locally homeomor-
phic to the square of Sierpinski space, and graphs without isolated vertices
is established. This is used to describe some topological properties of these
spaces in combinatorial terms and to disprove a conjecture of Rostami [3]
in particular.

1. Introduction. Locally 2-Sierpinski spaces (lS2 spaces for short)
have been introduced in [3] as extensions of the notion of a locally Sier-
pinski space given in [1]. A topological space X is said to be an lS2

space, if every point in X possesses an open neighborhood, U, home-
omorphic to the product S2 of two Sierpinski spaces, i.e., U consists
of four points U = {a, b1, b2, c} and the subspace topology is given by
{∅, {a}, {a, b1}, {a, b2}, U}.

As done in [1] and [2] for a locally Sierpinski space the points in X can be
partitioned into three pair-wise disjoint sets:

X0 = {x ∈ X | {x} open}, the set of suns,

X1 = {x ∈ X | x has a two point minimal neighborhood},

the set of 1-satellites, and

X2 = {x ∈ X | x has an S2-type minimal open neighborhood},

the set of 2-satellites.

Let M be the subset of X, given by

M = {M ⊂ X | M is open and homeomorphic to S2}.

Since the S2-type minimal neighborhoods are uniquely associated to their
centers, the map

Ψ:X2 −→ M

x → Mx,
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where Mx is the minimal S2-type neighborhood containing x, is well de-
fined. In fact, Ψ is a bijective map. Besides, the map

χ:M −→ X0

M → x0,

where x0 is the sun of M , is surjective.

Each M ∈ M contains exactly two points of X1. Let P2(X1) denote the
set of two-point subsets of X1 and consider the map,

Φ:M → P2(X1)

M → M2,

where M2 is the two-point subset of X1 contained in M .

It can be seen immediately that:

a) For any M1, M2 ∈ M, Φ(M1)∩Φ(M2) 6= ∅ implies χ(M1) = χ(M2).
b) The connected components of X are given by

Cx :=
⋃

{M ∈ M|χ(M) = x}, x ∈ X0,

and they are open. Hence, X is the topological sum of its connected
components Cx, x ∈ X0.

Consequently, the essential information for the characterization of the topo-
logical structure of X is stored in the interrelations between X1 and X2.
From now on we shall assume that X is connected, that is, #X0 = 1.

2. The Associated Graph. Let (X, T ) be a connected lS2 space,
{∗} its unique sun, i.e., {∗} = X0. We may associate to X a graph, (V, E),
as follows:

i) the vertex set, V , is given by X1, i.e. V = X1;
ii) to every point x ∈ X2 corresponds exactly one edge ex ∈ E con-
necting the two-point subsets of X1, which belong to Ψ(x), that is,

E = {ex connecting the two 1-satellites in (Φ(Ψ(x)) ⊂ V = X1}.

It should be pointed out that the same two vertices may be connected by
several edges. This graph will be called the graph of 1-satellites of (X, T ).
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As will be seen from the proof of the following theorem, this graph contains
all information on the lS2 space X .

Theorem 1. Any graph (V, E) without isolated vertices can be inter-
preted as the graph of 1-satellites of a connected locally 2-Sierpinski space
(X, T ). This construction gives a bijective correspondence between these
graphs and all homeomorphism classes of connected lS2 spaces.

Proof. Let G = (V, E) be a graph without isolated vertices. We may
construct an lS2 space X whose graph of its 1-satellites is precisely G as
follows. Let X be the disjoint union X0∪̇X1∪̇X2, where X0 := {∗}, X1 :=
V , and X2 := E. Define,

B := {∗} ∪ {{∗, v}|v ∈ V } ∪ {{∗, v1, v2, e}| e ∈ E, e connects v1 and v2}.

Take set B for a basis of a topology T of X . Since sets of type {∗, v1, v2, e},
where e ∈ E connects v1 and v2, are open and have the S2-topology as
subspace topology, and (V, E) has no isolated vertices, every point x ∈ X

can be found in one of these sets. This implies that (X, T ) is lS2.

It should be pointed out that the graphs (V, E) under consideration may
have several components and cycles with two vertices only, i.e., two distinct
edges connecting the same vertices.

The above characterization of lS2 spaces enables us to establish special
types of such spaces using combinatorial terms.

Let (X, T ) be a connected lS2. Then (X, T ) is called

- unsplit, if the associated graph of 1-satellites (V, E) does not contain
any cycle with two vertices only,

- full, if (X, T ) is unsplit and (V, E) is a complete graph,
- sparse, if (X, T ) is unsplit and any vertex of (V, E) is an endpoint.

3. Extensions and Reductions of an lS2. An extension of an lS2

space (X, T ) by splitting consists of adding a 2-satellite, which leads to a
new cycle with (only) two vertices in the associated graph of 1-satellites.

An extension of an lS2 space (X, T ) by filling consists in the addition of a
2-satellite, which corresponds to the addition of an edge in the associated
graph of 1-satellites connecting vertices which had not been connected be-
fore. Extensions of an lS2 by fillings are sometimes possible, while splittings
are always possible. For this situation we have the following proposition.

Proposition 1. An extension of the (connected) lS2 space (X, T ) by
splittings or fillings contains the given space as an open dense set.

Proof. According to Theorem 1, such an extension (X̃, T̃ ) will be given
by

X̃ = {∗}∪̇X1∪̇X̃2,
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where
X = {∗} ∪ X1 ∪ X2

and X2 ⊂ X̃2.

Taking in account that

X =
⋃

{M | M ∈ M} =
⋃

{M | M ∈ M, M ⊂ X}

and that, by the given construction, any M ∈ M is an open subset of X̃,
X is an open subset of X̃. Moreover, any neighborhood of x̃ ∈ X̃2 will
contain ∗ ∈ X and so X is dense in X̃.

Proposition 2. Every lS2 space (X, T ) can be reduced to an unsplit

lS2 space (Xu, Tu) such that Xu is an open dense subset of X . Up to a
homeomorphism, this subset is uniquely determined.

Proof. Consider the associated graph of 1-satellites G = (V, E) of
(X, T ). If G contains a cycle of 2-vertices, remove one of the edges. This
procedure may continue until the reduced graph will have no such cycles.
According to Theorem 1, there exists an lS2 space (Xu, Tu) associated to
the reduced graph. Obviously, (X, T ) can be reconstructed, by splitting
from (Xu, Tu) and so, according to Proposition 1, Xu is an open dense
subset of X .

In the above procedure, the choice of the edges to be removed is arbitrary.
Different choices clearly lead to distinct unsplit lS2 spaces. Next, we shall
show that different choices lead to homeomorphic lS2 spaces.

Let X̃u be a second such reduction. With the obvious notations, we get

Xu = {∗}∪̇X1∪̇Xu2, X̃u = {∗}∪̇X1 ∪ X̃u2.

Denote by Υ = Ψ ◦ Φ. Since, in the unsplit situation, the maps

Υu: Xu2 → P2(X1) and Υ̃u: X̃u2 → P2(X1)

are injective and have the same image, we can extend the identity on {∗}∪
X1 by

Υ̃−1
u

|Υu(X
u2

) ◦ Φu

to a bijection F from Xu to X̃u which is open and continuous, because
1-point, 2-point, and 4-point open sets are preserved. Hence, F is a home-
omorphism.

Remark 1. It follows immediately that
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a) (X, T ) is unsplit. ⇐⇒ Υ: X2 → P2(X1) is injective.
b) Every (not necessarily connected) unsplit lS2 is a dense subset of a
topological sum of full lS2 spaces.

Remark 2. In [3] M. Rostami conjectured that, in addition to the above
conclusions, an lS2 space X admits a decomposition

X1 = X1
1 ∪̇X2

1 with surjections pi : X2 → X i

1, i = 1, 2,

such that Φ(Ψ(x)) = {p1(x), p2(x)} for all x ∈ X2.

That this conjecture is not true can be seen as a consequence of Theorem
1. But in the case of a finite X , we can also see this from the following:

a) Assuming that his conjecture holds, it implies that

#X1 = #X1
1 + #X2

1 ≤ 2#X2.

Going to the unsplit reduction, we get

#X̂2 = #Φ(Ψ(X̂2)) ≤ P2(X1)

≤ #X1
1 · #X2

1

≤
1

4
(#X1)

2.

In terms of the associated graph of 1-satellites of the unsplit reduction,
the first inequality will be an equality if every vertex of X1

1 is connected
with every vertex of X2

1 , and the second one will be an equality if
#X2

1 = #X1
1 . This implies #X̂2 = 1

4 (#X1)
2. In particular #X1 has

to be even, which reduces the generality proved in Theorem 1. Rostami
assumed that the graph has to be bipartite, which does not hold true
in general.
b) Rostami’s conditions easily can be seen to hold true if the lS2 is
sparse.

The fact that, in lS2 spaces, each point has a minimal neighborhood, imme-
diately restricts the converging sequences. In fact, if (xn)n∈N is a convergent
sequence in an lS2 space, whose limit is:

a) a sun ∗, then the sequence will stabilize at {∗};
b) a 1-satellite x ∈ X1, then the sequence will stabilize in {∗, x};
c) a 2-satellite y ∈ X2, then the sequence will stabilize in the S2-type
open subset {∗, y}∪Υ(y). In particular, a flipping sequence alternating
between the two points in Υ(y) = {x1, x2} converges to y. That is, the
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only case of an alternating sequence between x1 and x2 in X1 that is
convergent. Moreover, the limit consists of Ψ−1(Φ−1({x1, x2})).

From these considerations, we get the following proposition.

Proposition 3. An unsplit connected lS2 space is full if and only if
every flipping sequence of 1-satellites is convergent. The limit is a uniquely
determined 2-satellite.

A 2-Sierpinski space may be obtained as the orbit space of the operation
of a group of homeomorphisms on the unit circle S1 as follows. Consider
S1 as the Alexandroff compactification of R and take the operation on R

defined in [2] having three orbits a, b1, b2 such that the quotient topology is
given by the open sets ∅, {a}, {a, b1}, {a, b2}, {a, b1, b2}, (which is a Sierpin-
ski space). Keeping ∞ fixed, this operation naturally extends to S1 leading
to the additional orbit c = {∞}. Obviously, the only neighborhood of c

in the quotient topology is given by {a, b1, b2, c}. It is an open question to
determine if lS2 spaces occur as a quotient of such group operations.
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