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FARKAS’ LEMMA AND MULTILINEAR FORMS

Larry Downey

Abstract. In this note, we give a simple counterexample to a version
of Farkas’ Lemma for multilinear forms, and provide an elementary proof of
a positive result for a special case. We also mention some remaining open
problems.

The classical Farkas’ Lemma states that if A1, A2, . . . , Ak and A are
real linear forms with the property that Ai(v) ≥ 0 for all i = 1, . . . , k

implies that A(v) ≥ 0, then in fact A =
∑k

i=1 αiAi, where αi ≥ 0 for each
i = 1, . . . , k.

Numerous papers [1, 2, 3] have been published concerning novel proofs
or generalizations of this useful result. In this paper, we consider an ex-
tension to multilinear forms. We give a positive result and pose some open
problems, but Farkas’ Lemma cannot be extended to multilinear forms in
general, as Example 1 shows.

Example 1. Let A, B, C: R2 × R
2 → R be the bilinear forms given by

A(x, y) = (2x1 + 3x2)y1 + (x1 + 2x2)y2

B(x, y) = (3x1 + x2)y1 + (2x1 + x2)y2

C(x, y) = (2x1 + x2)y1 + (x1 + x2)y2.

We claim that whenever A(x, y) ≥ 0 and B(x, y) ≥ 0, then C(x, y) ≥ 0, but
that C is linearly independent of A and B. To see this, first note that if
x = (0, 0), then A(x, y) = B(x, y) = C(x, y) = 0 for any y. Thus, from here
on we assume that x 6= (0, 0). Now, for a given x, let Ax, Bx, and Cx denote
the linear forms obtained by “fixing” x (i.e. Ax(y) = A(x, y) etc.). In order
that Cx be a linear combination of Ax and Bx, say Cx = αxAx +βxBx, αx

and βx must be solutions of

(

2x1 + 3x2 3x1 + x2

x1 + 2x2 2x1 + x2

) (

αx

βx

)

=

(

2x1 + x2

x1 + x2

)

.

But the determinant of the matrix on the left is x2
1 + x1x2 + x2

2, which is
strictly positive. Hence, for each x, αx and βx are uniquely determined and
given by

(

αx

βx

)

=
1

x2
1 + x1x2 + x2

2

(

2x1 + x2 −3x1 − x2

−x1 − 2x2 2x1 + 3x2

) (

2x1 + x2

x1 + x2

)

=
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Now, if C were a linear combination of A and B, αx, and βx would nec-
essarily be constant functions of x, which they clearly are not. Moreover,
notice that αx and βx are nonnegative for each x(x 6= 0). Therefore, if
A(x, y) ≥ 0 and B(x, y) ≥ 0, then C(x, y) = αxA(x, y) + βxB(x, y) ≥ 0.
So we see that A, B and C satisfy the hypothesis of Farkas’ Lemma, even
though C is linearly independent of A and B.

It turns out that Farkas’ Lemma is true for multilinear forms in the
special case when k = 1. We make use of Theorem 1 below, found in [4].
We note here that the strength of the following results is that the spaces
are not assumed to be finite dimensional.

Theorem 1. Let A and B be two n-linear forms on the product E1 ×

. . .×En of n vector spaces, with A−1(0) ⊆ B−1(0). Then B = αA for some
α ∈ K.

Theorem 2. Let A and B be two n-linear forms on the product E1 ×

· · · × En of n vector spaces. If A−1[0,∞) ⊆ B−1[0,∞), then B = αA for
some α ≥ 0.

Proof. Let us first assume B 6= 0. Suppose that for some vector v,
that A(v) = 0 and B(v) 6= 0. By our assumption, B(v) > 0. But then
A(−v) = 0 and B(−v) < 0, contradicting the hypothesis. Hence, it must
be that A−1(0) ⊆ B−1(0). Theorem 1 then gives us that A = αB for some
α. However, the hypothesis necessitates that α ≥ 0. If B = 0, it is clear by
the hypothesis that A = 0, so we may choose α = 0.

We mention now some related open problems. Note that Example 1
relied on the fact that a polynomial in two real variables can be strictly
positive. This leaves open the possibility of a positive result for n-linear
forms where n is odd. Furthermore, the forms in the counterexample are
not symmetric, and the restriction of all forms involved to symmetric ones
also warrants investigation.
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