FARKAS' LEMMA AND MULTILINEAR FORMS

Larry Downey

Abstract

In this note, we give a simple counterexample to a version of Farkas' Lemma for multilinear forms, and provide an elementary proof of a positive result for a special case. We also mention some remaining open problems.

The classical Farkas' Lemma states that if $A_{1}, A_{2}, \ldots, A_{k}$ and A are real linear forms with the property that $A_{i}(v) \geq 0$ for all $i=1, \ldots, k$ implies that $A(v) \geq 0$, then in fact $A=\sum_{i=1}^{k} \alpha_{i} A_{i}$, where $\alpha_{i} \geq 0$ for each $i=1, \ldots, k$.

Numerous papers $[1,2,3]$ have been published concerning novel proofs or generalizations of this useful result. In this paper, we consider an extension to multilinear forms. We give a positive result and pose some open problems, but Farkas' Lemma cannot be extended to multilinear forms in general, as Example 1 shows.

Example 1. Let $A, B, C: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the bilinear forms given by

$$
\begin{aligned}
& A(x, y)=\left(2 x_{1}+3 x_{2}\right) y_{1}+\left(x_{1}+2 x_{2}\right) y_{2} \\
& B(x, y)=\left(3 x_{1}+x_{2}\right) y_{1}+\left(2 x_{1}+x_{2}\right) y_{2} \\
& C(x, y)=\left(2 x_{1}+x_{2}\right) y_{1}+\left(x_{1}+x_{2}\right) y_{2} .
\end{aligned}
$$

We claim that whenever $A(x, y) \geq 0$ and $B(x, y) \geq 0$, then $C(x, y) \geq 0$, but that C is linearly independent of A and B. To see this, first note that if $x=(0,0)$, then $A(x, y)=B(x, y)=C(x, y)=0$ for any y. Thus, from here on we assume that $x \neq(0,0)$. Now, for a given x, let A_{x}, B_{x}, and C_{x} denote the linear forms obtained by "fixing" x (i.e. $A_{x}(y)=A(x, y)$ etc.). In order that C_{x} be a linear combination of A_{x} and B_{x}, say $C_{x}=\alpha_{x} A_{x}+\beta_{x} B_{x}, \alpha_{x}$ and β_{x} must be solutions of

$$
\left(\begin{array}{cc}
2 x_{1}+3 x_{2} & 3 x_{1}+x_{2} \\
x_{1}+2 x_{2} & 2 x_{1}+x_{2}
\end{array}\right)\binom{\alpha_{x}}{\beta_{x}}=\binom{2 x_{1}+x_{2}}{x_{1}+x_{2}} .
$$

But the determinant of the matrix on the left is $x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$, which is strictly positive. Hence, for each x, α_{x} and β_{x} are uniquely determined and given by

$$
\begin{aligned}
\binom{\alpha_{x}}{\beta_{x}} & =\frac{1}{x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}}\left(\begin{array}{cc}
2 x_{1}+x_{2} & -3 x_{1}-x_{2} \\
-x_{1}-2 x_{2} & 2 x_{1}+3 x_{2}
\end{array}\right)\binom{2 x_{1}+x_{2}}{x_{1}+x_{2}} \\
& =\binom{\frac{x_{1}^{2}}{x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}}}{\frac{x_{2}^{2}}{x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}}} .
\end{aligned}
$$

Now, if C were a linear combination of A and B, α_{x}, and β_{x} would necessarily be constant functions of x, which they clearly are not. Moreover, notice that α_{x} and β_{x} are nonnegative for each $x(x \neq 0)$. Therefore, if $A(x, y) \geq 0$ and $B(x, y) \geq 0$, then $C(x, y)=\alpha_{x} A(x, y)+\beta_{x} B(x, y) \geq 0$. So we see that A, B and C satisfy the hypothesis of Farkas' Lemma, even though C is linearly independent of A and B.

It turns out that Farkas' Lemma is true for multilinear forms in the special case when $k=1$. We make use of Theorem 1 below, found in [4]. We note here that the strength of the following results is that the spaces are not assumed to be finite dimensional.

Theorem 1. Let A and B be two n-linear forms on the product $E_{1} \times$ $\ldots \times E_{n}$ of n vector spaces, with $A^{-1}(0) \subseteq B^{-1}(0)$. Then $B=\alpha A$ for some $\alpha \in \mathbb{K}$.

Theorem 2. Let A and B be two n-linear forms on the product $E_{1} \times$ $\cdots \times E_{n}$ of n vector spaces. If $A^{-1}[0, \infty) \subseteq B^{-1}[0, \infty)$, then $B=\alpha A$ for some $\alpha \geq 0$.

Proof. Let us first assume $B \neq 0$. Suppose that for some vector v, that $A(v)=0$ and $B(v) \neq 0$. By our assumption, $B(v)>0$. But then $A(-v)=0$ and $B(-v)<0$, contradicting the hypothesis. Hence, it must be that $A^{-1}(0) \subseteq B^{-1}(0)$. Theorem 1 then gives us that $A=\alpha B$ for some α. However, the hypothesis necessitates that $\alpha \geq 0$. If $B=0$, it is clear by the hypothesis that $A=0$, so we may choose $\alpha=0$.

We mention now some related open problems. Note that Example 1 relied on the fact that a polynomial in two real variables can be strictly positive. This leaves open the possibility of a positive result for n-linear forms where n is odd. Furthermore, the forms in the counterexample are not symmetric, and the restriction of all forms involved to symmetric ones also warrants investigation.

References

1. V. Komornik, "A Simple Proof of Farkas' Lemma," Amer. Math. Monthly, 105, (1998), 949-950.
2. D. Avis and B. Kaluzny, "Solving Inequalities and Proving Farkas' Lemma Made Easy," Amer. Math. Monthly, 111, (2004), 152-157.
3. A. Dax, "An Elementary Proof of Farkas' Lemma," SIAM Rev., 39, (1997), 503-507.
4. R. Aron, L. Downey, and M. Maestre, "Common Zero Sets And Linear Dependence of Multilinear Forms," Note Di Matematica, 25, (20052006), 49-54.

Mathematics Subject Classification (2000): 46T99, 15A69
Larry Downey
School of Science
Penn State University at Erie
Station Road
Erie, PA 16563
email: lmd108@psu.edu

