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ABSTRACT. In this article, we introduce s-cluster sets of functions
and multifunctions and investigate their various properties. Such
investigations provide a new technique for studying s-closed spaces
[7] and weakly Hausdorff spaces [9].

1. INTRODUCTION

The notion of cluster set has been extensively studied in real and analytic
function theory. The book of Collingwood and Lohwater [1], in this regard,
is quite remarkable. In [12], Weston initiated the investigation of cluster
sets for arbitrary functions between topological spaces and subsequently,
cluster sets for functions and multifunctions in general topology have been
investigated by, Hamlett [3,4], Joseph [5] and Mukherjee and Debray [8].

In this paper, we introduce a new kind of cluster sets under the terminol-
ogy s-cluster set which provides a new technique for the study of s-closed
spaces. An explicit expression of s-cluster set of a function in terms of
filters and grills have been given. Several sufficient conditions for having
degenerate s-cluster sets and for characterizing weakly Hausdorff spaces in
terms of degeneracy of s-cluster sets of a suitable function are given. Fi-
nally, as an application, we have been able to achieve our goal for giving
some new characterizations of s-closed spaces.

Throughout this paper, spaces X and Y mean topological spaces on
which no separation axioms are assumed unless explicitly stated. For any
subset A of a space X, clA and intA represent the closure of A and the
interior of A, respectively. A subset A of a space X is said to be regular
open ( resp. regular closed ) if A =int clA (resp. A =cl intA ) and A is
called semi-open [6] if for some open set U, U C A C clU. The complement
of a semi-open set is called semi-closed set. The set which is both semi-open
as well as semi-closed is called the semi-regular set [7]. The set of all open
sets (resp. semi-open sets, semi-regular sets), each containing a given point
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x of the space (X, 7) or simply of X is denoted by 7(z) (resp. SO(x),
SR(z)). The set of all semi-open sets, each containing a given subset A
of X is denoted by SO(A). Crossley and Hildebrand [2] has defined the
semi-closure of a subset A, denoted by sclA, as the intersection of all semi-
closed sets containing A. For a subset A of a space X, the #-closure [11]
(resp. d-closure [11], semi-f-closure [7]) of A, denoted by 6 — clA (resp.
§ — clA, sclpA), is the set of all points = of X such that cIlU N A # () for
each U € 7(z) (resp. int clU N A # ) for each U € 7(x), sclU N A # 0 for
each U € SO(z)). While a set A is called #-closed [11] (resp. d-closed [11],
semi-f-closed [7]) if A =6 — clA (resp. A=0—clA, A= sclyA).

A filter base F on a space X is said to SR-adhere [7] at x of X if
FNV # 0, for each F € F and each V € SR(z). A filter base F on
X is said to be SR-converge [7|(resp. d-converge) at = of X if for each
V € SR(x) (resp. V € 7(z)) there is an F' € F such that F' C V (resp.
F Cint ¢lV'). Throne [10] has defined a non-empty family G of non-empty
subsets of X to be a grill if (i) A € Gand A C B = B € G and (i)
AuBegG=AcGorBeg.

A grill G on X is said to SR-converge to a point x of (X, 1) if for each
V € SR(z) there is some G € G with G C V. A space X is called weakly
Hausdorff space [9] if each point 2 of X is the intersection of all regular
closed sets containing x. A subset A of a space X is said to be s-closed
relative to X [7] if for every cover U of A by semi-open sets of X, there is a
finite subfamily Uy of U such that A C (J{sclU : U € Up}. If, in particular,
A = X then X is called an s-closed space [7]. As usual, by a multifunction
F:X — Y, wemean a function F : X — 2Y — {0}, where 2" is the power
set of Y.

2. $-CLUSTER SET OF FUNCTION

Definition 2.1. Let f be a map from a space (X, 7) into a space (Y, T/).
Then the s-cluster set of f at x € X, denoted by s, (f,x) or s(f,x) (when
no topology is mentioned on X ), is defined to be the set N{§ — clf(sclV) :
V e SO(x)}.

Theorem 2.2. Let f be a function from the space X into the space Y .
Then the following statements are equivalent:
(i) z €s(f, )
(ii) There is a grill G on X such that G SR-converges to x and z €
{6 —clf(G): GegG}.
(iii) The filter base F = {f~Y(scl(U) : U € 7(2)} SR-adheres to .
(iv) There is a filter F on X such that F SR-converges to x and f(F)
d-converges to z.
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Proof. (i) = (iii). Let z € s(f,z). Then for each U € 7(z) and each
V € SO(z), int cl(U) N f(sclV) # @ and hence, f~1(sclU) N sclV # )
(as for the open set U, int clU = sclU [7]). Therefore, the filter base
F={f"sclU):U € 7(2)} SR-adheres at z.

(iii) = (ii). The family G = {G C X : GNF # 0, for each F € Fo}
is obviously a grill on X, where Fy is the filter generated by the filter base
F = {f"YsclU) : U € 7(2)}. Since F SR-adheres at = (by hypothesis
(iii)), sclV N f=(sclU) # O for each V € SO(z) and U € 7(z). Clearly,
sclVNF # (, for each F € F and each V € SO(z) and hence, sclV € G
for each V € SO(z). Therefore, G SR-converges to x. So, f(G)NscW #
for each W € 7(2) and for each G € G. Thus, z € 6 — clf(G) for all G € G.
Therefore, z € N{6 — clf(G) : G € G}.

(i) = (i). Suppose there is a grill G on X SR-converging to x and
z € {§ —cdf(G) : G € G}. Then sclU € G for all U € SO(x) and
z € 6 —clf(G) for each G € G. Therefore, z € § — clf(sclU) for all
U € SO(x) and hence, z € s(f, z).

(iv) = (iili). Let there be a filter, say F on X such that F SR-converges
to x and f(F) 0-converges to z and also let U € 7(z). Then there is an
F € F such that f(F) C int clU = sclU and hence, F C f~*(sclU). So,
f71(sclU) € F and hence, F is finer than the filter base Fo = {f~!(sclU) :
U € 7(2)}. Since F SR-converges to z, Fo = {f 1(sclU) : U € 7(2)}
SR-adheres at .

(iii) = (iv). Let the filter base Fo = {f 1(sclU) : U € 7(2)} SR-adheres
at x. Consider the filter F generated by the filter base Fg = {Fp N sclV :
V € SO(z) and Fy € Fop}. Clearly, F SR-converges at x. Let U € 7(2)
and G € f(F). Then there exist an F' € F such that f(F) C G and hence,
f(FoNscV) C f(F) C G where Fy = f~*(sclU) for some U € 7(z). Now
f(FonscV) C f(Fo)N f(sclV) C sclU and hence, sclU € f(F). Therefore,
f(F) é-converges to z as sclU = int clU [7]. O

Theorem 2.3. For any 6-closed map f from space X to space Y, if f~1(y)
is 0-closed in X for each y € Y, then the s-cluster set s(f,x) is degenerate
for each x € X.

Proof. Clearly, s(f,z) = n{0 —clf(sclV) : V € SO(x)} CnN{d —clf(d —
cdV):V e SO(x)}. As fis d-closed, s(f,z) CN{f(6—clV):V € SO(x)}.
Since f~1(y) is f-closed, there is an open set U € 7(x) such that clU N
f~Y(y) = 0 for each = & f~'(y). This implies that y & f(clU) = f(§—clU).
So, y & s(f,x) for each y # f(x). Therefore, s(f,x) = {f(z)}. O
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Theorem 2.4. Let f : X — Y be a §-closed injective map, where X is
Hausdorff and Y is any space. Then s(f,x) is degenerate for every x € X.

Proof. Since f is a §-closed map, s(f,z) = N{d—clf(sclV):V € SO(x)} C
o —cf(d—cdV):V € SO(x)} =n{f(6 —cV):V € SO(x)}. When
2(# x) is any point in X, then as X is Hausdorff, there exist disjoint
V e 7(z) and U € 7(z) such that V Nint clU = 0. Hence, z € § — clV and
hence, f(z) & f(d — clV). Therefore, f(z) & s(f,x). Since f is injective,
s(f,o) = {f(@)}. D

Definition 2.5. A function f : X — Y (X, Y are topological spaces) is
called strongly irresolute at x € X if for each V- € SO(f(x)) there is an
U € SO(z) such that f(sclU) C V. f is called strongly irresolute on X if
it is strongly irresolute at each point x of X.

Theorem 2.6. A space Y is weakly Hausdorff if and only if for any space
X and any surjective strongly irresolute function f : X — Y, s(f,x) is
degenerate for each x € X.

Proof. Suppose for a space X, f : X — Y is strongly irresolute. So, for
each z € X and any U € SO(f(z)), there is a V € SO(x) such that
f(sdV) Cc U. Now, s(f,z) = N{0 —clf(sclW) : W € SO(x)} C n{é —
cdU : U € SO(f(x))}. Since Y is weakly Hausdorff, there exists a regular
closed set V' containing f(z) such that z ¢ V' for each z # f(x). Now,
zeX -V =int cd(X — V’). Since f is strongly irresolute, there exists
a U € SO(z) such that f(sdlU) C V. As int (X — V)NV =0,
z & 0 — clf(sclU) and hence, z & s(f,z). Therefore, s(f,z) = {f(z)} for
each z € X.

Conversely, let y; = f(z;), i = 1,2 be two distinct points in Y. By
hypothesis, s(f,xz2) = {f(x2)} = {y=2} for any surjective strongly irresolute
function f : X — Y. Then there exist U € 7(y1) and V' € SO(z2) such
that int clU N f(sclV) = 0. Hence, f(sclV) CY —int dlU =W (a regular
closed set). So, yo2 = f(z2) € W but y1 ¢ W (as y1 € U). Thus, Y is
weakly Hausdorff. O

Definition 2.7. Let X be a set. A collection I of subsets of X is called a
o-ideal of subsets of X if

(i) P eI and Q C P implies Q € I.

(i) P, eI, n=1,2,... implies U, P, €1

(i) X ¢ 1.
Definition 2.8. For a o-ideal I on a set X, the two topologies 1 and 7o
on X are said to be equivalent modulo I, denoted by 71 = 2 (mod I), if
for any subset A of X, the difference set scly* A ~ sclj? A € I, where scly' A
is the semi-0-closure of A in the space (X, ;) fori=1,2.
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Theorem 2.9. Let 7y = 79 (mod I) where 71 and 1o are two topologies on
X and I is a o-ideal of subsets of X. If f: X — Y is any mapping where
Y is second countable, then s, (f,x) = s+, (f,x) for each x € X — P for
some P € 1.

Proof. Let {z € X : s;,(f,z) # sr,(fy2)} = M UN where M = {z €
X i sn(fix) € srp(fox)} and N = {x € X : s,(f,2) € s (f,2)}. As

Y is second countable, there is a countable base, say, B = {B1, Bs,...}.
Let M, = {z € X : z € sclj' [~ (sclB,) and © & sclg® f~ (sclBy)}, for
n = 1,2,.... Clearly, all M,, € I and hence, |J,,~, M, € I. If z € M
then there exists a z € s, (f,x) but z & s.,(f,z). Now, Theorem 2.2
implies that the filter base F = {f~*(sclU) : U € 7(z)} SR-adheres at x
in (X, 71) but not in (X, 72). Hence, there is an open set W € 7(z) such
that © & sclj? f~1(sclW). As B is a base for Y, there exists some B,, such
that z € B,, C W and hence, = ¢ sclng_l(scan). But we always have
x € scljt f~(sclBy,). Therefore, x € M,,. Thus M C |, -, M,, and hence,
M € I. Similarly, N € I. Therefore, M UN € I. Hence, the proof is
complete. O

3. $-CLUSTER SET FOR MULTIFUNCTIONS AND CHARACTERIZATIONS OF
$-CLOSED SPACES

Definition 3.1. Let F : X — Y be a multifunction from a space X into a
space Y. Then the s-cluster set s(F,z) of F at x € X is defined as the set
N{d — cF(sclV):V € SO(z)}.

Theorem 3.2. Let F': X — Y be a multifunction from a space X into a
space Y. If F has a 0-closed graph, then s(F,z) = F(x), for each x € X.

Proof. Let z € s(F,z). Then for each U € 7(z) and each V € SO(z),
int clU N F(scV) # 0, ie., F=(int clU)NsclV # 0. Let P x Q be
any basic open set in X x Y containing (z,z). Therefore, by the above
argument, F~ (int clQ) N sclP # () and hence, F~(int cl@Q) Nint clP # (.
Thus, (int clP x int cdlQ) N G(F) # 0, i.e., int cl(P x Q) NG(F) # 0. So,
(z,2) € 0—clG(F) = G(F) (as the graph of F i.e. G(F) is d-closed). Hence,
(x,2) € [({z} xY)NG(F)] so that z € mo[({z} xY)NG(F)] = F(z), where
my: X XY — Y is the second projection map. Therefore, s(F,z) C F(x).
But we always have F'(z) C s(F,x) for each z € X. Hence, s(F,z) = F(x)
for each x € X. O

Theorem 3.3. If a multifunction F : X —'Y from a space X into a space
Y satisfies s(F,x) = F(x) for each x € X, then the graph G(F) of F is
semi-closed.

Proof. If (z,2) & G(f), then z & F(z) = s(F,x). So, for some U € 7(z) and
some V € SO(z), int clU N F(scV) # 0, ie., (scV x scdlU)NG(F) = 0.
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But scl(V x U) C sclV x sclU and V x U is a semi-open set in X x Y
containing (z, z). So, scl(V x U)NG(F) = 0 and hence, (z,z) & scloG(F).
Therefore, G(F) is semi-#-closed. O

Corollary 3.4. Let the spaces X and Y be such that every semi-0-closed set
is 0-closed in the product space X XY . Then for a multifunction F : X — Y,
the graph G(F) is 6-closed if and only if s(F,z) = F(x) for each z € X.

In Section 2, as an application of s-cluster sets of a function, we have
characterized weakly Hausdorff spaces. In this section, we give some new
characterizations of s-closed spaces via s-cluster sets of multifunctions.

Definition 3.5. For a multifunction F': X — Y and a subset B of X, the
notion s(F, B) means | J .5 s(F,x).

Notation 3.6. For any subset S of a topological space Z, we denote the
closure (resp. semi-closure, semi-0-closure, interior closure) of S by clzS
(resp. sclzS, SCZHZS, intz clzS).

Theorem 3.7. For any topological space X, the following are equivalent:
(i) X is s-closed.
(ii) For each multifunction F' : X — Y, where Y is any topological
space, N{d — clF(U) : U € SO(B)} C s(F,B) for each semi-0-
closed set B of X.
(iii) For each multifunction F : X — Y, where Y is any topological
space, N{sclgF(U) : U € SO(B)} C s(F, B) for each semi-8-closed
set B of X.

Proof. (i) = (ii) If B is a semi-f-closed set in an s-closed space X, then
by the Proposition 4.2 of Maio and Noiri [7] (every semi-6-closed subset of
an s-closed space X is s-closed relative to X), B is s-closed relative to X.
Now, let y € N{6 — clF(U) : U € SO(B)}. Then int clVNF(U) # 0, i.e.,
F=(int dV)NU # 0 for each V € 7(y) and for each U € SO(B). Clearly,
F=A{F(int V) : V € 7(y)} is a filter base on X which meets B. Since
B is s-closed relative to X, therefore by the Proposition 4.1 of Maio and
Noiri [7] (a subset A of a topological space (X, 7) is S-closed relative to X
if and only if every filter base on X which meets A, SR-adheres at some
point of A), BN SR —adF # (). Let b€ BN SR — adF. Then b € B and
sdlW N E~(int V) # 0, i.e., F(scddW)Nint IV # () for each W € SO(b)
and for each V' € 7(y). Hence, y € 6 — clF(sclW) for each W € SO(b).
Therefore, y € s(F,b) C s(F, B).

(ii) = (iii) This follows from the hypothesis (ii) and from the fact that
for any subset A of Y, sclpA C & — clA.
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(iii) = (i) Let G be a filterbase on X, and also let Y = XU{p} where p ¢ X.
Clearly, the family 7y = {VCY :p g VIU{V CY :pe V,G CV for some
G € G} forms a topology on Y. Consider the inclusion function f: X — Y,
ie, f(xr) = z for all z € X. Since X is semi-f-closed in X, by (iii),
s(f,X) 2n{scl} f(U): U € SO(X)} =n{sclf U : U € SO(X)} = scl} X.
We now prove the last equality. Let S € SO(p). Then there exists a
V € 7y such that V.C S C scly(S) C clyV. If p & V, then V C X
and hence, sclyV N X # (. If p € V, then there is some G € G such
that G C V and hence, sclyG C sclyV. Thus, X NsclyV # (. So, in
any case, X N sclyV # 0. Since sclyV C scly S, X NsclyS # (). Hence,
p € scly X. So, p € s(f,x) for some z € X. Let W € SO(z) and G € G.
Since Y — (G U {p}) is an open set in (Y,7yv), scly (G U {p}) = GU {p}.
Now, GNsclxW = (GU{p}) N f(sclxW) = scly (GU {p}) N f(sclxW) =
intycly (G U {p}) N f(sclxW) # 0 (as p € s(f,z) and G U {p} € 7v).
Therefore, x € SR — adG. Hence, by Proposition 3.1 of Maio and Noiri [7]
(A topological space (X, 1) is s-closed if and only if every filter base on X
SR-adheres at some point of X), X is s-closed. O
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