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Abstract. In this article, we introduce s-cluster sets of functions
and multifunctions and investigate their various properties. Such
investigations provide a new technique for studying s-closed spaces
[7] and weakly Hausdorff spaces [9].

1. Introduction

The notion of cluster set has been extensively studied in real and analytic
function theory. The book of Collingwood and Lohwater [1], in this regard,
is quite remarkable. In [12], Weston initiated the investigation of cluster
sets for arbitrary functions between topological spaces and subsequently,
cluster sets for functions and multifunctions in general topology have been
investigated by, Hamlett [3,4], Joseph [5] and Mukherjee and Debray [8].

In this paper, we introduce a new kind of cluster sets under the terminol-
ogy s-cluster set which provides a new technique for the study of s-closed
spaces. An explicit expression of s-cluster set of a function in terms of
filters and grills have been given. Several sufficient conditions for having
degenerate s-cluster sets and for characterizing weakly Hausdorff spaces in
terms of degeneracy of s-cluster sets of a suitable function are given. Fi-
nally, as an application, we have been able to achieve our goal for giving
some new characterizations of s-closed spaces.

Throughout this paper, spaces X and Y mean topological spaces on
which no separation axioms are assumed unless explicitly stated. For any
subset A of a space X , clA and intA represent the closure of A and the
interior of A, respectively. A subset A of a space X is said to be regular
open ( resp. regular closed ) if A = int clA ( resp. A = cl intA ) and A is
called semi-open [6] if for some open set U , U ⊆ A ⊆ clU . The complement
of a semi-open set is called semi-closed set. The set which is both semi-open
as well as semi-closed is called the semi-regular set [7]. The set of all open
sets (resp. semi-open sets, semi-regular sets), each containing a given point
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x of the space (X, τ) or simply of X is denoted by τ(x) (resp. SO(x),
SR(x)). The set of all semi-open sets, each containing a given subset A

of X is denoted by SO(A). Crossley and Hildebrand [2] has defined the
semi-closure of a subset A, denoted by sclA, as the intersection of all semi-
closed sets containing A. For a subset A of a space X , the θ-closure [11]
(resp. δ-closure [11], semi-θ-closure [7]) of A, denoted by θ − clA (resp.
δ − clA, sclθA), is the set of all points x of X such that clU ∩ A 6= ∅ for
each U ∈ τ(x) (resp. int clU ∩ A 6= ∅ for each U ∈ τ(x), sclU ∩ A 6= ∅ for
each U ∈ SO(x)). While a set A is called θ-closed [11] (resp. δ-closed [11],
semi-θ-closed [7]) if A = θ − clA (resp. A = δ − clA, A = sclθA).

A filter base F on a space X is said to SR-adhere [7] at x of X if
F ∩ V 6= ∅, for each F ∈ F and each V ∈ SR(x). A filter base F on
X is said to be SR-converge [7](resp. δ-converge) at x of X if for each
V ∈ SR(x) (resp. V ∈ τ(x)) there is an F ∈ F such that F ⊂ V (resp.
F ⊂ int clV ). Throne [10] has defined a non-empty family G of non-empty
subsets of X to be a grill if (i) A ∈ G and A ⊆ B ⇒ B ∈ G and (ii)
A ∪ B ∈ G ⇒ A ∈ G or B ∈ G.

A grill G on X is said to SR-converge to a point x of (X, τ) if for each
V ∈ SR(x) there is some G ∈ G with G ⊆ V . A space X is called weakly
Hausdorff space [9] if each point x of X is the intersection of all regular
closed sets containing x. A subset A of a space X is said to be s-closed
relative to X [7] if for every cover U of A by semi-open sets of X , there is a
finite subfamily U0 of U such that A ⊂

⋃
{sclU : U ∈ U0}. If, in particular,

A = X then X is called an s-closed space [7]. As usual, by a multifunction
F : X → Y , we mean a function F : X → 2Y −{∅}, where 2Y is the power
set of Y .

2. s-cluster Set of Function

Definition 2.1. Let f be a map from a space (X, τ) into a space (Y, τ
′

).
Then the s-cluster set of f at x ∈ X, denoted by sτ (f, x) or s(f, x) (when
no topology is mentioned on X), is defined to be the set ∩{δ − clf(sclV ) :
V ∈ SO(x)}.

Theorem 2.2. Let f be a function from the space X into the space Y .
Then the following statements are equivalent:

(i) z ∈ s(f, x)
(ii) There is a grill G on X such that G SR-converges to x and z ∈

∩{δ − clf(G) : G ∈ G}.
(iii) The filter base F = {f−1(scl(U) : U ∈ τ(z)} SR-adheres to x.
(iv) There is a filter F on X such that F SR-converges to x and f(F)

δ-converges to z.
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Proof. (i) ⇒ (iii). Let z ∈ s(f, x). Then for each U ∈ τ(z) and each
V ∈ SO(x), int cl(U) ∩ f(sclV ) 6= ∅ and hence, f−1(sclU) ∩ sclV 6= ∅
(as for the open set U , int clU = sclU [7]). Therefore, the filter base
F = {f−1(sclU) : U ∈ τ(z)} SR-adheres at x.

(iii) ⇒ (ii). The family G = {G ⊆ X : G ∩ F 6= ∅, for each F ∈ F0}
is obviously a grill on X , where F0 is the filter generated by the filter base
F = {f−1(sclU) : U ∈ τ(z)}. Since F SR-adheres at x (by hypothesis
(iii)), sclV ∩ f−1(sclU) 6= ∅ for each V ∈ SO(x) and U ∈ τ(z). Clearly,
sclV ∩ F 6= ∅, for each F ∈ F and each V ∈ SO(x) and hence, sclV ∈ G
for each V ∈ SO(x). Therefore, G SR-converges to x. So, f(G)∩ sclW 6= ∅
for each W ∈ τ(z) and for each G ∈ G. Thus, z ∈ δ − clf(G) for all G ∈ G.
Therefore, z ∈ ∩{δ − clf(G) : G ∈ G}.

(ii) ⇒ (i). Suppose there is a grill G on X SR-converging to x and
z ∈ {δ − clf(G) : G ∈ G}. Then sclU ∈ G for all U ∈ SO(x) and
z ∈ δ − clf(G) for each G ∈ G. Therefore, z ∈ δ − clf(sclU) for all
U ∈ SO(x) and hence, z ∈ s(f, x).

(iv) ⇒ (iii). Let there be a filter, say F on X such that F SR-converges
to x and f(F) δ-converges to z and also let U ∈ τ(z). Then there is an
F ∈ F such that f(F ) ⊂ int clU = sclU and hence, F ⊂ f−1(sclU). So,
f−1(sclU) ∈ F and hence, F is finer than the filter base F0 = {f−1(sclU) :
U ∈ τ(z)}. Since F SR-converges to x, F0 = {f−1(sclU) : U ∈ τ(z)}
SR-adheres at x.

(iii) ⇒ (iv). Let the filter base F0 = {f−1(sclU) : U ∈ τ(z)} SR-adheres
at x. Consider the filter F generated by the filter base F?

0
= {F0 ∩ sclV :

V ∈ SO(x) and F0 ∈ F0}. Clearly, F SR-converges at x. Let U ∈ τ(z)
and G ∈ f(F). Then there exist an F ∈ F such that f(F ) ⊂ G and hence,
f(F0 ∩ sclV ) ⊂ f(F ) ⊂ G where F0 = f−1(sclU) for some U ∈ τ(z). Now
f(F0∩sclV ) ⊂ f(F0)∩f(sclV ) ⊂ sclU and hence, sclU ∈ f(F). Therefore,
f(F) δ-converges to z as sclU = int clU [7]. �

Theorem 2.3. For any δ-closed map f from space X to space Y , if f−1(y)
is θ-closed in X for each y ∈ Y , then the s-cluster set s(f, x) is degenerate
for each x ∈ X.

Proof. Clearly, s(f, x) = ∩{δ − clf(sclV ) : V ∈ SO(x)} ⊆ ∩{δ − clf(δ −
clV ) : V ∈ SO(x)}. As f is δ-closed, s(f, x) ⊆ ∩{f(δ − clV ) : V ∈ SO(x)}.
Since f−1(y) is θ-closed, there is an open set U ∈ τ(x) such that clU ∩
f−1(y) = ∅ for each x 6∈ f−1(y). This implies that y 6∈ f(clU) = f(δ−clU).
So, y 6∈ s(f, x) for each y 6= f(x). Therefore, s(f, x) = {f(x)}. �
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Theorem 2.4. Let f : X → Y be a δ-closed injective map, where X is
Hausdorff and Y is any space. Then s(f, x) is degenerate for every x ∈ X.

Proof. Since f is a δ-closed map, s(f, x) = ∩{δ−clf(sclV ) : V ∈ SO(x)} ⊆
∩{δ − clf(δ − clV ) : V ∈ SO(x)} = ∩{f(δ − clV ) : V ∈ SO(x)}. When
z(6= x) is any point in X , then as X is Hausdorff, there exist disjoint
V ∈ τ(x) and U ∈ τ(z) such that V ∩ int clU = ∅. Hence, z 6∈ δ − clV and
hence, f(z) 6∈ f(δ − clV ). Therefore, f(z) 6∈ s(f, x). Since f is injective,
s(f, x) = {f(x)}. �

Definition 2.5. A function f : X → Y (X, Y are topological spaces) is
called strongly irresolute at x ∈ X if for each V ∈ SO(f(x)) there is an
U ∈ SO(x) such that f(sclU) ⊂ V . f is called strongly irresolute on X if
it is strongly irresolute at each point x of X.

Theorem 2.6. A space Y is weakly Hausdorff if and only if for any space
X and any surjective strongly irresolute function f : X → Y , s(f, x) is
degenerate for each x ∈ X.

Proof. Suppose for a space X , f : X → Y is strongly irresolute. So, for
each x ∈ X and any U ∈ SO(f(x)), there is a V ∈ SO(x) such that
f(sclV ) ⊂ U . Now, s(f, x) = ∩{δ − clf(sclW ) : W ∈ SO(x)} ⊆ ∩{δ −
clU : U ∈ SO(f(x))}. Since Y is weakly Hausdorff, there exists a regular

closed set V
′

containing f(x) such that z 6∈ V
′

for each z 6= f(x). Now,

z ∈ X − V
′

= int cl(X − V
′

). Since f is strongly irresolute, there exists

a U ∈ SO(x) such that f(sclU) ⊂ V
′

. As int cl(X − V
′

) ∩ V
′

= ∅,
z 6∈ δ − clf(sclU) and hence, z 6∈ s(f, x). Therefore, s(f, x) = {f(x)} for
each x ∈ X .

Conversely, let yi = f(xi), i = 1, 2 be two distinct points in Y . By
hypothesis, s(f, x2) = {f(x2)} = {y2} for any surjective strongly irresolute
function f : X → Y . Then there exist U ∈ τ(y1) and V ∈ SO(x2) such
that int clU ∩ f(sclV ) = ∅. Hence, f(sclV ) ⊂ Y − int clU = W (a regular
closed set). So, y2 = f(x2) ∈ W but y1 6∈ W (as y1 ∈ U). Thus, Y is
weakly Hausdorff. �

Definition 2.7. Let X be a set. A collection I of subsets of X is called a
σ-ideal of subsets of X if

(i) P ∈ I and Q ⊆ P implies Q ∈ I.
(ii) Pn ∈ I, n = 1, 2, . . . implies

⋃∞

n=1
Pn ∈ I

(iii) X 6∈ I.

Definition 2.8. For a σ-ideal I on a set X, the two topologies τ1 and τ2

on X are said to be equivalent modulo I, denoted by τ1 ≡ τ2 (mod I), if
for any subset A of X, the difference set sclτ1

θ
A ∼ sclτ2

θ
A ∈ I, where sclτi

θ
A

is the semi-θ-closure of A in the space (X, τi) for i = 1, 2.
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Theorem 2.9. Let τ1 ≡ τ2 (mod I) where τ1 and τ2 are two topologies on
X and I is a σ-ideal of subsets of X. If f : X → Y is any mapping where
Y is second countable, then sτ1

(f, x) = sτ2
(f, x) for each x ∈ X − P for

some P ∈ I.

Proof. Let {x ∈ X : sτ1
(f, x) 6= sτ2

(f, x)} = M ∪ N where M = {x ∈
X : sτ1

(f, x) 6⊆ sτ2
(f, x)} and N = {x ∈ X : sτ2

(f, x) 6⊆ sτ1
(f, x)}. As

Y is second countable, there is a countable base, say, B = {B1, B2, . . .}.
Let Mn = {x ∈ X : x ∈ sclτ1

θ
f−1(sclBn) and x 6∈ sclτ2

θ
f−1(sclBn)}, for

n = 1, 2, . . .. Clearly, all Mn ∈ I and hence,
⋃

n≥1
Mn ∈ I . If x ∈ M

then there exists a z ∈ sτ1
(f, x) but z 6∈ sτ2

(f, x). Now, Theorem 2.2
implies that the filter base F = {f−1(sclU) : U ∈ τ(z)} SR-adheres at x

in (X, τ1) but not in (X, τ2). Hence, there is an open set W ∈ τ(z) such
that x 6∈ sclτ2

θ
f−1(sclW ). As B is a base for Y , there exists some Bn such

that z ∈ Bn ⊂ W and hence, x 6∈ sclτ2

θ
f−1(sclBn). But we always have

x ∈ sclτ1

θ
f−1(sclBn). Therefore, x ∈ Mn. Thus M ⊆

⋃
n≥1

Mn and hence,
M ∈ I . Similarly, N ∈ I . Therefore, M ∪ N ∈ I . Hence, the proof is
complete. �

3. s-cluster Set for Multifunctions and Characterizations of
s-closed Spaces

Definition 3.1. Let F : X → Y be a multifunction from a space X into a
space Y . Then the s-cluster set s(F, x) of F at x ∈ X is defined as the set
∩{δ − clF (sclV ) : V ∈ SO(x)}.

Theorem 3.2. Let F : X → Y be a multifunction from a space X into a
space Y . If F has a δ-closed graph, then s(F, x) = F (x), for each x ∈ X.

Proof. Let z ∈ s(F, x). Then for each U ∈ τ(z) and each V ∈ SO(x),
int clU ∩ F (sclV ) 6= ∅, i.e., F−(int clU) ∩ sclV 6= ∅. Let P × Q be
any basic open set in X × Y containing (x, z). Therefore, by the above
argument, F−(int clQ) ∩ sclP 6= ∅ and hence, F−(int clQ) ∩ int clP 6= ∅.
Thus, (int clP × int clQ) ∩ G(F ) 6= ∅, i.e., int cl(P × Q) ∩ G(F ) 6= ∅. So,
(x, z) ∈ δ−clG(F ) = G(F ) (as the graph of F i.e. G(F ) is δ-closed). Hence,
(x, z) ∈ [({x}×Y )∩G(F )] so that z ∈ π2[({x}×Y )∩G(F )] = F (x), where
π2 : X × Y → Y is the second projection map. Therefore, s(F, x) ⊆ F (x).
But we always have F (x) ⊆ s(F, x) for each x ∈ X . Hence, s(F, x) = F (x)
for each x ∈ X . �

Theorem 3.3. If a multifunction F : X → Y from a space X into a space
Y satisfies s(F, x) = F (x) for each x ∈ X, then the graph G(F ) of F is
semi-closed.

Proof. If (x, z) 6∈ G(f), then z 6∈ F (x) = s(F, x). So, for some U ∈ τ(z) and
some V ∈ SO(x), int clU ∩ F (sclV ) 6= ∅, i.e., (sclV × sclU) ∩ G(F ) = ∅.
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But scl(V × U) ⊂ sclV × sclU and V × U is a semi-open set in X × Y

containing (x, z). So, scl(V ×U)∩G(F ) = ∅ and hence, (x, z) 6∈ sclθG(F ).
Therefore, G(F ) is semi-θ-closed. �

Corollary 3.4. Let the spaces X and Y be such that every semi-θ-closed set
is δ-closed in the product space X×Y . Then for a multifunction F : X → Y ,
the graph G(F ) is δ-closed if and only if s(F, x) = F (x) for each x ∈ X.

In Section 2, as an application of s-cluster sets of a function, we have
characterized weakly Hausdorff spaces. In this section, we give some new
characterizations of s-closed spaces via s-cluster sets of multifunctions.

Definition 3.5. For a multifunction F : X → Y and a subset B of X, the
notion s(F, B) means

⋃
x∈B

s(F, x).

Notation 3.6. For any subset S of a topological space Z, we denote the
closure (resp. semi-closure, semi-θ-closure, interior closure) of S by clZS

(resp. sclZS, sclZ
θ
S, intZ clZS).

Theorem 3.7. For any topological space X, the following are equivalent:

(i) X is s-closed.
(ii) For each multifunction F : X → Y , where Y is any topological

space, ∩{δ − clF (U) : U ∈ SO(B)} ⊆ s(F, B) for each semi-θ-
closed set B of X.

(iii) For each multifunction F : X → Y , where Y is any topological
space, ∩{sclθF (U) : U ∈ SO(B)} ⊆ s(F, B) for each semi-θ-closed
set B of X.

Proof. (i) ⇒ (ii) If B is a semi-θ-closed set in an s-closed space X , then
by the Proposition 4.2 of Maio and Noiri [7] (every semi-θ-closed subset of
an s-closed space X is s-closed relative to X), B is s-closed relative to X .
Now, let y ∈ ∩{δ − clF (U) : U ∈ SO(B)}. Then int clV ∩ F (U) 6= ∅, i.e.,
F−(int clV ) ∩ U 6= ∅ for each V ∈ τ(y) and for each U ∈ SO(B). Clearly,
F = {F−(int clV ) : V ∈ τ(y)} is a filter base on X which meets B. Since
B is s-closed relative to X , therefore by the Proposition 4.1 of Maio and
Noiri [7] (a subset A of a topological space (X, τ) is S-closed relative to X

if and only if every filter base on X which meets A, SR-adheres at some
point of A), B ∩ SR − adF 6= ∅. Let b ∈ B ∩ SR − adF . Then b ∈ B and
sclW ∩ F−(int clV ) 6= ∅, i.e., F (sclW ) ∩ int clV 6= ∅ for each W ∈ SO(b)
and for each V ∈ τ(y). Hence, y ∈ δ − clF (sclW ) for each W ∈ SO(b).
Therefore, y ∈ s(F, b) ⊆ s(F, B).

(ii) ⇒ (iii) This follows from the hypothesis (ii) and from the fact that
for any subset A of Y , sclθA ⊂ δ − clA.
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(iii) ⇒ (i) Let G be a filterbase on X , and also let Y = X∪{p} where p 6∈ X .
Clearly, the family τY = {V ⊆ Y : p 6∈ V }∪{V ⊆ Y : p ∈ V, G ⊆ V for some
G ∈ G} forms a topology on Y . Consider the inclusion function f : X → Y ,
i.e., f(x) = x for all x ∈ X . Since X is semi-θ-closed in X , by (iii),
s(f, X) ⊇ ∩{sclY

θ
f(U) : U ∈ SO(X)} = ∩{sclY

θ
U : U ∈ SO(X)} = sclY

θ
X .

We now prove the last equality. Let S ∈ SO(p). Then there exists a
V ∈ τY such that V ⊆ S ⊆ sclY (S) ⊆ clY V . If p 6∈ V , then V ⊆ X

and hence, sclY V ∩ X 6= ∅. If p ∈ V , then there is some G ∈ G such
that G ⊆ V and hence, sclY G ⊆ sclY V . Thus, X ∩ sclY V 6= ∅. So, in
any case, X ∩ sclY V 6= ∅. Since sclY V ⊆ sclY S, X ∩ sclY S 6= ∅. Hence,
p ∈ sclY

θ
X . So, p ∈ s(f, x) for some x ∈ X . Let W ∈ SO(x) and G ∈ G.

Since Y − (G ∪ {p}) is an open set in (Y, τY ), sclY (G ∪ {p}) = G ∪ {p}.
Now, G ∩ sclXW = (G ∪ {p}) ∩ f(sclXW ) = sclY (G ∪ {p}) ∩ f(sclXW ) =
intY clY (G ∪ {p}) ∩ f(sclXW ) 6= ∅ (as p ∈ s(f, x) and G ∪ {p} ∈ τY ).
Therefore, x ∈ SR − adG. Hence, by Proposition 3.1 of Maio and Noiri [7]
(A topological space (X, τ) is s-closed if and only if every filter base on X

SR-adheres at some point of X), X is s-closed. �
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