A NEW KIND OF CLUSTER SETS AND THEIR APPLICATIONS

C. K. BASU AND M. K. GHOSH

ABSTRACT. In this article, we introduce *s*-cluster sets of functions and multifunctions and investigate their various properties. Such investigations provide a new technique for studying *s*-closed spaces [7] and weakly Hausdorff spaces [9].

1. INTRODUCTION

The notion of cluster set has been extensively studied in real and analytic function theory. The book of Collingwood and Lohwater [1], in this regard, is quite remarkable. In [12], Weston initiated the investigation of cluster sets for arbitrary functions between topological spaces and subsequently, cluster sets for functions and multifunctions in general topology have been investigated by, Hamlett [3,4], Joseph [5] and Mukherjee and Debray [8].

In this paper, we introduce a new kind of cluster sets under the terminology *s*-cluster set which provides a new technique for the study of *s*-closed spaces. An explicit expression of *s*-cluster set of a function in terms of filters and grills have been given. Several sufficient conditions for having degenerate *s*-cluster sets and for characterizing weakly Hausdorff spaces in terms of degeneracy of *s*-cluster sets of a suitable function are given. Finally, as an application, we have been able to achieve our goal for giving some new characterizations of *s*-closed spaces.

Throughout this paper, spaces X and Y mean topological spaces on which no separation axioms are assumed unless explicitly stated. For any subset A of a space X, clA and intA represent the closure of A and the interior of A, respectively. A subset A of a space X is said to be regular open (resp. regular closed) if A = int clA (resp. A = cl intA) and A is called semi-open [6] if for some open set U, $U \subseteq A \subseteq clU$. The complement of a semi-open set is called semi-closed set. The set which is both semi-open as well as semi-closed is called the semi-regular set [7]. The set of all open sets (resp. semi-open sets, semi-regular sets), each containing a given point

VOLUME 21, NUMBER 3

A NEW KIND OF CLUSTER SETS AND THEIR APPLICATIONS

x of the space (X, τ) or simply of X is denoted by $\tau(x)$ (resp. SO(x), SR(x)). The set of all semi-open sets, each containing a given subset A of X is denoted by SO(A). Crossley and Hildebrand [2] has defined the semi-closure of a subset A, denoted by sclA, as the intersection of all semi-closed sets containing A. For a subset A of a space X, the θ -closure [11] (resp. δ -closure [11], semi- θ -closure [7]) of A, denoted by $\theta - clA$ (resp. $\delta - clA$, $scl_{\theta}A$), is the set of all points x of X such that $clU \cap A \neq \emptyset$ for each $U \in \tau(x)$ (resp. $int \ clU \cap A \neq \emptyset$ for each $U \in SO(x)$). While a set A is called θ -closed [11] (resp. δ -closed [11], semi- θ -closed [7]) if $A = \theta - clA$ (resp. $A = \delta - clA$, $A = scl_{\theta}A$).

A filter base \mathcal{F} on a space X is said to SR-adhere [7] at x of X if $F \cap V \neq \emptyset$, for each $F \in \mathcal{F}$ and each $V \in SR(x)$. A filter base \mathcal{F} on X is said to be SR-converge [7](resp. δ -converge) at x of X if for each $V \in SR(x)$ (resp. $V \in \tau(x)$) there is an $F \in \mathcal{F}$ such that $F \subset V$ (resp. $F \subset int \ clV$). Throne [10] has defined a non-empty family \mathcal{G} of non-empty subsets of X to be a grill if (i) $A \in \mathcal{G}$ and $A \subseteq B \Rightarrow B \in \mathcal{G}$ and (ii) $A \cup B \in \mathcal{G} \Rightarrow A \in \mathcal{G}$ or $B \in \mathcal{G}$.

A grill \mathcal{G} on X is said to SR-converge to a point x of (X, τ) if for each $V \in SR(x)$ there is some $G \in \mathcal{G}$ with $G \subseteq V$. A space X is called weakly Hausdorff space [9] if each point x of X is the intersection of all regular closed sets containing x. A subset A of a space X is said to be s-closed relative to X [7] if for every cover \mathcal{U} of A by semi-open sets of X, there is a finite subfamily \mathcal{U}_0 of \mathcal{U} such that $A \subset \bigcup \{sclU : U \in \mathcal{U}_0\}$. If, in particular, A = X then X is called an s-closed space [7]. As usual, by a multifunction $F : X \to Y$, we mean a function $F : X \to 2^Y - \{\emptyset\}$, where 2^Y is the power set of Y.

2. s-cluster Set of Function

Definition 2.1. Let f be a map from a space (X, τ) into a space (Y, τ') . Then the s-cluster set of f at $x \in X$, denoted by $s_{\tau}(f, x)$ or s(f, x) (when no topology is mentioned on X), is defined to be the set $\cap \{\delta - clf(sclV) : V \in SO(x)\}$.

Theorem 2.2. Let f be a function from the space X into the space Y. Then the following statements are equivalent:

- (i) $z \in s(f, x)$
- (ii) There is a grill \mathcal{G} on X such that \mathcal{G} SR-converges to x and $z \in \cap \{\delta clf(G) : G \in \mathcal{G}\}.$
- (iii) The filter base $\mathcal{F} = \{f^{-1}(scl(U) : U \in \tau(z)\} SR$ -adheres to x.
- (iv) There is a filter \mathcal{F} on X such that \mathcal{F} SR-converges to x and $f(\mathcal{F})$ δ -converges to z.

OCTOBER 2009

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Proof. (i) \Rightarrow (iii). Let $z \in s(f, x)$. Then for each $U \in \tau(z)$ and each $V \in SO(x)$, int $cl(U) \cap f(sclV) \neq \emptyset$ and hence, $f^{-1}(sclU) \cap sclV \neq \emptyset$ (as for the open set U, int clU = sclU [7]). Therefore, the filter base $\mathcal{F} = \{f^{-1}(sclU) : U \in \tau(z)\}$ SR-adheres at x.

(iii) \Rightarrow (ii). The family $\mathcal{G} = \{G \subseteq X : G \cap F \neq \emptyset$, for each $F \in \mathcal{F}_0\}$ is obviously a grill on X, where \mathcal{F}_0 is the filter generated by the filter base $\mathcal{F} = \{f^{-1}(sclU) : U \in \tau(z)\}$. Since \mathcal{F} SR-adheres at x (by hypothesis (iii)), $sclV \cap f^{-1}(sclU) \neq \emptyset$ for each $V \in SO(x)$ and $U \in \tau(z)$. Clearly, $sclV \cap F \neq \emptyset$, for each $F \in \mathcal{F}$ and each $V \in SO(x)$ and hence, $sclV \in \mathcal{G}$ for each $V \in SO(x)$. Therefore, \mathcal{G} SR-converges to x. So, $f(G) \cap sclW \neq \emptyset$ for each $W \in \tau(z)$ and for each $G \in \mathcal{G}$. Thus, $z \in \delta - clf(G)$ for all $G \in \mathcal{G}$. Therefore, $z \in \cap\{\delta - clf(G) : G \in \mathcal{G}\}$.

(ii) \Rightarrow (i). Suppose there is a grill \mathcal{G} on X *SR*-converging to x and $z \in \{\delta - clf(G) : G \in \mathcal{G}\}$. Then $sclU \in \mathcal{G}$ for all $U \in SO(x)$ and $z \in \delta - clf(G)$ for each $G \in \mathcal{G}$. Therefore, $z \in \delta - clf(sclU)$ for all $U \in SO(x)$ and hence, $z \in s(f, x)$.

(iv) \Rightarrow (iii). Let there be a filter, say \mathcal{F} on X such that \mathcal{F} *SR*-converges to x and $f(\mathcal{F})$ δ -converges to z and also let $U \in \tau(z)$. Then there is an $F \in \mathcal{F}$ such that $f(F) \subset int \ clU = sclU$ and hence, $F \subset f^{-1}(sclU)$. So, $f^{-1}(sclU) \in \mathcal{F}$ and hence, \mathcal{F} is finer than the filter base $\mathcal{F}_0 = \{f^{-1}(sclU) : U \in \tau(z)\}$. $U \in \tau(z)\}$. Since \mathcal{F} *SR*-converges to x, $\mathcal{F}_0 = \{f^{-1}(sclU) : U \in \tau(z)\}$ *SR*-adheres at x.

(iii) \Rightarrow (iv). Let the filter base $\mathcal{F}_0 = \{f^{-1}(sclU) : U \in \tau(z)\}$ *SR*-adheres at *x*. Consider the filter \mathcal{F} generated by the filter base $\mathcal{F}_0^{\star} = \{F_0 \cap sclV : V \in SO(x) \text{ and } F_0 \in \mathcal{F}_0\}$. Clearly, \mathcal{F} *SR*-converges at *x*. Let $U \in \tau(z)$ and $G \in f(\mathcal{F})$. Then there exist an $F \in \mathcal{F}$ such that $f(F) \subset G$ and hence, $f(F_0 \cap sclV) \subset f(F) \subset G$ where $F_0 = f^{-1}(sclU)$ for some $U \in \tau(z)$. Now $f(F_0 \cap sclV) \subset f(F_0) \cap f(sclV) \subset sclU$ and hence, $sclU \in f(\mathcal{F})$. Therefore, $f(\mathcal{F}) \delta$ -converges to *z* as sclU = int clU [7]. \Box

Theorem 2.3. For any δ -closed map f from space X to space Y, if $f^{-1}(y)$ is θ -closed in X for each $y \in Y$, then the s-cluster set s(f, x) is degenerate for each $x \in X$.

Proof. Clearly, $s(f, x) = \cap \{\delta - clf(sclV) : V \in SO(x)\} \subseteq \cap \{\delta - clf(\delta - clV) : V \in SO(x)\}$. As f is δ -closed, $s(f, x) \subseteq \cap \{f(\delta - clV) : V \in SO(x)\}$. Since $f^{-1}(y)$ is θ -closed, there is an open set $U \in \tau(x)$ such that $clU \cap f^{-1}(y) = \emptyset$ for each $x \notin f^{-1}(y)$. This implies that $y \notin f(clU) = f(\delta - clU)$. So, $y \notin s(f, x)$ for each $y \neq f(x)$. Therefore, $s(f, x) = \{f(x)\}$.

VOLUME 21, NUMBER 3

Theorem 2.4. Let $f : X \to Y$ be a δ -closed injective map, where X is Hausdorff and Y is any space. Then s(f, x) is degenerate for every $x \in X$.

Proof. Since f is a δ -closed map, $s(f, x) = \cap \{\delta - clf(sclV) : V \in SO(x)\} \subseteq \cap \{\delta - clf(\delta - clV) : V \in SO(x)\} = \cap \{f(\delta - clV) : V \in SO(x)\}$. When $z(\neq x)$ is any point in X, then as X is Hausdorff, there exist disjoint $V \in \tau(x)$ and $U \in \tau(z)$ such that $V \cap int \ clU = \emptyset$. Hence, $z \notin \delta - clV$ and hence, $f(z) \notin f(\delta - clV)$. Therefore, $f(z) \notin s(f, x)$. Since f is injective, $s(f, x) = \{f(x)\}$.

Definition 2.5. A function $f : X \to Y$ (X, Y are topological spaces) is called strongly irresolute at $x \in X$ if for each $V \in SO(f(x))$ there is an $U \in SO(x)$ such that $f(sclU) \subset V$. f is called strongly irresolute on X if it is strongly irresolute at each point x of X.

Theorem 2.6. A space Y is weakly Hausdorff if and only if for any space X and any surjective strongly irresolute function $f : X \to Y$, s(f, x) is degenerate for each $x \in X$.

Proof. Suppose for a space $X, f: X \to Y$ is strongly irresolute. So, for each $x \in X$ and any $U \in SO(f(x))$, there is a $V \in SO(x)$ such that $f(sclV) \subset U$. Now, $s(f,x) = \cap \{\delta - clf(sclW) : W \in SO(x)\} \subseteq \cap \{\delta - clU : U \in SO(f(x))\}$. Since Y is weakly Hausdorff, there exists a regular closed set V' containing f(x) such that $z \notin V'$ for each $z \neq f(x)$. Now, $z \in X - V' = int \ cl(X - V')$. Since f is strongly irresolute, there exists a $U \in SO(x)$ such that $f(sclU) \subset V'$. As $int \ cl(X - V') \cap V' = \emptyset$, $z \notin \delta - clf(sclU)$ and hence, $z \notin s(f, x)$. Therefore, $s(f, x) = \{f(x)\}$ for each $x \in X$.

Conversely, let $y_i = f(x_i)$, i = 1, 2 be two distinct points in Y. By hypothesis, $s(f, x_2) = \{f(x_2)\} = \{y_2\}$ for any surjective strongly irresolute function $f : X \to Y$. Then there exist $U \in \tau(y_1)$ and $V \in SO(x_2)$ such that $int \ clU \cap f(sclV) = \emptyset$. Hence, $f(sclV) \subset Y - int \ clU = W$ (a regular closed set). So, $y_2 = f(x_2) \in W$ but $y_1 \notin W$ (as $y_1 \in U$). Thus, Y is weakly Hausdorff. \Box

Definition 2.7. Let X be a set. A collection I of subsets of X is called a σ -ideal of subsets of X if

- (i) $P \in I$ and $Q \subseteq P$ implies $Q \in I$.
- (ii) $P_n \in I$, $n = 1, 2, \dots$ implies $\bigcup_{n=1}^{\infty} P_n \in I$
- (iii) $X \notin I$.

Definition 2.8. For a σ -ideal I on a set X, the two topologies τ_1 and τ_2 on X are said to be equivalent modulo I, denoted by $\tau_1 \equiv \tau_2 \pmod{I}$, if for any subset A of X, the difference set $scl_{\theta}^{\tau_1}A \sim scl_{\theta}^{\tau_2}A \in I$, where $scl_{\theta}^{\tau_i}A$ is the semi- θ -closure of A in the space (X, τ_i) for i = 1, 2.

OCTOBER 2009

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Theorem 2.9. Let $\tau_1 \equiv \tau_2 \pmod{I}$ where τ_1 and τ_2 are two topologies on X and I is a σ -ideal of subsets of X. If $f: X \to Y$ is any mapping where Y is second countable, then $s_{\tau_1}(f, x) = s_{\tau_2}(f, x)$ for each $x \in X - P$ for some $P \in I$.

Proof. Let $\{x \in X : s_{\tau_1}(f, x) \neq s_{\tau_2}(f, x)\} = M \cup N$ where $M = \{x \in X : s_{\tau_1}(f, x) \not\subseteq s_{\tau_2}(f, x)\}$ and $N = \{x \in X : s_{\tau_2}(f, x) \not\subseteq s_{\tau_1}(f, x)\}$. As Y is second countable, there is a countable base, say, $\mathcal{B} = \{B_1, B_2, \ldots\}$. Let $M_n = \{x \in X : x \in scl_{\theta}^{\tau_1}f^{-1}(sclB_n) \text{ and } x \notin scl_{\theta}^{\tau_2}f^{-1}(sclB_n)\}$, for $n = 1, 2, \ldots$ Clearly, all $M_n \in I$ and hence, $\bigcup_{n \geq 1} M_n \in I$. If $x \in M$ then there exists a $z \in s_{\tau_1}(f, x)$ but $z \notin s_{\tau_2}(f, x)$. Now, Theorem 2.2 implies that the filter base $\mathcal{F} = \{f^{-1}(sclU) : U \in \tau(z)\}$ SR-adheres at x in (X, τ_1) but not in (X, τ_2) . Hence, there is an open set $W \in \tau(z)$ such that $z \notin scl_{\theta}^{\tau_2}f^{-1}(sclW)$. As \mathcal{B} is a base for Y, there exists some B_n such that $z \in scl_{\theta}^{\tau_1}f^{-1}(sclB_n)$. Therefore, $x \notin M_n$. Thus $M \subseteq \bigcup_{n \geq 1} M_n$ and hence, $M \in I$. Similarly, $N \in I$. Therefore, $M \cup N \in I$. Hence, the proof is complete. \Box

3. s-cluster Set for Multifunctions and Characterizations of s-closed Spaces

Definition 3.1. Let $F : X \to Y$ be a multifunction from a space X into a space Y. Then the s-cluster set s(F, x) of F at $x \in X$ is defined as the set $\cap \{\delta - clF(sclV) : V \in SO(x)\}.$

Theorem 3.2. Let $F : X \to Y$ be a multifunction from a space X into a space Y. If F has a δ -closed graph, then s(F, x) = F(x), for each $x \in X$.

Proof. Let $z \in s(F, x)$. Then for each $U \in \tau(z)$ and each $V \in SO(x)$, int $clU \cap F(sclV) \neq \emptyset$, i.e., $F^{-}(int \ clU) \cap sclV \neq \emptyset$. Let $P \times Q$ be any basic open set in $X \times Y$ containing (x, z). Therefore, by the above argument, $F^{-}(int \ clQ) \cap sclP \neq \emptyset$ and hence, $F^{-}(int \ clQ) \cap int \ clP \neq \emptyset$. Thus, $(int \ clP \times int \ clQ) \cap G(F) \neq \emptyset$, i.e., $int \ cl(P \times Q) \cap G(F) \neq \emptyset$. So, $(x, z) \in \delta - clG(F) = G(F)$ (as the graph of F i.e. G(F) is δ -closed). Hence, $(x, z) \in [(\{x\} \times Y) \cap G(F)]$ so that $z \in \pi_2[(\{x\} \times Y) \cap G(F)] = F(x)$, where $\pi_2 : X \times Y \to Y$ is the second projection map. Therefore, $s(F, x) \subseteq F(x)$. But we always have $F(x) \subseteq s(F, x)$ for each $x \in X$. Hence, s(F, x) = F(x)for each $x \in X$.

Theorem 3.3. If a multifunction $F : X \to Y$ from a space X into a space Y satisfies s(F, x) = F(x) for each $x \in X$, then the graph G(F) of F is semi-closed.

Proof. If $(x, z) \notin G(f)$, then $z \notin F(x) = s(F, x)$. So, for some $U \in \tau(z)$ and some $V \in SO(x)$, int $clU \cap F(sclV) \neq \emptyset$, i.e., $(sclV \times sclU) \cap G(F) = \emptyset$.

VOLUME 21, NUMBER 3

But $scl(V \times U) \subset sclV \times sclU$ and $V \times U$ is a semi-open set in $X \times Y$ containing (x, z). So, $scl(V \times U) \cap G(F) = \emptyset$ and hence, $(x, z) \notin scl_{\theta}G(F)$. Therefore, G(F) is semi- θ -closed.

Corollary 3.4. Let the spaces X and Y be such that every semi- θ -closed set is δ -closed in the product space $X \times Y$. Then for a multifunction $F : X \to Y$, the graph G(F) is δ -closed if and only if s(F, x) = F(x) for each $x \in X$.

In Section 2, as an application of s-cluster sets of a function, we have characterized weakly Hausdorff spaces. In this section, we give some new characterizations of s-closed spaces via s-cluster sets of multifunctions.

Definition 3.5. For a multifunction $F : X \to Y$ and a subset B of X, the notion s(F, B) means $\bigcup_{x \in B} s(F, x)$.

Notation 3.6. For any subset S of a topological space Z, we denote the closure (resp. semi-closure, semi- θ -closure, interior closure) of S by cl_ZS (resp. scl_ZS , scl_{θ}^ZS , $int_Z cl_ZS$).

Theorem 3.7. For any topological space X, the following are equivalent:

- (i) X is s-closed.
- (ii) For each multifunction $F : X \to Y$, where Y is any topological space, $\cap \{\delta clF(U) : U \in SO(B)\} \subseteq s(F,B)$ for each semi- θ -closed set B of X.
- (iii) For each multifunction $F : X \to Y$, where Y is any topological space, $\cap \{scl_{\theta}F(U) : U \in SO(B)\} \subseteq s(F, B)$ for each semi- θ -closed set B of X.

Proof. (i) ⇒ (ii) If *B* is a semi-*θ*-closed set in an *s*-closed space *X*, then by the Proposition 4.2 of Maio and Noiri [7] (every semi-*θ*-closed subset of an *s*-closed space *X* is *s*-closed relative to *X*), *B* is *s*-closed relative to *X*. Now, let $y \in \cap \{\delta - clF(U) : U \in SO(B)\}$. Then *int* $clV \cap F(U) \neq \emptyset$, i.e., $F^-(int \ clV) \cap U \neq \emptyset$ for each $V \in \tau(y)$ and for each $U \in SO(B)$. Clearly, $\mathcal{F} = \{F^-(int \ clV) : V \in \tau(y)\}$ is a filter base on *X* which meets *B*. Since *B* is *s*-closed relative to *X*, therefore by the Proposition 4.1 of Maio and Noiri [7] (a subset *A* of a topological space (X, τ) is *S*-closed relative to *X* if and only if every filter base on *X* which meets *A*, *SR*-adheres at some point of *A*), $B \cap SR - ad\mathcal{F} \neq \emptyset$. Let $b \in B \cap SR - ad\mathcal{F}$. Then $b \in B$ and $sclW \cap F^-(int \ clV) \neq \emptyset$, i.e., $F(sclW) \cap int \ clV \neq \emptyset$ for each $W \in SO(b)$ and for each $V \in \tau(y)$. Hence, $y \in \delta - clF(sclW)$ for each $W \in SO(b)$. Therefore, $y \in s(F, b) \subseteq s(F, B)$.

(ii) \Rightarrow (iii) This follows from the hypothesis (ii) and from the fact that for any subset A of Y, $scl_{\theta}A \subset \delta - clA$.

OCTOBER 2009

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

(iii) \Rightarrow (i) Let \mathcal{G} be a filterbase on X, and also let $Y = X \cup \{p\}$ where $p \notin X$. Clearly, the family $\tau_Y = \{V \subseteq Y : p \notin V\} \cup \{V \subseteq Y : p \in V, G \subseteq V \text{ for some } V\}$ $G \in \mathcal{G}$ forms a topology on Y. Consider the inclusion function $f: X \to Y$, i.e., f(x) = x for all $x \in X$. Since X is semi- θ -closed in X, by (iii), $s(f,X) \supseteq \cap \{scl_{\theta}^{Y}f(U) : U \in SO(X)\} = \cap \{scl_{\theta}^{Y}U : U \in SO(X)\} = scl_{\theta}^{Y}X.$ We now prove the last equality. Let $S \in SO(p)$. Then there exists a $V \in \tau_Y$ such that $V \subseteq S \subseteq scl_Y(S) \subseteq cl_Y V$. If $p \notin V$, then $V \subseteq X$ and hence, $scl_Y V \cap X \neq \emptyset$. If $p \in V$, then there is some $G \in \mathcal{G}$ such that $G \subseteq V$ and hence, $scl_YG \subseteq scl_YV$. Thus, $X \cap scl_YV \neq \emptyset$. So, in any case, $X \cap scl_Y V \neq \emptyset$. Since $scl_Y V \subseteq scl_Y S$, $X \cap scl_Y S \neq \emptyset$. Hence, $p \in scl_{\theta}^{Y}X$. So, $p \in s(f, x)$ for some $x \in X$. Let $W \in SO(x)$ and $G \in \mathcal{G}$. Since $Y - (G \cup \{p\})$ is an open set in (Y, τ_Y) , $scl_Y(G \cup \{p\}) = G \cup \{p\}$. Now, $G \cap scl_X W = (G \cup \{p\}) \cap f(scl_X W) = scl_Y (G \cup \{p\}) \cap f(scl_X W) =$ $int_Y cl_Y(G \cup \{p\}) \cap f(scl_X W) \neq \emptyset$ (as $p \in s(f, x)$ and $G \cup \{p\} \in \tau_Y$). Therefore, $x \in SR - ad\mathcal{G}$. Hence, by Proposition 3.1 of Maio and Noiri [7] (A topological space (X, τ) is s-closed if and only if every filter base on X SR-adheres at some point of X), X is s-closed. \square

References

- [1] E. F. Collingwood and A. J. Lohwater, *The Theory of Cluster Sets*, Cambridge University Press, Cambridge, 1966.
- [2] S. G. Crossely and S. K. Hildebrand, Semi-closure, Texas J. of Science, 22 (1971), 99–112.
- [3] T. R. Hamlett, Applications of Cluster Sets in Minimal Topological Spaces, Proc. Amer. Math. Soc., 53 (1975), 477–480.
- [4] T. R. Hamlett, Cluster Sets in General Topology, J. London Math. Soc., 12 (1976), 192–198.
- [5] J. E. Joseph, Multifunctions and Cluster Sets, Proc. Amer. Math. Soc., 74 (1979), no. 2, 329–337.

[6] N. Levine, Semi-open Sets and Semi-continuity in Topological Spaces, Amer. Math. Monthly, 70 (1963), 54–61.

[7] G. D. Maio and T. Noiri, On s-closed Spaces, Indian J. Pure and Appl. Math., 18 (1987), 226–233.

 [8] M. N. Mukherjee and A. Debray, On S-cluster Sets and S-closed Spaces, Internat. J. Math. and Math. Sci., 23 (2000), 597–603.

[9] T. Soundararajan, General Topology and its Relations to Modern Analysis and Algebra III, Proc. Conf. Kanpur, 1968, Academica, Prague, (1971), 301–306.

[10] W. J. Thron, Proximity Structure and Grills, Math. Ann., 206 (1973), 35–62.

[11] N. V. Veličko, *H-closed Toplogical Spaces*, Amer. Math. Soc. Transl., 78 (1968), 103–118.

[12] J. D. Weston, Some Theorems on Cluster Sets, J. London Math. Soc., 33 (1958), 435–441.

VOLUME 21, NUMBER 3

A NEW KIND OF CLUSTER SETS AND THEIR APPLICATIONS

MSC2000: 54D20, 54D30, 54C60, 54C99

Department of Mathematics, West Bengal State University, Berunampukuria, Malikapur, Barasat, 24 Parganas (North), Kolkata - 700126, West Bengal, India

E-mail address: ckbasu1962@yahoo.com

DEPARTMENT OF MATHEMATICS, DUMKAL COLLEGE, BASAANTAPUR, P. O. - BASANTAPUR, DIST.-MURSHIDABAD, WEST BENGAL, PIN-742406, INDIA *E-mail address:* manabghosh@gmail.com

OCTOBER 2009