SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.

173. Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Show that

$$\sum_{n=1}^{\infty} \frac{x_n}{x_{n-1}} = \frac{7}{2}$$

provided

$$x_{n-1}(x_{n-2}^2 + x_{n-1}x_{n-3}) - 6x_{n-3}(x_{n-1}^2 - x_nx_{n-2}) = 0, \quad n \ge 3,$$

and $x_0 = x_1 = x_2 = 1.$

Solution by Panagiotis T. Krasopoulos, Athens, Greece. First, let us observe that from the statement of the problem it is assumed implicitly that $x_k \neq 0$ for any $k \geq 0$. This fact will be proved in the process of the following proof.

Let us assume that $x_k \neq 0$ for any $0 \leq k \leq n-1$. We divide the given equation by the product $x_{n-1}x_{n-2}x_{n-3}$ and we define $a_n = x_n/x_{n-1}$, so we obtain

 $a_{n-2} + a_{n-1} - 6a_{n-1} + 6a_n = 0$ if and only if $6a_n - 5a_{n-1} + a_{n-2} = 0$,

where $n \geq 3$ and $a_1 = a_2 = 1$. This is a linear homogeneous difference equation with constant coefficients and can be solved directly by using its characteristic equation. After some algebraic calculations we have

$$a_n = 8\left(\frac{1}{2}\right)^n - 9\left(\frac{1}{3}\right)^n \text{ for } n \ge 1.$$

It can easily be seen that $\frac{8}{9} > \left(\frac{2}{3}\right)^n$ for $n \ge 1$ and so $a_n > 0$. Since $a_n > 0$ and $x_0 = x_1 = x_2 = 1 > 0$, by induction we obtain that $x_k > 0$ for any

VOLUME 23, NUMBER 1

 $k \geq 0$ and so the division by x_k is allowed. Now the result follows directly since

$$\sum_{n=1}^{\infty} \frac{x_n}{x_{n-1}} = \sum_{n=1}^{\infty} a_n = 8 \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n - 9 \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = 8 - 9 \cdot \frac{1}{2} = \frac{7}{2}.$$

We have used the infinite geometric series

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = 1 \text{ and } \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = \frac{1}{2}.$$

The proof is complete.

Also solved by Shang Nina, Shandong University of Technology, Zibo, China; Mihai Cipu, Institute of Mathematics of the Romanian Academy, Bucharest, Romania; G. C. Greubel, Newport News, Virginia; Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Kenneth B. Davenport, Dallas, Pennsylvania; Dr. Louis Scheinman, Toronto, Canada; and the proposer.

174. Proposed by Ovidiu Furdui, Cluj, Romania.

Let $k \ge 1$ and $p \ge 0$ be two nonnegative integers. Find the sum

$$S(p) = \sum_{m_1,\dots,m_k=1}^{\infty} \frac{1}{m_1 m_2 \cdots m_k (m_1 + m_2 + \dots + m_k + p)}$$

Solution by Paolo Perfetti, Dipartimento di Matematica, Università degli studi "Tor Vergata" Roma, Italy. We write

$$\frac{1}{m_1 + \dots + m_k + p} = \int_0^1 x^{m_1 + \dots + m_k + p - 1} \, dx$$

FEBRUARY 2011

and then

$$S(p) = \sum_{m_1,\dots,m_k=1}^{\infty} \frac{1}{m_1 m_2 \cdots m_k} \int_0^1 x^{m_1 + \dots + m_k + p - 1} dx$$
$$= \int_0^1 x^{p-1} dx \sum_{m_1,\dots,m_k=1}^{\infty} \frac{x^{m_1 + \dots + m_k}}{m_1 m_2 \cdots m_k}$$
$$= \int_0^1 x^{p-1} (-1)^k (\ln(1-x))^k dx$$
$$= (-1)^k \int_0^1 (1-x)^{p-1} (\ln x)^k dx.$$

Set p = 0. The integral is

$$(-1)^k \int_0^1 (1-x)^{-1} (\ln x)^k \, dx = \sum_{n=0}^\infty (-1)^k \int_0^1 x^n (\ln x)^k \, dx$$
$$= \sum_{n=0}^\infty (-1)^k \left(\frac{x^{n+1}}{n+1} (\ln x)^k \Big|_0^1 - \frac{k}{n+1} \int_0^1 x^n (\ln x)^{k-1} \, dx \right)$$
$$= \sum_{n=0}^\infty (-1)^k \left(-\frac{k}{n+1} \int_0^1 x^n (\ln x)^{k-1} \, dx \right).$$

This means that if we define

$$I_{n,k} = \int_0^1 x^n (\ln x)^k \, dx,$$

we have $I_{n,k} = \frac{-k}{n+1}I_{n,k-1}$ which implies

$$I_{n,k} = \frac{(-1)^k k!}{(n+1)^k} I_{n,0} = \frac{(-1)^k k!}{(n+1)^{k+1}}$$

VOLUME 23, NUMBER 1

and yields

$$S(0) = \sum_{n=0}^{\infty} \frac{k!}{(n+1)^{k+1}} = k! \zeta(k+1)$$

Let $p \ge 1$. The integral is

$$(-1)^k \sum_{n=0}^{p-1} \binom{p-1}{n} \int_0^1 (-x)^n (\ln x)^k \, dx$$
$$= (-1)^k \sum_{n=0}^{p-1} \binom{p-1}{n} (-1)^n \frac{(-1)^k k!}{(n+1)^{k+1}}$$
$$= \sum_{n=0}^{p-1} \binom{p-1}{n} (-1)^n \frac{k!}{(n+1)^{k+1}}.$$

The proof is complete.

Also solved by G. C. Greubel, Newport News, Virginia and the proposer.

175. Proposed by N. J. Kuenzi, Oshkosh, Wisconsin.

The positive integer 45 can be written as a sum of five consecutive positive integers (SCPI): 45 = 7 + 8 + 9 + 10 + 11; furthermore, 45 can be written as a SCPI in *exactly* five ways, namely, 45 = 22 + 23 = 14 + 15 + 16 = 7 + 8 + 9 + 10 + 11 = 5 + 6 + 7 + 8 + 9 + 10 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10. Is there a positive integer that can be written as a sum of 2009 consecutive positive integers and which can be written as a SCPI in *exactly* 2009 ways?

Solution by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin. We shall generalize the given problem as follows.

Prove that 3^s , where s > 1, can be written as a sum of *s* consecutive positive integers and which can be written as a sum of consecutive positive integers in exactly *s* ways. In particular, 3^{2009} can be written as a sum of *s* consecutive positive integers and which can be written as a sum of consecutive positive integers in exactly 2009 ways.

FEBRUARY 2011

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Proof. We say that $a + (a + 1) + \cdots + (a + n) = 3^s$ is solvable if a and n are positive integers. We shall show that $a + (a + 1) + \cdots + (a + n) = 3^s$ is solvable if and only if $n = 3^t - 1$ for some positive integer t with $1 \le t \le s/2$, or $n = 2 \cdot 3^t - 1$ for some integer t with $0 \le t < s/2$.

Suppose that $n = 3^t - 1$ for some positive integer t with $1 \le t \le s/2$. Let

$$a = \frac{3^s}{n+1} - \frac{n}{2}.$$

Clearly a is an integer and

$$a = \frac{3^s}{3^t} - \frac{(3^t - 1)}{2} = \frac{2 \cdot 3^s - 3^{2t} + 3^t}{2 \cdot 3^t} \ge \frac{2 \cdot 3^s - 3^s + 3^t}{2 \cdot 3^t} > 0.$$

Suppose that $n = 2 \cdot 3^t - 1$, for some integer t with $0 \le t < s/2$. Let

$$a = \frac{3^s}{n+1} - \frac{n}{2}.$$

Clearly

$$a = \frac{3^{s-t} - 2 \cdot 3^t + 1}{2}$$

is an integer. Since 2t < s, $2t \le s - 1$ and

$$a = \frac{3^s}{2 \cdot 3^t} - \frac{2 \cdot 3^t - 1}{2} = \frac{3^s - 2 \cdot 3^{2t} + 3^t}{2 \cdot 3^t}$$
$$\geq \frac{3^s - 2 \cdot 3^{s-1} + 3^t}{2 \cdot 3^t} = \frac{3^{s-1} + 3^t}{2 \cdot 3^t} > 0.$$

Hence $a + (a + 1) + \dots + (a + n) = 3^s$ is solvable if $n = 3^t - 1$ for some positive integer t with $1 \le t \le s/2$ or $n = 2 \cdot 3^t - 1$ for some integer t with $0 \le t < s/2$.

VOLUME 23, NUMBER 1

Conversely, suppose that $a + (a + 1) + \dots + (a + n) = 3^{s}$ is solvable. Since

$$3^{s} = a + (a+1) + \dots + (a+n) = \frac{(n+1)(2a+n)}{2},$$
$$a = \frac{3^{s}}{n+1} - \frac{n}{2}.$$

Consider the case that n is even. Since a and n/2 are positive integers, n+1 divides 3^s and hence $n = 3^t - 1$ for some $1 \le t$. Thus,

$$a = \frac{3^s}{3^t} - \frac{3^t - 1}{2} = \frac{2 \cdot 3^{s-t} - 3^t + 1}{2} > 0$$
 is an integer

implies $2 \cdot 3^{s-t} - 3^t + 1 > 1$ which implies $2 \cdot 3^{s-t} - 3^t > 0$ which implies $2 > 3^{2t-s}$ which implies $2t - s \le 0$ which implies $t \le s/2$.

Consider the case that n is odd. Since

$$a = \frac{3^s}{n+1} - \frac{n}{2} = \frac{2 \cdot 3^s - n(n+1)}{2(n+1)},$$

n+1 divides $2 \cdot 3^s$. Consequently, $\frac{n+1}{2} = 3^t$ for some $0 \le t$. Thus,

$$a = \frac{3^s}{2 \cdot 3^t} - \frac{2 \cdot 3^t - 1}{2} = \frac{3^{s-t} - 2 \cdot 3^t + 1}{2} > 0$$
 is an integer

implies $3^{s-t} - 2 \cdot 3^t + 1 > 1$ which implies $3^{s-t} - 2 \cdot 3^t > 0$ which implies $2 < 3^{s-2t}$ which implies s - 2t > 0 which implies t < s/2. Hence if $a + (a + 1) + \cdots + (a + n) = 3^s$ is solvable, then $n = 3^t - 1$, for some positive integer t with $1 \le t \le s/2$ or $n = 2 \cdot 3^t - 1$, for some integer t with $0 \le t < s/2$.

It is easy to see that the cardinality of the set

 $\{s: n = 3^t - 1, \text{ for some positive integer } t \text{ with } 1 \le t \le s/2 \text{ or } \}$

 $n = 2 \cdot 3^t - 1$, for some integer t with $0 \le t < s/2$

FEBRUARY 2011

is s. This completes the solution of the generalized problem. \Box

Also solved by Calvin A. Curtindolph, Black River Falls, Wisconsin and the proposer.

176. Proposed by José Luis Díaz-Barrero, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let a, b, c be the lengths of the sides of a triangle ABC with altitudes h_a , h_b , and h_c , respectively. Prove that

$$\frac{1}{3}\sum_{cyclic}\frac{a^2}{bc(b+c-a)} \ge \frac{h_a+h_b+h_c}{ah_a+bh_b+ch_c}.$$

Solution by Panagiotis T. Krasopoulos, Athens, Greece. Let E be the area of the triangle. Then $ah_a = bh_b = ch_c = 2E$. The inequality then becomes

$$\sum_{cyclic} \frac{a^3}{abc(b+c-a)} \ge \frac{3}{6E}(h_a+h_b+h_c)$$

or

$$\sum_{cyclic} \frac{a^3}{(b+c-a)} \ge \frac{3}{6E}(2Ebc+2Eac+2Eab) = bc+ac+ab.$$

Now, since the triangle is not degenerate, b + c - a > 0, a + c - b > 0, and a+b-c > 0 holds. We multiply both sides by (b+c-a)(a+b-c)(a+c-b) > 0. After some algebraic calculations we obtain

$$(a^{3} + b^{3} + c^{3} + 3abc - a^{2}b - a^{2}c - b^{2}a - b^{2}c - c^{2}a - c^{2}b)(a + b + c)^{2} \ge 0.$$

It is enough to prove that

$$a^{3} + b^{3} + c^{3} + 3abc - a^{2}b - a^{2}c - b^{2}a - b^{2}c - c^{2}a - c^{2}b \ge 0$$

or equivalently

$$a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) \ge 0.$$

VOLUME 23, NUMBER 1

95

The last inequality holds directly from Schur's inequality, i.e.,

 $a^{t}(a-b)(a-c) + b^{t}(b-a)(b-c) + c^{t}(c-a)(c-b) \ge 0,$

for non-negative real numbers a, b, c and for t = 1. This completes the proof.

Also solved by Kee-Wai Lau, Hong Kong, China; Mihai Cipu, Institute of Mathematics of the Romanian Academy, Bucharest, Romania (2 solutions); Oleh Faynshteyn, Leipzig, Germany; and the proposer.

FEBRUARY 2011