FRACTION SETS FOR BASIC DIGIT SETS

DARREN D. WICK

Abstract

A finite set of integers D with $0 \in D$ is basic for the base $b \in \mathbb{Z}$ if every $z \in \mathbb{Z}$ can be written uniquely as an integer in the base b with digits from D. Since such a base representation is unsigned, basic sets must have a negative base b or some negative integers in D. The fraction set for (b, D) is the set of all representable numbers with integer part zero. We show that if (b, D) is basic and D consists of consecutive digits, then the fraction set is an interval of length one whose endpoints have redundant representations. Furthermore, we show that if D does not consist of consecutive integers, then F is disconnected.

1. Basic Digit Sets

Let $b \in \mathbb{Z}$ and $D \subset \mathbb{Z}$. A representation of a number z in the base b with digit set D is

$$
z=\sum_{k=-\infty}^{n} a_{k} b^{k}
$$

for some $n \in \mathbb{Z}$ and $a_{k} \in D$. We denote $\sum_{k=-\infty}^{-1} a_{k} b^{k}$ as the fractional part of z and $\sum_{k=0}^{n} a_{k} b^{k}$ as the integer part of z. Furthermore, we denote the base and digit set pair as (b, D).

Definition 1. Let $b \in \mathbb{Z},|b| \geq 2, D$ a finite subset of \mathbb{Z}, and $0 \in D$. Then (b, D) is basic if every integer z has a unique representation of the form

$$
z=\sum_{k=0}^{n} a_{k} b^{k}
$$

for some $n \in \mathbb{N}$ and $a_{k} \in D$. Note that such a representation has no fractional part.

The usual base and digit pair sets (b, D), with $b>1$ and $D=\{0,1,2, \ldots$, $b-1\}$ are not basic since negative integers have no such representation. Thus we see that basic sets must have a negative base b or some negative integers in D. Matula has characterized the basic sets with the following theorem.

Theorem 1. [1, Theorem 5] (b, D) is basic if and only if i) D is a complete residue system modulo b (in particular, $|D|=|b|$) and ii) For each $n \in \mathbb{N}$, the set of all n-digit numbers with digits in D contains no non-zero multiples of $b^{n}-1$.

Matula has also answered the question of the existence of representations for all real numbers in a basic set.

Theorem 2. [1, Theorem 10] If (b, D) is basic then every real number has a representation.

2. Fraction Sets

For a given base (b, D), denote by $F=F(b, D)$ the set of all fractions (i.e. the set of all representable numbers with zero integer part). Let (b, D) be basic. We will show that if D consists of consecutive digits, then F is an interval of length one whose endpoints have redundant representations. Furthermore, we show that if D does not consist of consecutive integers, then F is disconnected.
Lemma 1. Let $b \in \mathbb{Z}$ with $|b| \geq 2$ and let $D \subset \mathbb{Z}$. Let $a=\min (D)$ and $A=\max (D)$.
(1) If $b>0$, then

$$
\min (F)=\frac{a}{b-1} \quad \text { and } \quad \max (F)=\frac{A}{b-1}
$$

(2) If $b<0$, then

$$
\min (F)=\frac{A b+a}{b^{2}-1} \quad \text { and } \quad \max (F)=\frac{a b+A}{b^{2}-1}
$$

(3) For all b,

$$
\max (F)-\min (F)=\frac{A-a}{|b|-1} .
$$

Proof.
(1) Let $b>0$. Then for $\sum_{i=-\infty}^{-1} a_{i} b^{i} \in F$, each term $a_{i} b^{i}$ in the sum has minimum value when $a_{i}=a$ and maximum value when $a_{i}=A$. Thus, the minimum element of F is

$$
\sum_{i=-\infty}^{-1} a b^{i}=. \bar{a}=a \cdot \sum_{i=-\infty}^{-1} b^{i}=a \cdot \frac{\frac{1}{b}}{1-\frac{1}{b}}=\frac{a}{b-1}
$$

Similarly, the maximum element of F is

$$
\sum_{i=-\infty}^{-1} A b^{i}=. \bar{A}=A \cdot \sum_{i=-\infty}^{-1} b^{i}=A \cdot \frac{\frac{1}{b}}{1-\frac{1}{b}}=\frac{A}{b-1}
$$

(2) Let $b<0$. Then the minimum and maximum values of the terms $a_{i} b^{i}$ depend on the parity of i.
(a) If i is even, then $b^{i}>0$ so that the minimum values occur when $a_{i}=a$ and the maximum values occur when $a_{i}=A$. Thus, the even powered terms of the minimum element of F are

$$
a b^{-2}+a b^{-4}+\cdots
$$

Similarly, the even powered terms of the maximum element of F are

$$
A b^{-2}+A b^{-4}+\cdots
$$

(b) When i is odd, we have that $b^{i}<0$ so that the minimum values occur when $a_{i}=A$ and the maximum values occur when $a_{i}=a$. Thus, the odd powered terms of the minimum element of F are

$$
A b^{-1}+A b^{-3}+\cdots
$$

Similarly, the odd powered terms of the maximum element of F are

$$
a b^{-1}+a b^{-3}+\cdots
$$

Collecting all such terms, we see that the minimum element of F is of the form

$$
\begin{aligned}
\overline{A a} & =A\left(\frac{1}{b}+\frac{1}{b^{3}}+\cdots\right)+a\left(\frac{1}{b^{2}}+\frac{1}{b^{4}}+\cdots\right) \\
& =A \cdot \frac{\frac{1}{b}}{1-\frac{1}{b^{2}}}+a \cdot \frac{\frac{1}{b^{2}}}{1-\frac{1}{b^{2}}}=\frac{A b+a}{b^{2}-1} .
\end{aligned}
$$

Similarly, the maximum element of F is of the form

$$
\begin{aligned}
\overline{a A} & =a\left(\frac{1}{b}+\frac{1}{b^{3}}+\cdots\right)+A\left(\frac{1}{b^{2}}+\frac{1}{b^{4}}+\cdots\right) \\
& =a \cdot \frac{\frac{1}{b}}{1-\frac{1}{b^{2}}}+A \cdot \frac{\frac{1}{b^{2}}}{1-\frac{1}{b^{2}}}=\frac{a b+A}{b^{2}-1} .
\end{aligned}
$$

(3) (a) Let $b>0$. Then by part 1 above,

$$
\max (F)-\min (F)=\frac{A}{b-1}-\frac{a}{b-1}
$$

and the result follows.
(b) Let $b<0$. Then by part 2 above,
$\max (F)-\min (F)=\frac{a b+A}{b^{2}-1}-\frac{A b+a}{b^{2}-1}=\frac{(A-a)(1-b)}{b^{2}-1}$
and the result follows.

Having established the extrema for F, we will denote the interval $I=$ $[\min (F), \max (F)]$ so that $F \subset I$ and $|I|=\frac{A-a}{|b|-1}$.

Theorem 3. If (b, D) is a basic set and D consists of consecutive integers, then F is an interval of length 1 and the endpoints of F have redundant representations.

Proof. Since $D=\{a, \ldots, A\}$ contains $|b|$ consecutive digits, we have that $A-a=|b|-1$. By part 3 of Lemma 1 we have

$$
|I|=\max (F)-\min (F)=\frac{A-a}{|b|-1}=1 .
$$

We now claim that $F=I$. By construction, the endpoints of I are in F. Let x be in the interior of I. Since (b, D) is basic, x has a representation. If x has non-zero integer part n, then $x-n$ has zero integer part and $x-n \in F$.
(1) If $n \geq 1$ then $x-n \leq x-1<\max (F)-1=\min (F)$.
(2) If $n \leq-1$ then $x-n \geq x+1>\min (F)+1=\max (F)$.

In either case, we have an element $x-n \in F$ that is not in I. This contradicts that $F \subset I$. Thus, every element of I has zero integer part and $I=F$.

Since (b, D) is basic, both -1 and 1 have unique representations of the form $-1=\sum_{k=0}^{n} c_{k} b^{k}$ and $1=\sum_{k=0}^{m} d_{k} b^{k}$ for some $n, m \geq 0$ and $c_{k}, d_{k} \in$ D. Additionally, the endpoints of F have representations with zero integer part of the form $\min (F)=\sum_{k=-\infty}^{-1} e_{k} b^{k}$ and $\max (F)=\sum_{k=-\infty}^{-1} f_{k} b^{k}$ for some $e_{k}, f_{k} \in D$. Thus, we have the redundant representations

$$
\min (F)=\sum_{k=-\infty}^{-1} e_{k} b^{k}=\max (F)-1=\sum_{k=-\infty}^{-1} f_{k} b^{k}+\sum_{k=0}^{n} c_{k} b^{k}
$$

and

$$
\max (F)=\sum_{k=-\infty}^{-1} f_{k} b^{k}=\min (F)+1=\sum_{k=-\infty}^{-1} e_{k} b^{k}+\sum_{k=0}^{m} d_{k} b^{k}
$$

Example 1. Both balanced ternary $(3,\{-1,0,1\})$ and negabinary $(-2,\{0,1\})$ are basic [1, p. 1137]. We use Lemma 1 and Theorem 3 to compute their fraction sets.
(1) For balanced ternary, we have that $\min (F)=-\frac{1}{2}$ and $\max (F)=\frac{1}{2}$ so that $F=\left[-\frac{1}{2}, \frac{1}{2}\right]$. The endpoints of F have redundant representations of the form

$$
\begin{aligned}
\frac{1}{2} & =. \overline{1}=1 . \overline{-1} \\
-\frac{1}{2} & =. \overline{-1}=-1 . \overline{1}
\end{aligned}
$$

(2) For negabinary, we have that $\min (F)=-\frac{2}{3}$ and $\max (F)=\frac{1}{3}$ so that $F=\left[-\frac{2}{3}, \frac{1}{3}\right]$. The endpoints of F have redundant representations of the form

$$
\begin{gathered}
\frac{1}{3}=. \overline{01}=1 . \overline{10} \\
-\frac{2}{3}=. \overline{10}=11 . \overline{01}
\end{gathered}
$$

Theorem 4. If (b, D) is basic and D does not consist of consecutive digits, then F is disconnected.

Proof. Since D does not consist of consecutive digits, $A-a>|b|-1$ and thus $|I|>1$. Let $A_{|b|}=\left\{i \cdot b^{j}: i, j \in \mathbb{Z}\right\}$. Then $A_{|b|}$ is dense in \mathbb{R} and each $x \in A_{|b|}$ has a unique representation in (b, D) [1, Lemma 14].

Suppose $|I|=1+\epsilon$ for some $\epsilon>0$. Choose $x \in A_{|b|}$ so that $0<$ $x-\min (F)<\frac{\epsilon}{2}$ and thus $x \in I$. We then have that

$$
1+x-\min (F)<1+\frac{\epsilon}{2}<|I|
$$

Thus $1+x<\max (F)$ and $1+x \in I$. If $x \notin F$, then F is disconnected. Suppose $x \in F$. Then x has a representation of the form $x=\sum_{k=-\infty}^{-1} a_{k} b^{k}$ with $a_{k} \in D$. Since (b, D) is basic, 1 has a representation of the form $1=\sum_{j=0}^{n} c_{j} b^{j}$ for some $n \geq 0$ and $c_{j} \in D$. Thus $1+x$ has a representation $1+x=\sum_{j=0}^{n} c_{j} b^{j}+\sum_{k=-\infty}^{-1} a_{k} b^{k}$ with non-zero integer part.

Note that $A_{|b|}$ is the set of real numbers that have a terminating base $|b|$ expansion with digits in $\{0,1, \ldots,|b|-1\}$. Therefore, since $x \in A_{|b|}$, so is $1+x$. Thus $1+x$ must have a unique representation in (b, D), and that representation must be the one given above with non-zero integer part. Thus $1+x \in I \backslash F$, and F is disconnected.

Example 2. The base and digit set $(3,\{-7,0,1\})$ is basic [1, Theorem 8]. Using Lemma 1, we have that $\min (F)=-\frac{7}{2}$ and $\max (F)=\frac{1}{2}$. By Theorem 4, F is a proper disconnected subset of $I=\left[-\frac{7}{2}, \frac{1}{2}\right]$.

References

[1] D. W. Matula, Basic digit sets for radix representation, Journal of the Association for Computing Machinery, 29.4 (1982), 1131-1143.

MSC2000: 11A63
Department of Mathematics and Computer Science, Ashland University, Ashland, OH 44805

E-mail address: dwick@ashland.edu

