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SINGULAR SUPPORT OF THE SCATTERING KERNEL FOR THE
RAYLEIGH WAVE IN PERTURBED HALF-SPACES*

MISHIO KAWASHITA? AND HIDEO SOGA#

Abstract. This paper deals with the Rayleigh wave scattering on perturbed half-spaces in the
framework of the Lax-Phillips type. Singular parts of the scattering kernel for this scattering are
closely connected with singularities of the Rayleigh wave passing through the perturbation on the
boundary. This can be described by estimating the singular support of the scattering kernel on the
Rayleigh wave channel. The proof is based on a representation formula of the scattering kernel that
was obtained in the previous work. However, the formula does not suit the situation of the Rayleigh
wave, even though it is a natural extension of Majda’s formula for the usual wave equation. Hence,
the formula needs to be reformed, and the problem needs to be reduced to a pseudo-differential
equation on the boundary governing the Rayleigh wave. Key methods for the reduced problem are
construction of an approximate solution for the Rayleigh wave and analysis of an oscillatory integral
distilled by using the solution. The phase function of the oscillatory integral is always degenerate
along the characteristic curve of the Rayleigh wave. This degeneracy is handled by introducing a
certain criterion for the regularity of the distribution defined by the oscillatory integral.
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1. Introduction. Let Q be a perturbed space of the half-space R3 (= {z =
(', x3) = (w1, 22,23); 23 > 0}) with a C* boundary I" (with bounded undulation),
and consider the elastic wave equation

(p(2)0? — A(z,0,))u(t,r) =0 in R x Q, 11
N(z, 8 )u(t,z) =0 onR x T (1.1)

for the displacement vector u(t,z) = *(ui(t,x), u2(t, ), us(t,xz)) of z € Q at time ¢.
In (1.1), p is the density of Q, Au = Zij:l Oz, (aij(2)y,u) is an operator with the
coefficients a;;(z) of 3 x 3-matrix-valued functions, and A is the conormal derivative
of A given by Nu = Z?,j:l vi(x)aij(x)0z;u ‘F, where v(z) = *(v1(z), va(z), v3(x)) is
the unit outer normal vector to I" at z(€ T').

In this paper, the isotropic solids are considered; therefore, the (p, ¢)-components
@ipjq(z) of a;;(z) are of the forms a;p;q(x) = Mx)0ipdjq + 1(x)(0:0pq + 0igdjp), Where
di; is Kronecker’s delta, and A(x) and p(z) are the Lamé parameters. We assume
that the functions p(z), A(z), and p(z) are C* in R3 and satisfy

inf p(xz) >0, inf (A(z)+ 2u(z)/3) >0, inf p(x) > 0.
€N e zEQ

Throughout this paper, we assume that there exists a constant ry > 0 such that
the boundary I' consists of the boundary of the half-space outside the ball B,, =
{z € R3;|z| < 1o} and that the functions p(z), A(z), and p(z) are the constants po,
Ao, and pg, respectively, outside B,.,. Thus, outside B, A(z, d,) is an operator with
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constant coefficients, and is denoted by Ay (9,). Note that the system of the free space

corresponding to (1.1) is given by replacing A with 4y and Q with the half-space.
Two types of body waves exist for elastic waves: P-wave (the longitudinal wave)

and S-wave (the transversal wave). In the free system, the phase speeds of the P- and

S-waves are given by cp = /(Ao + 2u0)py * and cs = 1/popy ! respectively. There
also exists a surface wave called the Rayleigh wave; this wave has the phase speed cgr
that is less than the speeds of the body waves, i.e. 0 < cg < cs < cp. Note that the
speed cp is determined by an algebraic equation (cf. (5.1) or [1]).

Since the Rayleigh wave is concentrated near the boundary, it has many interest-
ing properties different from those of the body waves. In the case where the region 2
is an exterior domain with a compact boundary, the Rayleigh waves may cause strong
trapping phenomena. For example, the local energy does not decay not quickly but
rather slow (cf. [5] and [6]). Trapping phenomena often produce resonances. Stefanov
and Vodev [17, 18] showed that the Rayleigh wave generates a sequence of resonances
that approaches the real axis very quickly.

Since our interest is in scattering of the Rayleigh wave, it is natural to choose
the half space Ri as the free space in scattering theory. In this case, the scattered
Rayleigh wave may contain informations on the perturbation. We study how and
what we can pick up from the scattering kernel associated with the Rayleigh wave.

According to this thought, M. Kawashita, W. Kawashita and Soga [7, 8] have
formulated a scattering theory of the Lax-Phillips type for perturbed systems from
the half space. In [7], the translation representations in the free space (the half-
space) are given. In [8], the theory for the perturbed space is developed, and the
representation formula of the scattering kernel is obtained. Here, even the plane
waves in the free space Ri contain the reflected waves consisting of different kinds of
waves. Furthermore, the Rayleigh wave also exists. These are classified as follows:

(P) For the incident P-wave, P- and S-waves are reflected.
(sV) For the incident S-wave, P- and S-waves are reflected.
(SH) For the incident S-wave, only the S-wave is reflected.
(SVO)  For the incident S-wave, the S-wave is totally reflected.
(R) The Rayleigh wave goes on the boundary.

Here, w denotes the propagating direction of the reflected P-waves in the case (P),
the reflected S-waves in the cases (SV), (SH), and (SVO), and the one of the Rayleigh
wave in the case (R). Corresponding to these cases, the scattering kernel in our case
is decomposed into the components Sys(s,0,w) (o, 8 = P, SV, SH, SVO, R). We call
Sap(s,0,w) the component for the channel of the incoming « and outgoing 3.

The waves corresponding to the cases classified above are denoted by w§ (¢, z;w)
(o =P, SV, SH, SVO, R). For each case the wave w ,,;(t, r;w) exists in the perturbed
space and is asymptotically equal to w§ (¢, z;w) as t — —oo. Note that these are
the Fourier transforms of the generalized eigenfunctions in the free and perturbed
spaces respectively (cf. [8]). Each S,s(s,0,w) is represented by using w§(t,x;0)
and w (t, z;w) = we 4, (t, v;0) — w§ (t, 2;w). These representations correspond to
Majda’s formula [11] for scattering by obstacles in the scalar-valued wave equation.
In the Majda case, the representation was expressed by using the plane waves of the
form 6(t — z - w) in the free space and the scattered waves for these waves. In our
case, w( (t, z;0) correspond to the plane waves in the free space and w (¢, z;w) to the
scattered waves. The represetation of S,s(s,0,w) is stated in Theorem 2.2 (for the
detail, see Theorem 6.1 of [8]).
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In this paper, we study singularities of the component for the channel of the
Rayleigh wave (i.e. Sgrr(s,d,w)). Roughly speaking, this component has a meaning
as follows: Let an incident (singular) Rayleigh wave come from the direction w over a
far distance and be scattered by the perturbation of the boundary; then, Sgrg (s, 6, w)
means measurement of the scattered Rayleigh wave that goes eventually in the di-
rection #. Our problem is to find where singularities of Sgrr(s,#,w) appear and how
they are connected with singularities of the Rayleigh wave.

This type of problem was studied by Majda [11] and others for the obstacle
sattering of scalar-valued waves. Using his representation of the scattering kernel,
Majda showed where the kernel was singular and proved that the convex hull of
the obstacle was determined from these singularities. For scattering of elastic waves
by compact obstacles, similar results were obtained by Soga [16] and others. These
results are closely connected with the reflection phenomena of the plane waves by the
obstacles, while the surface waves are excluded. Thus scattering of the Rayleigh wave
itself has not yet been considered even though the Rayleigh wave may exist on the
boundary.

According to Taylor [19] and others, singularities of the Rayleigh wave propagate
only along the geodesics of the boundary T' with the phase speed ¢gr € C*°(T") (cf.
section 5). In the microlocal sense, the original equation is reduced to a scalar-
valued pseudo-differential equation of the real principal type on the boundary R x I
which governs the Rayleigh wave. This principal symbol is given by ér(z)||¢|lr — |7|
((t,7,¢) € T*(R)xT*(T")), where ||C]||r is the metric on T*(T") induced by the standard
Riemann metric of I’ (for details, see Proposition 5.1). Thus, we expect that the
scattering phenomena of the Rayleigh wave are similar to those for the wave equation
on the boundary I' if we only look at singularities and abandon other things than
singularities.

Soga [14] investigated scattering for the scalar-valued wave equation with pertur-
bation of the media in the Euclidian space. Based on his result and our expectation
mentioned above, substituting the pseudo-differential equation governing the Rayleigh
wave for the usual wave equation, we may guess the singularities of Sgr(s,6,w) ap-
pear similarly to those in [14]. As the final conclusion, this is correct, as is stated in
Theorems 1 and 2. However, the proofs cannot be analogized with those of [14], which
is because of the focus on the Rayleigh wave: The representation of Sgrg(s,8,w) by
M. Kawashita, W. Kawashita and Soga [8] is not of the integral form on the boundary
where the Rayleigh wave is concentrated; this implies that the representation is not
suitable only for analysis of the Rayleigh wave but also for explanation of the Rayleigh
wave scattering, even though it is a natural extension of Majda’s formula [11] to our
case of elastic waves. Thus, using the differential equation in the unperturbed space
for the Rayleigh wave and employing an approximate solution of the Rayleigh wave in
the perturbed space, we reform the represetation to an appropriate form (cf. Theo-
rem 3.1). This is the first step towards analyzing the scattering kernel for the surface
waves like the Rayleigh wave, and is a crucial point. Note that this step is not needed
when treating scattering of body waves (propagating inside the media).

The next step is to construct an approximate solution for the Rayleigh wave
contained in the representation. Using this solution, we reduce the problem to the
examination of an oscillatory integral. This seems to be the same approach as that
by Majda [11], Soga [16], and others. However, in our case, even the construction
of the approximate solution is not easy compared with the previous works of [11]
and [14, 16]. Furhtermore, the phase function of the oscillatory integral is always
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degenerate along the characteristic curve of the Rayleigh wave. This also makes a
new difficulty. Thus, new techniques are needed to overcome these difficulties. Their
development is another crucial point in this paper.

Let (¢(t,y’;w),p(t,y';w)) be the phase flows in the cotangent bundle of T' for the
Hamiltonian ég(2')|¢||r with (¢(0,;w),p(0,y;w)) = (¥, cz'w) for w € S* and ¢
€ I’ with ¢ - w < —rg. We assume that these flows are non-trapping:

tlim lg(t,y';w)| = 0o for any w € S* and y' with ' - w < —rp. (1.2)
— 00

For w and 8 € S we set
MEO) ={y €T; ¢ -w=—ro, lim p(t+cp'ro,y’;w) = 0},

sh(#) = sup tlim (cl_%lq(t + cglro, yiw) -0 —1t),
yeMb() T

and denote the set y' € M () attaining the supremum s () by M}™*(9), i.e., the
maximal sojourn time. M () and sJ () are independent of the choice for rg, and
Mmar(9) £ () if M} (0) # 0. Note that these above limits exist since in our case the
phase speed of the Rayleigh wave satisfies ¢g(a’) = cg outside of the ball B,,. The
main results in this paper are the following theorems.

THEOREM 1.1. For any w and 0 € S*, we have
(i) if MF(0) =0, then Srr(s,0,w) is C on the whole of Ry;
(i) if M_3(8) # 0, then sing supp [Srr(-,0,w)] C (—o0, 55 (6)]

For a tempered distribution f € &'(R) and sy € R, we say that f € H' at s = s,
if there exists a cutoff function ¢ € C§°(R) such that ¢ = 1 near so and ¢f € H'(R).

THEOREM 1.2. If M™% (@) consists of only one point, Srr(,0,w) ¢ H™ 1 at
s=st(0).

Note that Theorem 1.2 implies the following corollary:

COROLLARY 1.3. If M™% (0) consists of only one point, Srr(s,0,w) is singular
at s = s} (0).

In [14], the results corresponding to Theorem 1.1 and Corollary 1.3 were obtained
by assuming that bunches of paths of the geometrical optics near the paths attaining
the maximal sojourn time did not make caustics. In the present paper, this assumption
is removed. Instead, we assume that the paths attaining the maximum are unique.
Assumptions of this type are needed to avoid some cancellation of the principal part
(for detail see section 6). Even for the usual wave equation, we need these conditions
to avoid cancellations since the principal part contains the terms from the Maslov
index if caustics exist, which may cause the cancellations.

We now describe a rough sketch of the proofs. The first step is to reform the
representation of the scattering kernel Sggr(s,d,w). As is explained earlier (also see
Theorem 2.2 in section 2), the obtained representation of Sgr(s,f,w) does not suit
the scattering phenomena of the surface waves. Hence, we have to pick the main
parts from the formula that contain essential information for the Rayleigh wave . For
this purpose, we need the two steps divided into sections 2 and 3. Note that in usual
cases, these steps are not needed.

We choose any point sy € R and localize the original formula of the scattering
kernel stated in Theorem 2.2 at sg. The scattering processes can be time-reversed if
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only singularities are focused on. In section 2, using this fact, we reduce this localized
formula near s = sg to a simple one (cf. Proposition 2.5). For this purpose, we
introduce approximate solutions for the time reversed system described in (2.8) and
(2.9). Note that even in the case of the usual wave equations this reduced formula
seems to make the proofs simpler.

In section 3, further reduction suitable to the Rayleigh wave is given (cf. Theorem
3.1) by introducing another approximate solution with the Dirichlet boundary condi-
tion (cf. (3.1) and (3.2)). In this reduction, properties of the Rayleigh wave are used
essentially. As a result, we have a reduced formula of Sgg(s,8,w) localized at each
point sg, which consists of only one integral on the boundary R x I'. This formula is
reasonable and consistent with the scattering phenomena of the Rayleigh wave since
it travels on the boundary. Moreover, this also has a technical advantage. Since the
original formula consists of many integrals both in R x 2 and on R x 9(2 N Ri),
it is difficult to verify that these terms do not cancel each other out. To avoid this
difficulty, we need these reductions.

The next step of the proof is to actually construct the approximate solutions
introduced in sections 2 and 3. This step is divided into two parts. The data producing
singularities of the scattered Rayleigh wave is contained in some part of the initial
waves in the free space. First we have to pick up this part, which is done by introducing
the approximate solutions of the equation with the zero Dirichlet boundary data
and the non homogeneous data in Q. (cf. (4.1)). These approximate solutions are
constructed in section 4. In section 5, the approximate solution containing scattered
Rayleigh waves is constructed.

As shown in section 4, using the approximate solutions of (4.1) mentioned above,
we can select the actual data as an inhomogeneous Neumann data for the equation
of the scattered Rayleigh waves (cf. Proposition 4.5 and (4.2)). The approximate
solution introduced in section 3 is also constructed by the same manner. Note that
the arguments in section 4 do not contain construction of the scattered Rayleigh
waves. Nevertheless, it is difficult to directly pick up the inhomogeneous boundary
data mentioned above since the Rayleigh wave in the free space is very complex.
Fortunately, the essential data are given by the commutator of py *Ao(8,) and a cutoff
function, and consequently, we can perform the whole calculation using a structure
of the symbols for the elastic equations (cf. Lemma 4.4).

The approximate solution containing the scattered Rayleigh wave is governed by
the equation with the inhomogeneous Neumann boundary data and the zero homo-
geneous data in Q (cf. (4.2)). Construction of this solution is reduced to making
asymptotic solutions of the Neumann operator that is restricted in the elliptic region
of pd? — A: this basically follows the approach due to Taylor [19]. In the last part of
section b, we study the relations between the phase functions and sojourn times used
in the following sections.

In section 6, inserting the approximate solutions into the reduced representation
of the kernel, we prove the main theorems in a more precise form (cf. Theorem 6.3).
The proof is based on analysis of singularities for some distributions that are defined
by oscillatory integrals with a parameter. In our case, the phase functions in these
oscillatory integrals are always degenerate along the path of the maximal sojourn
time. Hence, the stationary phase method does not work well. In [15], Soga gave
sufficient conditions so that oscillatory integrals with degenerate phase functions did
not rapidly decrease. In our case, however, these conditions are not satisfied. Thus,
we need to find another criterion and improve Soga’s method [15]. Our efforts are
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presented in section 7. As a result, we can measure the singularities of a class of
distributions defined by oscillatory integrals in the sense of the usual Sobolev space
(cf. Theorems 7.1 and 7.2).

In the last part of section 6, we consider the case where the wave front of the
Rayleigh wave going through the perturbation becomes strictly convex near whole
paths corresponding to the maximal sojourn time. In this case, using the change in
variables, we can reduce the oscillatory integrals to the forms to which the stationary
phase method can be applied. Thus, the asymptotic form of Sggr(s,f,w) is obtained
(cf. Theorem 6.4). In this procedure, a kind of non-degenerate condition is introduced
(cf. (6.17)). To the best of our knowledge, this non-degenerate condition has not
previously been introduced, even for the usual wave equations. Noting Theorem 6.3
and Theorem 6.4, we can see that the present non-degenerate case is the weakest
concerning singularities of the scattering kernels at the maximal sojourn time.

2. Reforming the kernel representation. In this section, we reform the rep-
resentation of the scattering kernel obtained in [8]. Before doing so, we describe the
notations and the basic results.

H™(M) denotes the Sobolev space of order m on M. The mapping U(t) :
t(u(0, ), yu(0,-)) — t(u(t,-),dpu(t,-)) becomes a unitary operator on the Hilbert
space H = H'(Q) x L?(Q) with the inner product: (f,g)nx = 271{23,]‘:1 Jo @ijOu; f1-
a%'glpd‘r + fQ f2 g_deCL'} (f = t(fluf?)v g9 = t(glag2))7 where Hm(Q) = {’U(LL') €
H™(Q) : 9%v € L*(Q) for 1 < |a] < m,lim,_eor™? < x| <2r [v|?dz = 0 }.
The family {U(t)}+cr is a one parameter group of unitary operators with the gen-
erator L of the form Lf = '(fo, Af1), f € D(L) = H¥(Q) x H'(Q), where
HZ () = {v(z) € H*(Q); Nv =0} (cf. [8]).

M. Kawashita, W. Kawashita and Soga [8] have shown that we have the outgoing
and incoming translation representations 7+ and T~ in the Lax-Phillips sense (cf.
[10]). These representations are unitary operators from H to L?(R; N). Here, N
is of the form N = @©,eaL?(Ss) (A = {P, SV, SH, SVO, R}), and each S, implies
the set of all directions connected with the incident (or incoming) waves correspond-
ing to the phenomena « described in the Introduction (for details, see [8]). In the
Lax-Phillips theory, the scattering operator S is defined by S = TH(T~)"!. S is a
unitary operator on L?(R; N) and is expressed with a distribution kernel S(s,,w):
(Sk)(s,0) = k(s,0)+ [ S(s—3,0,0)k(3,@)dsdw  (k(5,0) € L*(R;N)). S(s,0,w) is
called the scattering kernel. The scattering kernel S(s, 6, w) consists of 5x5 matrices
(Sag(s, 9, w))a,ﬁeA'

In (7], considering the reduced wave equation (6 + p~'A)u = 0 with the constant
coefficients, we have introduced the following plane incident waves ¢y (o = P, SV,
SH, SVO) and their reflected (or the totally reflected) waves ¢y

Vi o,w) = e P ap(0), 65" O (@0,w) = (0, w)e s T eagy (@),
§V7i(117;0', w) — eiocglwmasv(w), (bgH’i({E;O’,w) — eiacglwmaSH(@),

where w = t(wlv —ws), W' = t(w1=w2)7 ap(§) =& = t(517§3)7 asv(§) = t(_(€3/|§/|)§/,
1€'), asu (&) = (1/]€']) '(—&2,&1,0) and (o, w) is a certain function constant for o > 0
and for o < 0 (for details, see [7]). Here, we use w in the notation ¢g*(x; 0, w) to note
the propagation direction by w, since this simplifies description of the calculations.
We use the following generalized eigenfunctions:

o5 (z;0,w) = qﬁg"i(x; o,w)+ ¢y (x;0,w) (€ A\ {R}).
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We also use the generalized eigenfunction corresponding to the Rayleigh wave:
o8 (w;0,w) = \/2mpoClleioen = ZCR ~loleg’ R ws a¥ (o, w), (2.1)

where w € S! is the propagation direction and 5(1) {1 = (cr/cp)?}/?, 5%2) =

{1 — (cr/es)?}V/2, CF = 2 — (cp/es)?, CF = =269, a3 (0,0) = H(w, (i0/|o))ER)),

ag) (oyw) = t({g)w, io/|o]), and the positive constant C{ is taken so that

|0’|(27Tp00R)_1/ |p& (x5 0, w) [Pd 3 = 1. (2.2)
0

We need this system of the generalized eigenfunction to represent the scattering kernel.
We set

w§ (t, z;w) = (2m) 7! / et (z; —o,w)do  (a € A).
R

Then, for o = P, SV, SH, SVO, w§(t,z;w) is of the Dirac delta function type; it
represents the reflection phenomena for the incident wave going in the direction @ in
the half-space. wf(t,z;w) is the Rayleigh wave of the same type on the boundary
going in the direction w. Note that the form of w{i(t,z;w) given in section 1 is
obtained by calculating the above Fourier integral.

We take a cutoff function ¢ € C°°(R3) satisfying 0 < ¢ < 1, ¢(z) = 1 for
|z] > 1o +5/3 and ¢ (z) = 0 for |z| < 1o + 4/3. For each w§(t,z;w), there exists
a solution wg ;. (t, z;w) € C(;8'(Ry)) uniquely in the perturbed space (for the
equation (1.1)) such that wg ;,,(t,7;w) —¢(z)wg (¢, v;w) satisfies the following (+)-
condition (for details, see section 5 of [8]).

DEFINITION 2.1. ((£)-condition) We say that the solutions vy (t,x) of the equa-
tion (1.1) satisfy the (£)-condition ( respectively ) if there exists a constant to > 0
such that

vy € C°(IF; H*(Q)) with Qv € COO(Ijg,HOO( )) and

llmtﬂzpoo Z‘»ﬂ 1 ||8tx)v:t( )”L2 =0,
where Iy, = (=00, —to] and I;; [to,00).

Note that for wg ;. (t, 73 w) —(z)w§ (¢, z;w), it suffices to choose tg = ¢ (ro+3).
The leading part (singular support) of wg (¢, z;w) goes out of By, 12 as [t| — oo, and
therefore, roughly speaking, the wave

w (t, 25w) = W 4o (L 25w) — w§ (t, x;w)

restricted in @ N RY means the outgoing scattered wave for w{ (¢, z;w) in the free
space.

The components Sqs(s,0,w) (o, 8 € A) of the scattering kernel are represented
as follows using w¢ (¢, z;w) and w§ (t, x;w).

THEOREM  2.2. For (a,f € A), we put gaﬁ(s,ﬁ,w) =
2(—27Ti)2(ca05)3/2p05a5(s,6‘,w), where csy = csg = csvo = csg. Then we
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have

Sup(s,0,w) / . / 82 — it Ao (9wl (s — s, y;w) - Dyl (8, y; 0) pods'dy
QNRE.

+ { [ @) = 5.5 D (0
aenr?) U/r

= [ W = s R0, i)'},

where No(9y)u = No(8y)u on OR3. and No(dy)u = Zij:l vi(y)ag; 0y u on T.

Theorem 2.2 was proved by W. Kawashita, M. Kawashita and Soga [8] (cf. The-
orem 6.1 of [8]). }
We first rewrite the expression of Sag(s, 8, w) in Theorem 2.2 as follows:

PROPOSITION 2.3. Let (x) be a C™ cutoff function satisfying 0 < ¢ < 1,
Y(x) =1 for |z| > 1o+ 5/3 and ¥(x) = 0 for |x| < ro+4/3. Then for o, € A we

have

(s,0,w)
/ / wJr ror(8 — 8, yw) - (0% — pale(ay))(z/Jas/wg‘)(s',y; 0)ds' pody
_/1“~/Rw+’t0t(8/_87y; w) - No(0y) (Y0sw§ ) (s, y; 0)ds'dS,,.

Proof. We decompose 0sw§ into $0sw§ +(1 — ¥)0sws. Then, noting that
(02 — pg 1./40)wJr (t,z;w) =0in R x (N supp [¢] ), we have by integration by parts

/ / (92 — po AWl (s — s,y;w) - Dgw (', y; 0)ds’ pody
QNR3.
= / / wi (s — s,y;w) - (0% — pyt Ao) (1 — )dgw§ ) (s, y; 0)ds pody
QNR3
‘/ {/ Nowl)(s' = 5,5:0) - (1= )0 (5", y: 6)ds’ (23)
aanr?) LJr

—/Rwi(s/ — 8, Y;w) .,/\70((1 — )0y wi) (s, y; G)ds'} dsy.

Here, we note that the integration in s’ (in (2.3)) is well-defined and that the inte-
gration by parts is valid. These verifications are reduced to examination of the decay
properties of wﬁ and w§ as s’ — +oo (cf. section 2 and 6 of [8]). Combining (2.3)
and Theorem 2.2, we have

Saﬁ S, 6 w / /w+ —SYw ) (as’ — Po lAO)(was’wO)(S yve)ds pOdy
QORS
/ / [Wow)(s' = 5,5:0) - WO,y )5’ (2.4)
A(QNRY)

Wi (s = 5 y5w) - No(dwd)(s',y: 0)ds' } dS),



SINGULAR SUPPORT OF THE SCATTERING KERNEL 9
where we use (92 — py ' Ag)w (t,z;0) = 0 in R x R3.

Using (97 — py " Ao)w§ (t,z;0) = 0 again and noting that supp [l — (y)] is
bounded, we obtain the following in the same way as in (2.3):

0= / /(85/ — O—le)wﬁ(S’ — 8, Y; ¢ ,) . (] 7/’(9))95/103(8’,y;ﬁ)ds’pody
QNR3 JR 0
v/ﬂ ]R / w (8/ S, y,“) . (és’ ! )(w s/wO)( /7y; )dS/pOdy
3 0 Po -’4() 0 S 0
/ n / Nwo S??J?“‘) : (1 ¢)6s’w0 (Sluy; )
(0 ]R3 6

—wg (s — s, y;w) - /\70((1—1/1)3s/w3)(s’,y;9)}ds’d8y.

Summing each side of the above equality and each of (2.4) and noting supp [¢)] C By,
(=R3\ B,,), we have

Sap(s,0 w)
/ wy +w+ s’ — s, ysw) - (02 — py " Ao) (V0sw§) (s, y; 0)ds’ pody

)
/ﬁ N(wh +wl)(s' = s,y;0) - (Wdgwd)(s',y; )

~(wf + wﬁ)(s — 5, 5w) - No(60owf)(s',50) } ds'dS,

/ / Nowy (s = s,y;w) - Dgw§ (s, 43 0)
a(QNR3)
( — S, yiw) - Noas/wg(s’,y;ﬂ)}ds’dsy
/ /w+ 1ot (8 = 5,43w) - (02 — pg ' Ao) (¥ w§) (s, 3 0)ds’ pody
/ w+ tor(8" = s, y3w) - No(Wdgwl) (s, y; 0)ds'dS,

R
_/E /{Wowg)(S’—s,y;w)~<9s/w8‘(5’,y;9)
Fﬁ]Ri R

- wg(sl - S, y;w) : Noas’wg(slu Y3 e)dS/} dSU

Here, note that 9(QNR3) = (QANIR) U (I NR2) and that Nyw] = 0 on R x IR3.
The last integral — meRg Je{---}ds'dS, is equal to 0 since a°n R% is bounded and

0= / / 02 — pg L AWl (s — s,y3w) - Bewg (s, y; 0)ds’ pody
Q°NR3.
:/_ /wo (s" = s,ysw) - (02 — py " Ao)Ds wiy (s, y; 0)ds’ pody
Q°NR3 JR

—/ /{Nowg(S’—S,y;W)-8s/w6‘(5’,y;9)
(Q°NR3) ]R
—wl (s' — s, y;w) - Nodgw§ (s, y,@)}ds’dsy

/ / Now (s' = s, ysw) - w (s, y;0)
LNRY,
_wO(S —S5Yw ) NO s’wo(s y,9)}ds’d5y,

where we use 9(Q° N R3) = Q°n OR3) U (I NRY). Thus Proposition 2.3 is proved.
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From here, we reduce the expression of the kernel stated in Proposition 2.3 to the
form containing only one integral as shown in Theorem 3.1. The idea of this reduction
is as follows. We introduce the incoming solution w(t, ) of the perturbed equation

(07 = p ' Aw(t,x) = ¢*(t,2;0)  in RxQ,
Nw(t,z) = m®(t, z;0) on R xT,

where ¢%(t,z;0) = (07 — py ' Ao)(Ww§)(t, x;0) and m*(t,x;0) = No(bw§)(t,z;6).
Using w(t, ), we substitute the operators (82 — p~1A) and N for (9? — p; ' Ag) and
N in the expression of the kernel in Proposition 2.3. Then, we can get the required
expression through integration by parts. However, it is difficult to carry out this
procedure exactly. We consider the product (S(-,w,#), ¢) in the distribution sense
for the localized test functions ¢(s) € C§°(I), where I is a finite open interval for the
localization. Then, taking the integrals of convolution type between the data ¢ and
m® with the test function ¢, we can make an (approximate) solution concretely to
substitute (97 — p~1A) and N for (02 — py*Ao) and Ny. We examine properties of
S(-,w,0) as the functional: ¢ — (S(-,w, ), ¢). Note that the distribution .J belongs
to H™(R) if |J(¢)| < Cll¢llg—mw). Hence, examining the singular support of the
distributions in I, we can neglect those terms which are estimated in the following
definition.

DEFINITION 2.4. Let J be a linear functional (mapping) from C§(I) to the
Banach space X with the norm || - ||x. We say that the functional J is negligible when
for any positive integer N

[J(P)llx < Cnllella-~®), v €C ().
Furthermore, fiving I, we write J ~ K when J — K is negligible; if a more precise

description is necessary, we write “J ~ K with respect to C§°(I) — X 7.

Let sp € R and fix I = (sg — ¢, sg +¢) for a sufficiently small constant e > 0. For
any ¢ € C§°(I) we have by Proposition 2.3

(Sap(-,0,w), ) = —/Q/wﬁ,tot(S’,y;w)-so*(asqa)(S’,yﬂ)dS’pody
R
_//wﬁ,wt(S’,y;w)-s@*(asm“)(S’,y;ﬁ)dS’dSya
I" /R

where x means f*g(t) = [ f(s)g(s+t)ds, which is connected with the convolution %
as fxg (t) = f*(g(—-)) (—t). We can check that ¢x(0:¢%)(s,y;0) and px(dsm®)(s, y; )
are C* functions and that the above integrals in s’ are well defined. Note that
0sq“(-,y;0) and 9;m=(-,y;0) have singularities of the type of the Dirac J-function
(for the precise form, see section 5 of [8]), and that

supp [¢*(+,+:0)] C R x (QNRY N (Bryt2 \ Bros1)),

supp [m®(+,50)] C R x (D NORY N (Bryy2 \ Bro+1)), (2.5)
sing supp [¢* (-, 0)] C {(5,9) € R x Q; [s]| < eg'(ro+2),70 +1 < [y| <70+ 2},
sing supp [m“(-,0)] C {(s,y) eRxT; |s| < cgl(ro +2),ro+ 1<y <rp+2}.

We choose t; > max{cp' (ro +5) + 3¢, —so + cz' (ro + 5)} and a cutoff function
$1 € CP(R) with 0 < ¢y < 1, ¢1(t) = 1if |t + 50| < t1 + ci'y ¢1(t) = 0 if
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|t + so| > t1 + 2cz", and put
Ji(p) = — /Q/ D1(8 W] 100 (8, y5w) - @ % (D5q™) (8, y; 0)ds’ pody
R
a / / D1(8 W] 100 (8, y5w) - @ % (Dm®)(8, y; 0)ds'dS,.
I JR

Then, we have J;(¢) =~ (Sas(-,0,w), ©), i.e., J1 — Sas(-, 0, w) is negligible in the sense
of Definition 2.4 with X = C. This follows from (2.5) and the following estimates for
any N,N" e Nand § < 1/2:

(1= 1 (DA + -0 x (0:a*) (5 3 )l v @y < Onnvlleoll - m)

for any y € Q, p € C§°(I),
(1= o1 ()L + |- )0k (Bem®) (-, y; )| vy < Onve ol -7

for any y € T', o € C§°(I).

(2.6)

These estimates are derived from the form of w§ (s, y;6) (cf. section 5 of [8]).

To estimate J1(¢), we have only to take account of the integrals in s’ on the inter-
val Ly s (s0) = [=s0— (t1+3cR"), —s0+ (t1 +3cg")]. We construct an approximate
solution of the following equation in the later sections (sections 4 and 5):

{ (0F = p~t A (t,2:0) = 0 * (0g*)(t,230)  in I, L 5-1(s0) X Q,

Nv(t,z;0) = o x (Oym®)(t, x;0) on It1+3c£1(80) x T

(2.7)

More precisely, the approximate solution vg (t,x;0) of this equation has the properties
(i) and (ii):

(i) There exists a constant lp € R such that for any n € C§°(I,
m € Z,j, N(> 0), we have

14+3cq ! (s0)) and integers

max sup [[1()9107v3 (-, 23 0) | i ®) < Coumg v @l gmnsiosmy, (0 € C5O(I)).
|’Y‘SN;EEQ

(2.8)
(ii) For any positive integer N the function v (¢, z;0) satisfies
(07 — p~t A (t, x;0) =~ @ * (0rq™)(t, ;6)
with respect to C§°(I) — BN(It1+3c;1(30) x Q),
N, )03 (0,:0) = o (Bm®) 1,7:6) | 09)

with respect to C§°(I) — BN(Itl_,,_BCEl(SO) x T,
ve(t,a;0) =0, if [z > r1 (=70 + 2+ cp(ts + 3cgh)),
v% ~ 0 with respect to Cg°(I) — BN ([—s0 + cpt(ro +3) + 2¢,00) x Q),

where BY (D) is the set consisting of N-th order differentiable functions satisfying all
derivatives are continuous and bounded on D.

Hereafter (in this and next sections), we assume that the above v exists. For
J1 (), using v, we substitute (97 —p~ ' A)dyv% and N9ywg for o+ (9,q*) (= o+ (97 —
po L A0) Ok (W) and p* (9;m®) (= @ * ANy (1w§)) respectively. Then, noting that
the commutator 92(¢1-) — ¢1(92-) is of the form 92¢; + 205¢10, and that support of
q® and m® is estimated in (2.5), we see by (2.9) and integration by parts that

i) ~ - /Q / p(0) (261 (5) + 20,61 (5)0.) 0 005,35 w) - 02 (5,4 O)dsdy.  (2.10)
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Applying a further reduction to the right side of (2.10), we obtain the required
form of the functional (S.z(-,8,w), ¢):

PROPOSITION 2.5. Let ¢a(s) be a C* cutoff function such that 0 < ¢ < 1,
¢2(s) =1 for s < —so — ci' and ¢2(s) =0 for s > —so + cg', and set

== [ [ nelptmo.on (o)t (0 (5.9:) - v 5.56)
—wp (s, y;w) - Osv2 (s, y; 0) bsdy.
Then, Jo(@) — (Sap (-, 0,w), ) is negligible, i.c.,
(Sap(-,0,w), @) =~ Jo(p)  with respect to C3°(I) — C.

Proof. We see from (2.9) that [, [z(1 — ¢2)p(02¢1 + 2(9s¢1)0 )w+ tot * Vpdsdy
~ 0, which implies that J; () in (2.10) (=~ (Sas(-,0,w), @) satisfies

/Q / ba(s 61(5) + 20061(5)05) 0 1oy (5,43w) - 025, 3 w)dsdy.

It follows from Oyp20s¢1 = O that ¢o(0200)w] 0y = s(d2(0spr)w 1) —
(bg@sqﬁlaswi +ot- Hence, using integration by parts, we obtain

/ / 63(5)p()Ds b1 (5){0s oy (5, 53) - 12 (5, 0)

— ] i (5,43 0) - D02 (5, y; 0) bsdy.
Take a C* cutoff function ¢3(t) such that ¢3(t) = 1 for t < —cp'(ro + 5) and
¢3(t) = 0 for t > —c"' (ro +4), and set
@ (tasw) = (1= o))’ (tziw), 45 (t23w) = $3(0)¢” (1 25 0),
mP(t, z;w) = (1 — ¢3(0))mP (8, z;w),  mb (¢, z;w) = d3(t)ym” (¢, z;w).
We employ the solutions of the equation
(07 — pflA)IDij (t,z;w) = —qf(t, Tyw) in R xQ,
/\/’u?i)j(t,x;w) = —mf(t,x;w) onR x T,
@ij (t,x;w) satisfies (+)-condition.
Then, we can decompose wﬁ)tot in the form wﬁ)tot = 1/1105 —|—ﬁ)§11 —HD?Q, and by
(2.5) have wil(t,x;w) =0 for t < —cg'(ro +5) and zbiz(t,x;w) € C*(R x Q).
Therefore, noting that supp [¢pa0s¢1] C (—s0 — t1 — 2cz', —s0 — t1 — ') C (—s0 —
t1 —2cp', —cp' (ro +6)) and supp [V49] C Brgt2 \ Brot1, we see that

wﬁ,tot(ta Z; w) - 1/’(17)“’5 (tv €T w) and (vmw)wg (ta Z; w) %e (2 11)
C for t in a neighborhood of supp [¢20s¢1] and x € Q. '

From this fact, it follows that hifoo(s,x;w) = wﬁﬁtat(s,x;w) — Y(z)wh (s, 7;w) sat-
isfies gbz(?s(blhi — oo € C°(R x Q). On the other hand we have

Ji(g) = //¢ 0,61 (5) {02 _ (5,5 w) - 13 (5,: 0)

— hiﬁm(s,y;w) - 0svg (8,30 ) }dsdy.
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We can verify that the second term of the above right side is negligible if we show the
following lemma. Thus, Proposition 2.5 is proved.

LEMMA 2.6. Let h(s,y) € C®(R x Q) and n(s) € Cgo(Itl_,’_gcl—?l(So)), and set

Joelp) = /Q / n(s)h(s,y) -2 (s, O)dsdy, o € C5°(T).

Then, J_o () is negligible, i.e., J_oo () ~ 0 with respect to C§°(I) — C.
Proof. We take a cutoff function 7(s) € C§°(It1+3cgl(so)) with 7(s) = 1 near

supp [n]. Since supp [v3(+,0)] C I, | 5.-1(s0) X (2N By, ), we have

R

|[J oo ()| = ’/Q/Rn(s)h(s,y) 'ﬁ(S)Ug(S,y;G)dsdy‘
— ‘/Q/R<DS>N+!0 (n(S)h(s,y)) . <DS>_(NHO)(77(S)U3(S,3J;9))dsdy

=B o {ID)N o (@) 2 1{Ds) = N HO G0 (25 0)) L2 }

where (s) = (1 + |s|?)'/2, |B,,| is the volume of B,, and Iy is the number in (2.8).
From this estimate and (2.8), it follows that

[J—so (@) < [Br, | sup  {{InC)AC, @) oy ()05 (25 0) | - o910 (my }
€QN B,

<[Br|Cn sup  [[n()ACs @) Lo @)l ol -~ @)
€QN B,

This completes the proof of Lemma 2.6.

3. Reduction for the channel of the Rayleigh wave. The Rayleigh wave
is concentrated on the boundary T, i.e., it is C*° inside the domain 2 and decays in
distance from I" even if it has singularities on I". Furthermore, the hyperbolicity of
the Rayleigh wave seems to be characterized by the terms of the Neumann operator
acting on R x I". In this section we reduce the representation in Proposition 2.5 when
a = 6 = R to the one with the integral on R x I' to make the representation more
connected with the Neumann operator. This reduced representation is more useful
for examinating the singularities of the kernel Sgr(-,6,w). We continue to use the
notations in the previous sections.

The following equality is a basic formula for this reduction:

(0 + crO,)wl(t,z;0) =0 in R xQ,
where 0, = Zle w;Oy, 18 the tangential derivative on 8Rﬁ_. This is seen from the

form of wl® (cf. section 1 or section 5 of [8]). From the above equality, noting that
supp [¢] C By, we obtain

/Q/R¢2(5)8S¢1(S)P(y)‘/’(y)aswé%(s,y;w) -vf(s,y;@)dsdy
=~ [ [ x50 t)ent@nd) - sy
:/Q/Rp(y)%(s)@s%(s){ibw?.cRawvarcR(aww)wé%.Ug}dsdy_
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Combining this and Proposition 2.5, we see from (2.8), (2.11) and Lemma 2.6 that
(Srr (- 0,w), @) is equal to the following J{*(¢) modulo negligible terms, i.e., J{*(¢) —
<SRR('7 9,&)), S0> =~ 0:

/ / )01 () (z)wl (s, 2;w) - (95 — cRaw)vg(s,x;H)dsd:U.

The idea to reduce J(p) to the form with ‘the integral on I' is as follows. We
make an approximate solution uf*(t, z;w) (€ C?(Qy; H=°°(R;))) such that

(02 — p7 L AUE(t, 750) = o (t)Op1 ()Y (2)wE (¢, 2;w) mod C=(R x Q),
R=0 mod C*(RxT),
uf(t,z;0) =0 if —s9— 1t —cgl <t,
(3.1)
sing supp [u® (-, sw)] C { (t,x) : —sp —t1 — 2cp" <t < —sp— 1t — g, (3.2)

cr(=so—t1 —2¢p") <2’ -w < cp(—s0 —t1 —cg'), 3 =01},

and substitute (97 — p~*A)uf for ¢o(t)drd19pwlt. Then, using integration by parts,
we can change the integral on Q (in J&(i)) for the one on ' modulo negligible terms.
Namely we obtain

THEOREM 3.1. We assume that the approximate solution uf in (3.1) and (3.2) is
constructed. Take a cutoff function i1 (x) € C*°(R3) such that 0 <1 <1, ¢1(x) =1
for |z| > ro +2/3 and Y1(x) = 0 for |z| < ro +1/2, and ¢o(t) € C§°(R) such that
0<¢g <1, ¢po(t) =1 fort with —sg — t1 — 50;%1/2 <t < —s59—1t — 01}1/2 and
do(t) =0 fort ¢ [—so —t1 — 3cg', —so — t1]. Set

= [ 6n( N s,y - (0. = cnd)uli (s, 0)dsd,
rJr
Then, Jo(p) —(Srr(-,0,w), ) is negligible, i.e.,

(Srr(-,0,w), ©) ~ Jo(p) with respect to C°(I) — C.

_ Proof. Since (97 — p~ ' A)u(t, z;0) = ¢ (t)dr 1 (t)(x)wi (t, 25 w) mod C(R x
), by Lemma 2.6 we see that

() = /Q /R p(02 — p Ay (s, y5w) - dot1 (s — crO )V (s, y; 0)dsdy.

Noting that supp [¢1] C By, and applying integration by parts to the right side of
the above relation, we can decompose J(ip) as follows:

TR(0) = Jo(g) + TE o (0) + TE ().
(%) / / B ys) - (07 — " A) (dotbs (85 — crdo)u) (s, y: O)dsdy,

TE(p) = /F /R o (5, 5 ) - SN (161 (85 — crd)ol) (s, y: 6)dsdS,.

By the same argument as for the proof of Lemma 2.6, we have

sup ()N (¥1(1) (0s — crOw)VE (5,43 0)) | 1rm ey < Copmll @l grmvro+2 ()
Yy



SINGULAR SUPPORT OF THE SCATTERING KERNEL 15

for any integer m and n € C§°( t1+3671(50)) This implies Jﬁ_oo(gp) ~ 0 since
uf|, € CF(R x 99) (cf. (3.1)).

Noting that p(y) = po and A(y, dy) = Ao(9y) in a neighborhood of supp [11(y)],
we can decompose J& __(p) as follows way:

% <w IS oo (@) + IS (@) + IS (),

/ / pdoth1u’(s, y;w) - (95 — crd) ((02 — p~ Al (s, y; 0)dsdy,
JQZ) oo / /pdjl u S y Y, w ) [6527 ¢0] (a - CRa ) (S y,ﬁ)dsdy,
Jﬂg) oo /Q/ dou® (s, y;w) - [A, 1] (85 — crO. Jug R(s,y;0)dsdy,

where [A, B] denotes AB — BA. The support of (8J¢g)uft (j > 1) is contained
in R\ [~so — t1 — 5cg'/2, —s0 — t1 — c§1/2_]. Combining this and (3.2), we obtain
oY1 (91 do)ult(s,y;w) € C°°( t1+3c*1(50) x Q) for any 5 > 1. Therefore, we have

J§(22,)—oo(90) ~ 0 by the same reason that for J&___ () ~ 0.
Since —sg — t1 < —cg' (ro +4), (3.2) yields

sing supp [uR(-, sw) C{(s,9); —s0o—t1 — 2c§1 <s< —s9—1t — cgl,ro +5<|y|}

Hence, we obtain 9)¢1 (y)u(s,y;w) € C°(I, P 1(s0) x Q) (Jy| > 0) since supp
Oy, 01(y)] € {y;m0+1/2 < |y| < r9+2/3}. Thus, we have Js(lgjloo(cp) ~ 0, which is
similar to J( ) (@) ~0.

Since (83 —p P AWE ~ o x (9,¢%) and vf = 0if [z] > 1 (cf. (2.9)), it follows
that

p) ~ / / pooru’ (s, y;w) - (85 — €' O)g % (8sq™) (5, y; 0)dsdy.
onB,, JR
We have uf € C2(Q,; H‘N(Rt)) for some N, and

[ vty 0. = cndl)p (00" (5,5 s
QnB,, JR

< CxlBr| sup  lgo()(0s — crOu)p (954™) (-, y; H)HHN’(R)'
yeQNB,,

Noting that supp [¢o] C [~so—t1—3cg', —cz' (ro+4)], we apply the same argument as
for (2.6) to the right side of the above formula. Then, we obtain ||¢g(-)(9s — crOL )@ *
(Bqu)HHN(RXQ) < Cn @l -~ (w) for any integer N. This means that Js(z%loo(go) ~ (.
Thus Theorem 3.1 is proved.

Theorem 3.1 means that every piece of information with respect to singularities
of Srr(s,f,w) at s = s is contained in the functional Jy(p) in Theorem 3.1. Hence,
the next step is to construct the approximate solutions vf;(t, x;0) and uf(t, z;w).

4. Approximate solutions with the zero Dirichlet data. In this section
and section 5, we make the approximate solution v (¢, z;6) of the equation (2.7). As
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described in the introduction, we consider the following equations (4.1) and (4.2).

(0F = po " Ao)o ™ (t,230) = o % (Beq™)(t,230)  in I, 4 q1(s0) x RY,

{ vt 2'10) =0 on It1+3c;1(50) x ORY (4.1)
(02 — p~ LA (¢ 2:0) =0 in I, | 5.-1(s50) x
N (L, 2:0) = o (Om™) (¢, 210) — N (Y2 (2)v™ (¢, 2:0))

on It1+301;1(so) x I,
(4.2)

where 12(x) is a cutoff C*° function such that ¢q(z) = 1if ro +1/2 < |z| < rg + 2
and Yo(x) = 0if 2| < 1o+ 1/3 or 79 + 3 < |z|. The coefficients of the operator
(07 — p~LA) coincide with those of (07 — py*Ao) in a neighborhood of supp [¢]
(cf.(2.5)). Furthermore, WF[¢%] is contained in the elliptic region of the operator
(02 — py*Ap), and the boundary value problem (4.1) is coercive in a neighborhood
of WF[g®], i.e., the Lopatinski condition is satisfied there (for the wave front set
WF][-], see [9]). From these facts we see that the solution v®% of (4.1) satisfies (02 —
p~LA) (Pouh) =~ o (0,¢%) in It1+3c1;1(50) x . This implies that the solution v of
(2.7) is decomposed into the form

vB(t, 2;0) ~ Yo (2)v™ (8, 2;0) + 0T (t, 2 6). (4.3)

Hence, to obtain the approximate solution vf(t,x;@) satisfying (2.8) and (2.9), we

R and v™P respec-

have only to construct approximate solutions vg’i and vf;’b of v
tively.
In this section we construct the approximate solution v%? of (4.1). Namely, we

) @
make vf;’l(t, x;0) such that for any integer N > 0

(0F = pg " Ao)v i (t, 23 0) = @ (Drg™) (¢, 2 0)

with respect to C§°(I) — BN(ItlJrgC?(so) x R%),
vli(t,2;0) ~ 0 (on R x OR3) ‘

with respect to C§°(I) — BN(ItlJrgC?(so) x ORY ),
vf*i(t,x;t?) =0 if || >r, ‘
v~ 0 with respect to C5°(I) — BN ([—so + cr'(ro +3) + 2¢,00) x R).

(4.4)

Note that the arguments for the construction of vf;’i(t, x;6) do not contain the con-
struction of the scattered Rayleigh wave. However, this is an important step for
determining the actual data of the scattered wave. The data are given as the in-
homogeneous Neumann data of equation (4.2). The scattered wave is contained in
vRb(t 2;0). The approximation of vf*(¢,z;6) is accomplished in the next section.
Note that while constructing vf;’i, we also obtain the approximate solution u in
(3.1).

Let & = {(1,€) € R x R?; |7| < || } for a sufficiently small constant cg, and
take a C°° cutoff function xo(7, &) such that supp [xo] C {(7,€) € & ; |7]* + €2 >
1/2} and that xo(7, &) = 1 for (7,€) satisfying |7]? +|€]? > 1 and |7] < cs(1—¢0)[¢] in
&o. Here, ¢ is a positive constant that is sufficiently small. We consider the Poisson
operator Py, restricted by xo(Dy, Dy ), 1€,

Pam(t.) = (2m)* [ S (VO i i rde, (05)
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where V(% (z3;7,€) is the solution of the equation

(=7% = " Ao (i€, 00,V (3:7.6) =0 iR,
V(O) (0;7,6) =1 (the identity matrix),
V(O) (x3;7,€) is bounded in + x3 < 0.

Here, note that Vj(EO) is of the form
0)
VO(egir,6) = 3 6 OmpEO(r ey ((r,6) € &), (4.6)
p=P,S

Py O (r,¢) = 15O (r,6) @ g (r,€),

1
2 (e (re)
Py =1- Py Or),

where €2 = ¢ + &3, €))(r,6) = \Je2 -2/, 7V (1,6) = (&1, &, Figy (7,€))

(B ="P,8), cp = \/py ' (Ao +2u0), cs = \/pg ' Ho and a @ b = (ab; | ;1153) (a
t(a17a2,(13) b="(b1,b2,b3)).
We employ the Neumann operator T, restricted by xo(Dy, Dy):

Tyom(t,z") = (No(0z)Pyom)(t, x ‘Rxau@ , m € C5°(R x ORY).

Then, we can see in the same way as [5] or [19] that T}, is a Fourier multiplier with

the symbol poxo(7,§)BO(7,€), where BO(r,€) = No(i&, 0, )V (3; 7, )|, _, and
satisfies the following proposition.

PROPOSITION 4.1. (i) Let Rops = { (7,€) € €o; |7| = crlé] }. Then, BO(r,¢) is
a non-singular matriz if and only if (1,€) ¢ Rors -
(ii) BO) (7,€) is Hermit matriz for (1,€) € &.
(iii) There e:m'sts a conic neighborhood Eéo) C & such that BO)(1,€) has the distinct
eigenvalues )\ ( ,€) (1 =0,1,2) of constant multiplicity possessing the properties

5 (r,€) = <cR|§|2 -2 ongl
V(0 > on &
Ag°> (r,6) = csgg’) (r,6) >0  on &Y,
where 5\(()0) (1,€) is a positive C> function homogeneous of order —1 in (1,€) on 580)'
(iv) The eigenfunctions of A§O) (1,€) are written in the forms

2

(e 26 ¢
7,(0) 1 e -gle o), 2O e e
Rl IS0 =01, §r9=|-&

J €2 — gg))gg?)

As described in Proposition 4.2 below, the Neumann operator T}, is connected

closely with the Rayleigh wave wlt (in the free space) of the form w{(t,z;w) =
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b 5 €t olt (3 —o,w)do, where ¢ff is the generalized eigenfunction of Ay corre-
sponding to the Rayleigh wave given in (2.1).

PROPOSITION 4.2. (i) If f(t,2') € S'(R x R?) satisfies (07 — cxDp) f(t,2') =0
in R x R2, then it follows that T 68 (0)(Dt, D) f(t,z") =0.
(ii) Let ol = cg%cr(1 — (1) )\/27‘([)000 Then, we have

wi(t, z;w) = a(o)’PXOeg’(O (D¢, Dy )(3(t — ¢z'2" - w))  mod C(R x RY).
Proof. (i) is obtamed unmedlately from )\( )(7' €)f(r,€) = 0. For the proof of

(i), first note that §P = |T|§R /cR, S = |7'|§ /cR, nP( )= —¢ = t(w sz ) and
Ng (0 - —cptt(w, —ifg)) on £ = —cp'7w. Furthermore we note that

ProX0(Dt, Dar)ey ' (Dy, Do) (8(t — ¢ita’ - w))
= (27r)—1/eir(t—cglwm (xo(, g)v( (237, 5) 0) (1,6) )|£__c lde' (4.7)
R

q© = T-2<52—5$>sé°>>|5:_0;;m satisfies (1-2c3¢(©)? = €€ since (2—ch/c})?~
5(1) =0 (cf. [1]). Therefore we have
(0) . 0,(0) _ CS —zcilrw-w' Ry/,..
(V2 (w337, &)eg " (7, 5))}5:7%17“; == q(O \/MCR R oy (z;7,w). (4.8)
(ii) of Proposition 4.2 is derived from (4.7) and (4.8). Thus, the proof is complete.

To construct the approximate solution v 4(t,x;0), we employ the following op-
erator Vy, : q(t, z) — u(t, ):

(07 — py " Ao)u(t, ) = xo(Dy, Da)q(t, @', 23)  in R x R3, (4.9)
( 2') =0 on R x 9R3. :

Then, as seen later, we can express V,, concretely by V) which is defined by

VOg(xs;7,€) :/ v )(l’s—ysﬂ' £)a(ys; 7, &)dys
0

+/ VO (@5 — ys; 7, )alys: 7, €)dys (4.10)
—V,(O)(x3;7,§)/ Vﬁo)(—ys;ﬂﬁ)ﬁ(ymT;ﬁ)dy&
0

Note that V(@ g(zs; 7, &) satisfies

( T2 — pilAO(ig 613))V(0)(j($37 T, 6) = Q(Tv 6)(}(1‘.3;7—7 5) inz3 >0,
V©§(0;7,6) =0 on z3 = 0,
VO g(z3;7,€) is bounded in x3 > 0,

where Q(r.€) = py " Ao (1) (9, VA (0:7. ) = 05, V7 (0:7,€)) (v = (0,0, -1)).
We can see from the following Lemma 4.3 that V,,q is of the form

Vxod(t, @) = (2m) 7 /R LT e (m OV OQT (e T Odrds. (411)
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LEMMA 4.3. (i) Q(7,§) is symmetric and positive definite for (7,€) € &o.
(i) For (1,€) € & it holds that

(VW (5:7.)" = VI (257 6) = QU OV, (a5 m. OQ(r. )

Proof. By direct calculation, we see that Q(7,£) is of the form

0 _ (0
N2V coc 0
Qr.8) =2 (()Po CS) (1 o <o>§<o> (o 0 —5530)5(30)) )

Hence, noting that

=€ - eeDe /(€ - el = €77/ - ey > 0

we obtain (i).
The first part of the equalities in (ii) is clear from the form (4.6). For the rest, it
suffices to show

/0 T (VO () Qi) ) s = / T (QVO) (Can)ilas).a) pdrs  (412)

for any a(e C3) and §(x3) (omitting the variables 7 and &). Noting that Qg¢(xs) =
(=72 — py 1 Ao(0sy)) VD §(3) and using integration by parts, we see that the left side
of (4.12) is equal to

| (7= Aol 0 )V V). V. 0)a)cy s = (55 Nl 02 )il 10, )
0
Since P;’(O)P;’(O) = 5575/Pﬁi’(0) (8,8" = P,S), we see that 8I3Vi (x3) is of the form

0oy VAV (237, €) = A (r, OVID (w331, 6),  As(1,6) = (0, VA)(0;7,6).  (4.13)

Combining this and (4.10), and noting the forms of @ and Ny and the fact that
VO §|,,—0 = 0, we have

No (88, 0z )V lag=0 = —poQ(7,€) /0 Vi (i, ©dlysi T, Odys. (4.14)
Therefore, the left side of (4.12) is equal to fooo (Qvﬁ(_o)(—yg)(j(yg),a)Csdyg,. Hence,
(4.12) holds. The proof is complete.

Let ¢ be the function in (4.1), and set @o(t,2) = ¢(c '’ -0 —t). Then, we
see from Proposition 4.2 that the following function vf (t,x;0) is an approximate
solution of (4.1) (i.e., satisfies (4.4)):

vE = oDV, ([=py " Ao (0a), V10 Pyoeq  Bo), (4.15)

where the cutoff function xo(7,€) is chosen so that 0 < xo < 1, supp [Xo] C & and
Xo(7,€) = 1 in a neighborhood of supp [xo]. Here, note that the operator:

& OV ([=py L Ao0(82), ¥]0: Pyoey V' 3)
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is a pseudo-differential operator with the parameter x3 > 0.
We can also construct the approximate solution u% in (3.1) and (3.2) in the same
way as for vg’z

uB(t, 23 w) = P3(2)a® Vg (62(1)61 () () Pyoeg ™ (8(t — czlw - 2')))  in R x Q,

where ¥3(x) is a C*° cutoff function such that 0 < 3 <1, ¥3(x) = 1if ro+2/3 < ||
and ¥z(x) =0 if |z| < 1o+ 1/2.

We need to know the properties of A/ (¢2v§>i) |]er when constructing the approxi-
mate solution vf*b(t, x;0) of (4.2) in section 5. Since supp [1/)2v5=i] C Rx By, it follows
that N (vo0f8) |, o~ No(d0f?) ’RxaRi' Therefore, noting the form (4.15) of v

we have only to examine the operator

Fo: @ty a") — No(al®Vgy [—p5 Ao (0s), 10, Py g (4.16)

) |R><8]Ri'

Iy is a classical pseudo-differential operator of order 1 on R x aRi (for a detailed
description of pseudo-differential operators, see Hormander [2]), and has the following
properties:

LEMMA 4.4. (i) Fy is expressed by a symbol supported in supp [V (z/1|(m3+ )] %

supp [x] mod S—°.
(ii) The principal symbol o,(Fy) of Fy is of the form

ap(Fo)(t,2,7,€) = —aO7x0(7,€) Ao (V°) (VD) (2') - Ve (7, €)eq ™ (7, ),

where AL (7,§) = (BwSVj(EO))(O; 7,€) and P(x’) = (', 0).
(iii) op(Fo) satisfies

(0p(Fo)(t,2,7,€), 69 (7,€)) o = O rx0 (1, ) {Varth(2') - VAL (7, €)leg (7, €) |2
+i((No(0)0(@))eg @ (7,€), 60 (7,)) s }-

Proof. From the definition (4.16) and (4.11), we obtain
1%¢=<mﬂ‘§/ T o (1, N (i€, Dy WO Q™ hdrde]
RxR2

with h = a0 [—py 1 A0(8s), w]at’PXer @. Using (4.14) and (ii) of Lemma 4.3, we
have

Fop = (2”)73/ el 00 p o (7, €)
RxR2

A (VO i, €)"F [ [p5 Ao, 1]0 Py O3] (7, €, ys)dysdrde,

where F' is the Fourier transformation in (¢,2'). From this and (4.5), we see that

Fy is a pseudo-differential operator represented by the following double symbol in the

variables € R?t)m,) X R?ﬂ g X R?S ) X R?%,é):

p(t,$/,T,§, 5Y 5) = TPOXO(T 5) /0 (VEO) (y3;7-7 5))*

[palA07 1/’](?/7 Ys3; lé, 8y3) )(y?n T f)dZJBXO (T g) 0.(0) (T7 5)7
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which yields (i).

Since |88)5)aQ3V£O)(y3;77 §)| < Ca)lefco(\ﬂﬂﬂ)ya(l_'_|T|+|§|)l7|a\ (y3 >0, (7_7 5) c

RxR2, |r|+[¢] > 1) and [° g4V (ys; 7, €)dys = O((|7]+]€))727) (as | 7] +]¢] — o0),

it is seen from the form of p(¢,2’, 7, &, 5,9, 7, &) that the principal symbol of Fy is of
the form

on(Fo)(t,2,7,€) = a@rpoxo(r, €) / (VO (s 7, €))" (4.17)
o (o5 L Ao, 1) (@3 i€, 8y )V (3 7, €)eyy (7, €) dys.
Let £(s) = & 4+ sV tp(z'). Then we have

i0p ([A0(D2), 1) (@, €, €5) = 0, (Ao (i€(s), i) (4.18)

s:O'

Since vq(y3; 5) = V. (y5:7,€(s))a (a € C3) satisfies

(=7 = po " Ao(i(s), Oys ) )valys, s) = O,
we obtain
a o0

o [ (=7 = 95 Ao E(5), Dy v 5). (33, ) codys | =0
0 s

for any a,b € C3. Combining this, (4.18) and v,(0,s) = a and using integration by
parts, we have

pal (Up([AOu "ZJ]) (:Elu ZE? aacg)va('a 0)7 ’Ub('a 0))L2([0,oo))
= —po (Ao (+°) 0230504 (0,0),b) s - (4.19)

(4.13) yields 9,02, V. (0;7,£(5))|s=0 = Ds(A—(7,£(5)))]s=0 = (Var(a’)-Ve) A (7,£).
Therefore, (ii) of Lemma 4.4 follows from (4.19) and (4.17).

since BO(r,9eg"(r,6) = N (19 V(rg) and BO(re =
—Ao(VO)A_ (7, &) + No(i&,0), we have AO(VO)A_eg’(O) = —)\((Jo)eg’(o) +No(i§,0)eg’(0)
and (Ao (19)A_)*ed @ = —ADed O 1 (NG (i€, 0))* ). Here, note that BO)(r, ¢)
is a Hermite matrix. (iii) of Lemma 4.4 is derived from these relations and
(Vart) - V)N (i€,0) = —i(No(92))(a”). The proof is complete.

By the above arguments, we can find the concrete form of the boundary data in

(4.2) as follows. Choose the function ¢ (z) so that ¢ depends only on |z|. Then, we
have 0,9 (2’,0) = 0; by (ii) of Proposition 4.2

o x (Dm™)(t, ;) ~ (Ng)xo(Dy, Do )er @ (Dy, Do) (0O @g) (¢, 7). (4.20)

Since N(¢2v§>i)|RXr ~ o Fyp, we can see that the boundary data of (4.2) are ap-
proximated by the operator

Fi = a9 (Not))dyxo(Ds, Dm/)eg(o) (D, Dyr) — o Fy.

Namely, using (4.20), (4.16) and Lemma 4.4, we can verify the following lemma:

PROPOSITION 4.5. (i) Fy is a classical pseudo-differential operator of order 1 on
R x OR3 (i.e. Fy € ¥, (R x OR3;C,C?), which is defined in [2]), and is expressed

phg
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by a symbol supported in supp [V (‘/’|BR‘1>] xsupp [x] mod S~°. Furthermore, the
principal symbol o,(F1) satisfies

(on(F)(t2.7,6), 6" (1,6)) s = =V 7x0(r. ) Vard(a') - Ve (r. Oleg @ (r )
(ii) F1pg is approzimate to the boundary data in (4.2), i.e., for any integer N >0

cp*(atmR)—N(wgvg’l) ’er ~ 1p1 Fy@p with respect to C3°(I) — BN (I “ +3071(so) x T).

By the same method as for the proof of Lemma 4.4, we can express Nu® ’er with
a pseudo-differential operator. Namely, there exists a pseudo-differential operator Gy
of order —1 such that /\/uR‘RXF = Go(6(t — cp'w - 2')) mod C°(R x I), and the
principal symbol of Gy is of the form

op(Go)(t, 2, 7,€) = —al® poxo (7, €) P2 () s (£)h(2)
/ VO (y3: 7, £) VO (7, £)e0 O, ) dys.

0

The lower symbols of the asymptotic expansion of Gy contain derivatives of ¢20;¢1

and v, and it holds for any | > 1, || > 1 that (9} (¢2(t)3,1(t))0% P (2"))|,— eitwar =0
(z/ € OR%). This implies that Nu®|pyr = 0,(Go)(t,2', Dy, Dy )(6(t — cp'w-2’)) mod
C>°(R x T'). Noting this fact and the equality supp [¢28;¢11)] N supp [1 — ¢otb1] = 0,
we can rewrite the expression of N uR’ using the pseudo-differential operator G
of order —1 that satisfies

NuB|, = Gr(b2(D)D1 ()P (2')5(t — cz'w-2') mod C®RxT), (4.21)

RxT

op(G1)(t, 7,2, &) = —a' poxo (T, ) o ()1 (2')
/O (VO (g7, ) VO (ys; 7, £)e0 O (7, €)dys, (4.22)
supp|o(G1)(t, 7,2, €)] C supp[¢] x supp[¢)] x RY, ¢
N{EtneT " RxT);r+1< |mr(Q)l, (4.23)

— (t1+2c3") <t+s0 < —(t1+cgH) )

where o(G1)(t,7,2',€) denotes the full symbol of Gy, and np : T*(I') — T is the
projection to T'.

5. Approximate solutions with inhomogeneous Neumann data. In this
section we construct the approximate solution vR b of (4.3) using the Neumann oper-
ator T*. T are operators of the forms T+ = N’Pi Here, P* denotes the Poisson
operators: m(t,z') — w (t,z), where w* (¢, z) are the solutions of the equations

(p@f—A) t(t,z) =0 in R x Q,
wr(t,2') = m(t, ") on R x T,
wh(t,r) = 0if Tt (> 1) is sufficiently large.

Hereafter, when expressing points on the boundary I', we use the notations z’, v/,
etc. Therefore, the points on I' N BE, are written as @’ = *(x1,x2,0). In the previous
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sections ' = (1, x2) represents the first two components of © = (x1, z2,73). Al-
though the notation x’ contains these different meanings, we use it since it is simple
and does not cause confusion.

For m € C*°(R x I') vanishing for large +t >> 1, we put u(t,z) =
PE(T*)"'m(t,x). Then, this function u(t,z) becomes the solution for the elastic
wave equation with the inhomogeneous Neumann condition N (z,9,)u = m on R x T
This implies that the construction of vg’b can be reduced to that of the inverse of
T*. In the elliptic region of pd? — A, T* are given by a pseudo-differential opera-
tor on R x T' modulo smoothing operators. Taylor [19] investigated propagation of
singularities of the Rayleigh wave by using this expression of the Neumann operator
as pseudo-differential operators. Our construction of vfj*b essentially follows Taylor’s
outline.

The first step is to examine the principal symbol of T~ that is restricted in the
elliptic region of (pd? — A). We denote points in T*(R) and T*(T') by (¢,7) and
¢ = (2, () respectively, and by ||C||r the metric on T*(T') induced by the standard
Riemann metric of T'. Let € be the elliptic region of pd? — A, ie., &€ = {(t,1,() €
T*(R x I); 7] < es(@)[Cllr } for és(a’) = v/u(@) [p(@).

Hereafter, when we take a conic neighborhood V' in T*(R xT"), we always choose V'
so that Iz« (V) = V for the operator Irxr: (t,7,¢) = (t, 7,2, Cor) — (t, =T, 2", —Cor).
Let ¢r(2’) be the propagation speed of the Rayleigh wave at ' € T, and set Rp =
{(t,7,¢) € T*R x T'); ér(z)||C|lr = |7|}. Note that ¢gr(a’) is given by ¢gr(z’) =
és(x')so(a’), where s = so(x’) is the unique root of the following equation in s € (0, 1):

p(z’)

s — 85> +8(3— 2A)S + 16(m

)+ 200 -1)=0. (5.1

We take conic neighborhoods Vy, Vi and f/l such that Rpr C V; CC f/l cC Vy CcCé,
where A CC B means that A C B. Let Wy = { (t,7,¢) € Vo; |t + so| < t1 + 8cg' },
Wy, = {(f,T,C) e Vi; |t+80| <t +60§1} and Wy = {(t,T,C) eV |t+80| <t +
7cp' }, and take a cutoff function x1(t,7,¢) € C°(T*(R x I')) such that 0 < x; < 1,
supp [x1] € Wo, x1(t,7,¢) = 1 on Wy and x1(t,7,¢) = 0 near the zero section of
T*(R xI).

Hereafter, we use the notations in Hérmander [2] for pseudo-differential opera-
tors on manifolds M (e.g., the classes of the pseudo-differential operators Vg (M),
W+ (M), etc.). As is checked by the method presented in Chapter 6 of Kumano-go
[9], the operator

By, =T Op(x1)
is known to possess the following properties (cf., e.g., [5] or [19]).

PROPOSITION 5.1. (i) Let V be sufficiently small. Then, we have B, € \I/;hg (Rx
[;C3,C3). Furthermore, there exists a (matriz-valued) function Bi(t,() (€ C>=(Vp))

homogeneous of order one (depending only on T, p, X and u) such that

UP(BX1)(t7T7 C) = Xl(thv C)Bl(Ta C) on T*(R X F)

(ii) The above By(1,() is a Hermite matriz, and has the distinct eigenvaluesi(e)’j (1,0)
(j = 0,1,2) of constant multiplicity. Moreover, X7 (1.¢) > 0 holds on Vg for j =
.2, and \©0(7,¢) is of the form

)\(e))O(Tu C) = (éR(xl)HCHF - |T|)S\(e))0(7-7 C)v (T7 <) = (T7 x/7<$,) € Vb/’
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where Vi = {(7,¢) € R x T*(T); (¢,7,¢) € W for sometER} and N©0(7.¢) €
C*> (V) is homogeneous of order 0 and satisfies AO(7.¢) >0 on V.
(iii) For any local coordinate k : R x U 3 (t,0) — (t,s(c)) € R x T, the local symbol

0(By,)|gxg of By, satisfies

U(BX1)|R><U(t7 -T,0, _5) = U(BX1)|]R><U(t7 T, 0, 5)

Op(x1) restricts the boundary data to the elliptic region of (pd? — A) and to
the finite interval in R,. This implies that (By, =) T~ Op(x1) = T" Op(x1) mod
W e (R x I'). From this fact, we see that

(Op(x1))" By, — (Bx,)"Op(x1) € ¥p,¢ (R x T). (5.2)

In fact, using integration by parts, we can check that for any f, g € C§°(R x T)

(T~0p(x1)f, Op(x1)9) L2x1r) = (Op(x1)f, TTOp(x1)9) L2 (x1)-

Therefore, we obtain (5.2) since By, = T~ Op(x1) = T"Op(x1) mod ¥_ (R x T).

From Proposition 5.1, two eigenvalues A\(¢)7(7,¢) (j = 1, 2) are positive, which
are elliptic parts. On the other hand, )\(e)’O(T, ¢) is a symbol of the real principal type.
Thus, this component is hyperbolic. Using the properties of the principal symbol of
B, ,, we decompose B,, into elliptic and hyperbolic parts with a symbol of the real
principal type.

DEFINITION 5.2. For P, Q@ € U°°(R x I'), and conic neighborhoods W and V3
with V1 CC Vo C T*(R x T'), we say that P = Q mod W,y (R x ') if (ess.supp P U

ess.supp@) C Vo and PX —QX,XP—XQ € V(R x F) for any X € ¥, (RxT)
with ess.supp X C V1.

phg
Let e((Je) (1,¢) be the eigenvector of A(¢)9(r, (), and set

Po(r,0) = I — e (7,0)| 2§ (1,0) @ (e (7,¢)) ",
Ql(Tv <) =B (Tv <) + |T|5‘(e))0(7-7 C)(I - PO(Tv <))

Note that Py(7, ¢) is the projection to the orthogonal complement of the eigenspace for
A0 (7. ¢). From Proposition 5.1, we see that Q1 (7, ¢) is non-degenerate and satisfies

Ql (Ta C)PO (Ta C) = Bl (Ta C)PO (T7 <) = PO (T, C)Bl (T7 <) = PO (T7 <)Q1 (T7 <) (53)
By the method prensented in Chapter 9 of Taylor [20], we obtain

LEMMA 5.3. (i) There exists a pseudo-differential operator E € \Ilphq(Rxl"; C,C?)
such that

()7, Q) = le¢” (r, Q1 e (7.Q) (on Vi), E"E =1mod W, (RxT).
(ii) Set Py =1 — EE*. Then, Py becomes a pseudo-differential operator in \Ilphq(R X
I';C3,C3) and satisfies

op(P) =Py (on Vi), E'Py=PRE=0 mod W % (RxT),
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PROPOSITION 5.4. (i) There exist a scalar-valued symbol X (r,() € Spng(V1)
and a pseudo-differential operator EO) ¢ \Ilghg(]R x I';C,C?) independent of t such
that E©) — E € W' (R x T';C,C?) and that

By, E® = EOp(x1A'®) mod Vs (RxT), op(E¥)o,(E® — E) =0,

A (7, ¢) ~ A1)+ 3 NN (7,0), e A (7,€) = A (,¢)  on W,
j=0

where each )\(e) belongs to S=3(V1) and is homogeneous of order —j.
(ii) There emst pseudo-differential operators Q € \I/phq(R x T;C3,C3) and FO ¢

\Ilghg(R x [';C3,C) such that
U;D(Q)(t?Tﬂ C) = Xl(tuTu C)Ql(Tu C)_l on Wla
ap(FO)(t,7,¢)el? (1,¢) = Mk(ﬁe) (r,0)] on T*(R x I),
crll¢llr
ap(FO)(t,7,Q)Po(r,¢) =0 on T*(R x ),
By,Q = Op(x1) — EF© mod W% (R x T).

Proof. Since BleO ( ) = A0 ( (1,¢) on T*(R x TI), there exists Ey €
), (R x T;C, C?) such that

By, E = EOp(a \9°) + Ey. (5.4)

By Lemma 5.3 and (5.3), we get a scalar-valued symbol )\ (T ¢) € SUT*(R x I))
such that

oo (Eo)(1,0) = oy (E)N (7,0) + B1PoQi 'op(Eo)(r,¢)  onVi.  (5.5)

We take a cutoff function x1(t,7,¢) € C(T*(R x I')) such that 0 < x1 < 1,
supp [x1] € Wi, x1(¢,7,¢) = 1 on Wy and xi1(¢,7,{) = 0 on a neighborhood
of the zero section of T*(R x I'), and set E_1 = Oplx1)Eo — EOp(Xl)\( ) —
By, Op(x1 PoQ7 o, (Ep)). Then, using (5.4) and (5. 5) we see that E_; € v, (R X
I';C,C3) and

By, (E = Op(x1 PoQ7 0 (Ey))) = EOp(xi (A9 + X)) + E_y + (I — Op(x1))Eo.

Furthermore, there exists a scalar-valued symbol /\(f% (r,¢) € S7Y(V1) such that
op(B_1)(7,0) = op(E)N)(7.0) + BiPoQy ' op(B_1)(7.C). Next we set

E_y = Op(x1)E_1 = BOp(x1\)) = By, Op(x1 PoQy "oy (E_1)) € W2 (R x I3 C, C2).
We then obtain

By, (E = Op(01PoQ7 0 (E)) — Op(1 PoQ1 ' op(E-1)))
= EOpOa (M0 + A £ AN + By + (I — Op(x1))(Eo + E_y).
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Here, note that JexrA\”(r,¢) = A\7(r,¢) (j = 0,1), which follows from (iii) in
Proposition 5.1. Noting that ess.supp (I — Op(x1)) N Wy = () and repeating these
procedures, we obtain (i) in Proposition 5.4. It is also seen that Up(E*) S(E© —FE) =
0 since the equalities o, (E*)a,(Op(x1 PoQ7 *op(E;))) =0 (j = 0,1,2,...) follow from
op(E*)Py = |71 (e®)* Py = 0.

We see from Lemma 5.3 that o, (By, +E Op(|7|x1 A OE*) = x1(t,7,m)Q1(T, )
on W;y. Therefore, noting that @Q1(7,7) is non-degenerate on VO, we have a pseudo-
differential operator Q € \prhg(R x T';C3,C3) such that o,(Q)(t,7,1) = x1(t,7,7m)

Ql(Tu 77) ! and

(B + EOp(ITha X E*)Q = Op(xa) mod ¥ ¥ (RxT).  (5.6)

We put FO = Op(|r|xaA@0)E*Q. Since ess.supp(I — Op(x1)) N W1 = 0
and Q7Y (r,Q)el) (1, ¢) = (crllCIPA(7,¢) " el (7,¢), it follows that F(®) ¢
W0, (RxT;C%,C), 0y(FO) = |r]x1 A 00, (B*) Q7" and 0 (FO)(t,7,0)el” (7,¢) =
e lICE T xa t, 7 C)|e(()e) (1,¢)|. Hence, (ii) of Proposition 5.4 is obtained. The proof
is complete.

The next step is to reduce the construction of the solution ’Ug’b to a problem given
by a scalar-valued pseudo-differential equation of the real principal type (cf. (5.7)).
Before this, we prepare the following lemma used for error estimation.

LEMMA 5.5. Let P; € U™ (R xT) (j = 1,2), v € C§°(ORY), and n € Cg°(R).
Then, for any s € R there is a constant C' > 0 such that

||77P17P2<P0||H5(Rxaua ) S O||<P||Hm1+m2+s(R)a ¢ € C5°(I).

Proof of Lemma 5.5. Take a cutoff function J(z') € C§°(OR%) that satisfies
J(z') = 1 in a neighborhood of supp[y]. Since nPiyP, € ¥™*"2(R x I') and
(3¢0) (1, €) = @(—7)7(€ + Tcx'0), it follows that

LY27YP0 1 He (RxORY) Ol Hmitm2ts(RxOR3) Hmitma2+s(R)-
Py Py el < Cl3%sll <l

Noting that supp [y] N supp [(1 — )] = 0 and v € C§°(IR3), we obtain nPyyPy(I —
) (z') € U=°(R x T'). Therefore, we have

[nPryPa(I — ”Y)<P0||H5(RxaR ) < Il l¢9||H*S’(]R><8]R§r)

for s’ > 0 and I > 2. Combining this with ||(-) ~'@p]| ;- '(RxoR?) < Cus ol -+ () we
obtain [|[nPyyPe(I —7)Pe|| is s(rxor?) < Cs ' 1€l s ()~ Thus, Lemma 5.5 is obtained.

Now we begin to reduce the problem. Take a conic neighborhood V5 of Rr such
that Vo CC V4, and set Wo = { (¢,7,() € Va; |t| < t1 + 5cx' }. Furthermore, take a
cutoff function x2(t,7,¢) € C°(T*(R x I)) satisfying 0 < x2 < 1, supp [x2] C W,
xz2(t,7,¢) =1 on Wy and x2(t, 7, () = 0 near the zero section in 7*(R x I"). Assume

that there exists a B>(I f145ez) (s0) x I')-valued linear mapping k., (¢, z';0) on C§°(I)
such that
Op(xai ANk (8, 2';0) = FOOp(x2) b Fi Go(t,2') (5.7)

with respect to C§°(I) — B>(1, t1+5c;, 1(sg) x T),
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which is proved later.

Using Proposition 5.4, we can construct the boundary value v5>b(t,x’;9)|RXp.
This means that the required vf;’b(t, x;0) is obtained by applying P~Op(x2) to the
boundary value. We show here the construction of v/ (¢, 2’; 0)[rxr. Set

9o (t,2';0) = QOp(x2)ha F1@e(t, ') + EQky(t,2';6). (5.8)

Then, we obtain

By, go(t,2';0) =Op(x2)2 F1e(t, x) + (Op(x1) — I)Op(x2)¢2 F1@e(t, ')
+ R_ o 10p(x2) V2 F1$0(t, @) + R_oo 2k (t,2';0) + R_oo 300 (t, 2'),

where R_o1 = B,,Q — Op(x1) — EF®, R 5 = B,,E® — EOp(x1\©)) and

R-co 30 = E{Op(x1 X9k = FOOp(x2)2 Fige}. We have R_oc j0p(x2) (j = 1,2)
€ U~°(R x I') since ess.supp Op(x2) C Wi.

By Lemma 5.5, we obtain R_s,10p(x2)¥2F1$e ~ 0 with respect to C§°(I) —
BOO(It1+4c§1(So) xI'). It follows from supp[xz] N supp[(x1 — 1)] = @ that
Op(x2)(Op(x1) —D2F19e ~ 0 with respect to C§°(I) — B‘X’(Itﬁ%;(so) x T).
Furthermore, the ellipticity of A} on V; \ Rr yields that (I — Op(x2))k, =~ 0
with respect to C§°(I) — BOO(It1+4cgl(so) x T") since k,, satisfies the equation (5.7).
From the form of k, that is constructed later, we can also see that R_. 20p(x2)k, =~
0 with respect to C§°(I) — BOO(It1+4CE1(so) x T') (cf. Proposition 5.6). It fol-
lows from (5.7) and Lemma 5.5 that R_.o3P¢ =~ 0 with respect to C°(I) —
BOO(It1+4c§1 (s0) x I'). Thus, we have By, g, ~ Op(x2)12F1pe with respect to C5° (1)
— BOO(It1+4cgl (so)xT). Therefore, by (ii) of Proposition 4.5 we can put vt (¢, z; 0) =
(P*Op()a)g@(-, “ 9))(15,3:) and obtain

VB (4,25 0) rur = Op(x1)gy (8,25 0) (5.9)
with respect to C3°(I) — Boo(ltl+gcgl(50) x T).

Thus, we have reduced the construction of the solution vf;’b to solving (5.7).

The final step is to construct the asymptotic solution k, (¢, 2';0) of the equation
(5.7). As is used in Hormander [2], C5°(R x I'; 22 @ C™) denotes the space of smooth
sections of Q2 @ C™ with compact support, where Qz is the half-density bundle
on R x I We denote the half-density on R x I', which is defined by the standard

1
Riemann metric on R x I', by dV2, . Note that any section in C§°(R x T’ Q2 @ c™)
can be expressed by multiplying dVR%XF to functions in C§°(R x I'; C™). For pseudo-
differential operators P € W!(R x I'; C™ C™2), we employ the pseudo-differential
operators P 1 from Cg°(R x T'; Q2 @ C™) to C°(R x I';Q2 @ C™2):

1 1
Py (fdVe ) = (PHdVE,r, fe @R xT;C™).
Note that the space U!(R x T'; QzC™ Q2 ® C™2) consists of these operators PQ% .

We simply write U!(R x T'; Oz, Q%) if my = mo = 1. For pseudo-differential operators
Q € V(R x I';02,02), 0,(Q) and 04,(Q) denote the principal symbol and the
subprincipal symbol, respectively.
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Take a pseudo-differential operator A9 € WO(R x T Oz, Q%) such that

(o)t Q) = A ()T ow(do)(tT.¢) = 0.
Then, we obtain AoOp(Xlx\(e))Q% € V(R x I';Q2,02) and

ap(A00p(1 A ), 1) (7. Q) = xa (8. 7, O (Er () [[¢llr — I7])
on T*(R x T),
)(thv Q)= USP(OP(Xl)‘(e))Q%)(tv T, C)
on {(t,,) eT*RxT); xa(t,7,¢) =1}

osp(AoOp(x1A®)

1
02

Note that F(©Op(x2)th2Fy can be regarded as a pseudo-differential operator on R x
IR since supp [Y2] C Byyi2\ Bro+1. We take ¢5(s) € C5°((so—2¢, so+2¢)) satisfying

5(s) = 1 on |sg — €,80 + €|, and set (¢5)p(t, ') = @5(cr 0 -2 — ). oting that
é 1 d o ") = ¢s5(cp'l - 2’ Noting th
(¢0)(1,€) = (2m)20(¢ + T 0)@(—7) and using Proposition 5.4 and Proposition 4.5,
we can rewrite the equation (5.7) as follows:

A0p(x1 X)),y ki (t, 25 0)
~ (Cn [ O G0 Nl ol Jdr ) dVid,
with respect to C3°(I) — B>( t1+5071(30) X I‘;Q%), (5.10)
where a € S}, (R; x R2, x R,) satisfies
supp [a] C [—(so + t1 + 6¢g"), —s0 + t1 + 6¢p'] X (Bro+2\Brot1) X Ry

and has an asymptotic expansion a ~ Z;io ai—; with

ar(t, 2, 1) = aV|7|xa(t, -7, 2, cle)o V() (5.11)
R

(aV) = cheg*CR \/27Tp0§ { )) Namely, the solution ki (t,2’;0) of (5.7) is
obtained from k,(t,';6) as follows.

ko(t, o', 0)dVi2, 1 = ko (t, 2’3 0). (5.12)

We now construct ky(t,z';6). For § = *(01,6,) € S, we put 8+ = *(62, —6;).
We set LE = {2/ € ORY ; 6 -2/ = £(ro + 3/2),[6+ - /| < T0+1/2} LY = {2 €
OR3 ;0 -2" =rg+3/2,r0+1/2 < |0+ 2| <ry+2}. For any zf, € LT07 we take a
neighborhood Uy = {2/ € R ; [0 - (2 — xg)| < 0 +1/2,16+ - (2" — x()| < J}, and
for 24 € LY, Uy = {2’ € ORY ; |0-2'| <ro+2+6,]0+ - («/ — )| <&}, where § > 0

is chosen to be sufficiently small. Let T = cj'(ro + 3/2) + t1 + 8cj', and set
L2 (Uyy) ={ (2", £c5'0) € T*(T); ' € Uy },
L3 (Uay) = { (s, FH(RE (), hE™(¢) € T* (R x T); |t — 70| < T,¢ € L2*(Uyy) 1,

where 79 = cj' (ro + 3/2) — so and A% ({)(= h=*(()) is the phase flow of the Hamil-
tonian +H (¢) = +cg(2’)||¢||r with h%(¢) = ¢. Note that Lt}’i(U%) are Lagrangian

manifolds in 7*(R x I'), and that h%. satisfies

Ir(h(y', —cp'0) = 1 .(y', cp'0) teR,y €Uy, (5.13)
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(Where jF : < = ({El, Cl‘/) = ({El, _CI'))
It follows from (1.2) that if ¢1(> 0) chosen in section 2 is sufficiently large, then

| (R ™ (2, £ eg'0))] > 7o + 1, (5.14)

t < —so—t1,2" € Uy, € Li UL

T0?

where 7p : T*(I') — T' is the projection to the base space I'. Since H(() = cgl¢| with
¢ ="x',€) € T*(ORY) if |mr ()] = ro, the set {(t,7,¢) € L3 (Uyy); t > 7o} and L+
(Uzy) ={(t,7,¢) € E%i(Um()) it <79 — (so+t1)} are of the forms

{(t,1,¢) € EgT’i(Umg) st >710 ) ={(t,Fl, 2" + cr(t —70)0, £cr™'0); (5.15)
.’I]/ € U167T0 Stg TO+T}7
L5 (Uy) ={ (70 = (s0 + t1) + 7, F1, 20 + crTO0w, kg~ 000) ; (5.16)

' €Uy, -8<7<0},

where (24,0, is defined by h=(ott)=70(3/ +cp=10) = (2., £cr 10,). If Uy is
small enough (i.e. > 0 is small enough), we can make the Maslov canonical operator
K;t, (with the parameter 7) from Cgo(ﬁ?:’p’i(U%)) to Cg°(R x I';Q2), which is used
to gonstruct the asymptotic solution k,(t,x;6). We breafly explain the construction
of Kmi() here.

We choose an open set ﬁ% with U_% C U%, and define Lt}’i(ﬁ%) and Zi}i(l}z/)

0

in the same way as E?:’F’i(Uz ) and ﬁ%i(U%), respectively. We put

0
r(ty) = (G FHBE (Y, £05'0), A (Y £510))  ((Ly) €R x Uyy).

We can choose connected open sets Oji - Ei}’i(Uwa) (j=0,1,..., ng) with following
properties:
N,
(i) The closure of L%i(U%) in T*(R x T') is contained in U; "} O;".
(i) OF NOF # 0 for [j — k| > 2, {(t,7.0) € L3 (Uy)st > 70} C OF and
75,+
L= (Uy) C oi(}.
(ili) There exists a local coordinate system V; of I" such that ﬁ'p(Oji) C Vj, where
7r: T*(R x I') — T is the projection.
(iv) For Vj in (iii), T*(V;) 3 ¢ = (219(¢),pY)(¢)) € R"™* x R"~! denotes the
local coordinate system of T*(I') induced by V;. There exists a subset K; =
{i1,d2, -+ ik, 1} € {1,2,...,n — 1} such that

Oji > rE(s,y) — (s,ng,z (R (Y, +cr™10)),
PP (R £er 1)) €R x R
is a local coordinate system, where K; = {1,2,...,n — 1} \ K;(=
(e ey and 232 (Q) = (70,250, (O)s PR =
(. (s i) ()

Let g;(z")(> 0) be a C*°-function on R x V; defined by dVexr = gj% (z')|dt AdzD)|.
We denote by dV5 the pull back of dVrxr by C°°- immersion in E?:’F’i(ﬁ%) Sr(ty') —
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(t,y') e Rx U . Let in(r) be a C*°-function on Oj»[ given by dVy = (in(r))’1|dt/\
dw(]) A dp( )|

For each local coordinate system Oj[ given above, we define the precanonical
operators ICj[((’)jE i) C‘X’((’)i) — C°(R x TI') and l@i(Oi i) COO(Oi)
C°(R x T';Q2) by

(K (07, K))p)(t,2') = x;(2')g]} ()
ir (S (r)—t)
e
F G

—_— t 2’ =+ 1
e A ) ==l

o(r) L
ot ) )
r=r (thK; 1ij)

(5.17)

and I@i((’)i e = lCi(Oji,Kj)dVR%Xr, where x; € C§°(V;) with x; = 1 near
7?((’)?-[), (1, %2 , p%)) is the inverse of the local coordinate system of (’)Jj-[ introduced
in (iv), and

7|\ 1EK51/2 irad) p)
Py Uttirg e = () [ 7075 0,00 2.

TIPK, 2

In (5.~17)7 the phase function Sy (r) corresponding to the Lagrangian manifold
E?:’F’i(U%) is given by the integral of the canonical one-form on E?:’F’i(Umg_): S;F(r) =

+ [ pdg+cg'0-y (r=r1%(ty).
Using these ICi(OjF, K;), we define the Maslov canonical operator K;t, by
0

N,/
o

K [K)(t,a)) = 3 7 ODRL(OF, KGRI a!) (k€ CE(LFH(Un))),
j=0

where x; € C§° (Oi) with E -0 Xg =1on L jE( ;), and U(Oj[) are real constants
given by the Maslov index.
The basic properties of the Maslov canonical operator K;t, are as follows:
0

PROPOSITION 5.6. (i) For any k € C3° (E%i(U%)) and [a,b] C Ir(so) (a, b € R),
we have

1K k|12

L2([a,b]xT502 )

:/ |k(s, F1,h5 To(x’,:tcl_%19))’2dsdx’ +0(r™) asT — 0.
{a,b]XU /

(ii) For any A € \I/phg(R x T Q%,Q%), there exist pseudo-differential operators Wli
on E;i( Uyy) of order less than 21 such that for any N € N and m' > 0

N—-1
(AK k) Z i) WEE|(t, ) 4+ (R k) (t,2),
=0

BN K = O(7|™+™=N)  (fork € G5 (LT (Uny)))-

(I (s0)xT503)
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Note that W k(r) = i~ ™o, (A)(r)k(r) (for r € L2=(U,)).

(iii) If A = AgOp(x1A®) 1 in (ii), we obtain

0z
Wik(r) = rl{(%)i 0N fR(r)  (for 7 € L3 (Uyy) with xa(r) = 1),

where (%)i denotes the differentiation along the phase flow h%., and g (AN€)(r)

denotes the subprincipal symbol of the operator Op()a)\(e))g% on the set {r € T*(R x
) : xa(r) =1}

Using the stationary phase methods (cf. Matsumura [13]), we can obtain Propo-
sition 5.6 by the same methods as in Ichinose [3, 4] or Maslov and Fedoriuk [12].

As shown later, I;%,(t, #';0) is made by summing up the approximate solutions l,;
of the equations

AgOpOa N @) 4 Loy (2, 2" 7)
— RO (Gt Yalt, @, Ty (2)dViE . = O(7 ™), (5.18)

where v, is a cutoff function in C§°(U,,) that is determined later. We can
make this approximate solution l,; (t,2’;7) by constructing its asymptotic expan-
sion Ly (¢, 25 7) ~ 3207, K;z oo (mr(r ))l%d( T) (i|T|)1_j]. Here, mg is the mapping:
r = (t,7,¢) = t, ¢6(t) is a cutoff function in C§°(R) that satisfies 0 < ¢g < 1,
d6(t) = 1if |t + so| < t1 + 5cp' and ¢g(t) = 0 if |t + so| > t1 + 6¢5', and lay g
(j = 0,1,...) are determined inductively as follows. Let ai—_;(r,7) be the lift of
(¢5)o(t, 2" )a1—;(t, ', 7)1y (z') to the Lagrangian manifold ﬁ‘;’p’i(U%). Noting that
supp [Y0ay] C Uyy C OR3\ By, OF < T*(R x 9R%) and chooseing Ko = 0, by
Proposition 5.6 we have the following equations of l;é)j (r,7) (j=0,1,...):

i_l{(%>i + i”SP(A(e)XT)}lNr'mo(Tv ) =i ta(r, )| (5.19)
i_l{(%)i+iasp(k(e)>(r)}l}/,j(r, 7) =ity (r, )| (5.20)

Z Ll () (G=1,2,..0).

Using these solutions ZN%J (r,7), we set the function

K2 |96(ma ()l s D)GIT)' ™| (7> 1)

Z(N t:z: i T)

Mz

j=0

for any non-negative integer N. Then, it follows that

(e) (N) 'L"r(cgle-;v,ft) 7 ’ ’ (! %
[Op(x1A )Q%l% e (¢5)o(t, 2" )a(t, x’, Ty (x )dVRXFHH’"(IHMC?(S)XF;Q%)

= O(|7'|m7N) as |1| — oco.
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Thus, choosing l;a (r,7) ~ 2720 l;w- (r,7)(i|7])}77, we obtain the approximate solu-
tion I,y (t,2";7) of (5.18) by

Lay, (t,2';71) = K;’Z ¢6(7TR(T))i16 (r, 7')} (t, ') (£7>1). (5.21)

Since Ljo UL, U L?O is a compact set, we can take a finite number of points
xy, .. 2y, € L and @y, 4y, .., @y, € Ly, U LY such that the open sets Uy, 3 @}
(j =1,2,...,N1) consist of a finite open covering of L;} UL, U Lgo in each of which
the construction of the approximate solution of (5.18) is valid. We choose a partition

same approximate solutions lz/j (t,2',7) (j =1,2,...,N1) in each Uz/j (replacing 9},
with 17 ) as shown in (5.18). Then, we see that the function

_ 1 &
ky(t,a';0) = %/}RZZI;(t,x/,T)(bﬂT)@(T)dT (5.22)
j=1

is the required solution for (5.10), where ¢7(7) is a C°° function satisfying 0 < ¢7 < 1,
¢7(t) = 11if |7] > 2 and ¢7(7) = 0 if |7| < 1. Thus, we finish the construction of all
the approximate solutions introduced in sections 2 and 3.

At the end of this section, we explain the properties of IN% (t,2';0) that are needed
later for proof of the main theorems. We see from the construction of k, that

supplky] C [—(s0 +t1 + 6¢x'), —s0 +t1 + 6¢5'] x (B, NT)

S—To (

for a constant r3 > 0 depending only on ¢t; > 0. The mapping: (s,y’) — (s,hy (v,
+cz'0)) is diffeomorphic for s < —so — t; and y' € Uy G = 1,2,...,N1). If
R (y',cp'0) € T*(T)|(B,,)e, We can write h% in the form 1 (y', cp'0) = (a(3,y',cz'0),
p(gvylvcgle))' Set X(Svy/) = Wf(hiim(ylvc}i{le))v and G(y/) = CRP(_SO -t —
70,Y,¢5'0). Then, using (5.13), we have X (s,y") = mr(h*" (', —c'6)); using (5.16),
X(t,y") = X(=s0 —t1,y') + cr(t +s0 +11)O(y’) (for t < —s9 —t1).

From (5.16), we can take KN% = (). Hence, each Lo (¢, a’,7) in (5.22) satisfies

lzz (t, X(ta y’)7 7') = K;‘z |:¢6(7TR(T))Z~13 (7"7 7—):| (t7 X(t, y/)) (523)
. e 5im; (5% (b)) : /
= |det(g§)(t,y/)|l/26 Y ¢6(t>lzj(7"(t,y),7') (:|:7-> 0),

where Sji(t,y') = S’]i (r*(t,y")), and m; is the Morse index of the path *yf)(t,y') :
[—s0 — t1,70) @ s — rT(s,9) € E‘;”L(Ux;). Note that m; coincides with the Morse
index of the path *y(_j)(t,y’) s [=s0 —t1,70] 2 s — r(s,y) € E‘Z’F’f(Uz;_) since (5.13)
vields Texr (L3 (Unr)) = L7 (Usr).

From (5.13), we see that S;'(t,y’) = S, (t,y'). We write S;(t,y') = S’J‘-"(t,y’) =
S5 (t,y'). Sj(t,y") is expressed of the form

S;(t,y") =/ . pdg +cp'0 -y (5.24)
v (ty")
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Note that it follows from (5.19), (5.20) and (5.15) that for any ¢ = 0,1, ...
supplles o (1 (), 7)] € { (t, wr(hiE (Y, £c'9))) € R x T';
t <710,y € Uy, ¥ + cr(s — 70)0 € supp[thy] (for some s > 7 — 2cit),  (5.25)
lcg'0 -y — (10 + s0)| < 2¢}.
For w, € S* and y' € T' N (B,,)¢, we put
sy (wiy') = , lim (crlalt —cz'0 -y Y cp'0) —terp(t — ci'0 -y, Y, cp'0)) - w.
Then, using (5.14) and the equality H(y', &) = cg[¢] for (y', €) € T*(I')|(m,,)e, we have
sg (wiy') = cpw (R (Y £eg'0) — (t+cp'0-y —m)w-O(y)  (5.26)
for t < —sg — t1. Furthermore, using c]_%lﬁ . :1:; = Sg + T, we obtain
cprw-mr(hT0 (Y £eg'0) = s0 + sy (wiy)) +t+cp 0 (v — ah) (5.27)
+(W-0@)—1)(t—T0+cg'0-y).

Since it follows from (5.27) that ¢ 'w-mr (R ™ (v, £cz'0)) > so+sp (w;y') +t—2¢ for
t < —so —t1, and from the defnitions of s, (w;y’) and s (6) that s, (w;y") > —s(0),
we have by (5.25)

{w-2'; 2" €supp [ly(t,,7)] } C [ent + cr(so — s5(0) — 2¢),00) (5.28)
(for Tt e R, t < —s09 — t1).

6. Singularities of Sggr(s,f,w). In this section we study singularities of
Srr(8,0,w). According to Theorem 3.1, we have only to examine Jy(¢). We have
(0 — cRaw)vg(t,x;G)’zFo = (0 — cRaw)vg’b(t,x;G)’m:O since vg(t,x;9)|z3:0 =
0P (t,250)|2s=0 (cf. (4.4), (4.3)) and the derivative 8, = SN2 Wiy, is tangent
to supp[v2] NT. This fact, (4.21) and Theorem 3.1 imply that

Jo(p) ~ — / 62()0,61 () (")

"G [po(s)91(2')(8r — crOL )0 S (t,2';0)] t=citw

with respect to C§°(I) — C.

dS, (6.1)

Noting that ¢; > —sg + cz' (ro + 5) and (4.23), we have

ess.supp 'GiN{ (t,7,2',&) eT* (R x ORY); t = cp'w -2/, || > 1o + 1}
c{tra,§iw a2’ <—(ro+6)} (6.2)

Proposition 4.5 and (6.2) yield
/F 62(3)0551 (5)B(a")1 G [0 ()91 () (@1 — crd\)

OP(XI)QOP(X2)¢2FISZ’9Ht » m,(t,x’)dsm, ~ 0.

:CR w
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Hence, using (5.9), (5.8) and (6.1), we obatin

= [ 0250001 (956 [b0ls)s ') 01 = rl)
Op(x1)EO k] (cg'w -2’ 2)dSy.  (6.3)

Put D = —da(s)0s1(s)ib(a") (*Groo ()01 (2')(0; — crOL)OP(x1)ED) 3 €
(R x I';Qz, Q2), and define the map I, 3 C(R x T;Q2) = C3°(R x I';C)

-2

\IJO

phg

by (I -3} f)dVRxﬂz = f. Since ¢g(s) = 1 in a neighborhood of supp [p20:¢1], and

¥1(2') = 1 in a neighborhood of supp [¢}], using (4.23) and (5.12), we can regard (6.3)
as

_ dS,.
t=cp w-z’

Bo) = [ (L3 DiGutrfol.56)
From (4.22) and Lemma 5.3, the principal symbol o,(D) of D is of the form
op(D)(t,7,2',€) = iaOxa (t, 7, ', )0 (B (#') (7 — cw - €)[eg (. €)1
/0 (VA (ys; =1, =0)e (=7, =)V (yg; =7, =€)eg ™ (7, ) ys.
(0)( T,—¢) = 68 2O ¢y (1,€). Noting that

the constant Cf in ¢f is chosen so that ||¢((JR)( )T 9)||L2 (10,00)) = = 2mpocr|T| ™t (cf.

(2.2)), and using (4.8) and the equality 2cRa(0)|eO ( 7, —1cg'0)| = o (for any
7 € R and 6§ € S1), we obtain

(DN, €)ooy = Amipach(a®) SnOpn @l 1T (64)
(1+w-0)xi(t, 7,2, —701}167).

From (iv) of Proposition 4.1, it follows that e

(5.22), (5.21) and Proposition 5.6 yield

Z ()Dspr (£ (')

00 N
{/0 Loy {KS [ bsa(r DI ™ (8 2) Y imepar7() @) (6.5)

q

0
0 N
+‘/_OO a3 ; Zb (r, —1 |T|)1_q](t"TI)}|t:c§1w-m’¢7(7—)¢(7—)d7}dCL'/

+RN( ) )

In (6.5), each bj ,(r,7) € C§° (L (WU, 1)) (@ =0,1,2,...) is homogeneous of order 0
with respect to 7 (|7| > 1), and b; is of the form

bjo(r,7) = (2m) " b6 (mr(r))op (D) (r)las o (r, 7)- (6.6)

The remainder terms Ry () in (6.5) are given by

0= [, S et moptoyias
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where Ry -; € C§°(R x I'; C) satisfies supp [Rn,r,;] C supp [¢o] % (supp [¢1] NBy,)
and

| RNl 2 (1 XD < Cn,;(1+ |72~ N (forany T € R and j,N =1,2,...).

t1+6ck (s
Hence, we have |Ry ()| < On||¢|lg2-~@®) (for any ¢ € C5°((so — €, so + €))), which
means that the distributions Ry belong to HY "2(sg — €, 50 + €).

From (4.23), it follows that 7(supp[b; 4]) C [~s0 — (t1 +3cg"), —s0 — (t1 +cz")] x
(Byo+1)¢ since ess.supp D C (supp[¢] x supp[i]) x R?T,g)- This fact, (5.23) and (6.5)
imply that

L N-1
Jo(p) ~ Z Z L 4(0) + Rn(p)  with respect to C§°(I) — C, (6.7)
j=1 ¢=0
where
Lia(e) = / | 0% O TSI e Y| (6)
+ R

(7Y "7 (T)p(T)dTda’.

Here, b; 4(t,2’,7) are defined by

bj>‘1(taX(t7y/)7T)
= e T2y o (e (), T) (I T det(9y X (1Y) TV (7 > 0),

and S;(t,2') are defined by S;(t, X (t,y')) = S;(t,y') for t € R and ¢’ € Uy (where
S;(t,y') are defined in (5.24)).

Proof of Theorem 1.1. Let so > s (#). We choose € > 0 with ¢ = so—s7 () -3¢ >
0. From (5.28), we have { cz'w-a’; (t,z) € supp [b; ] } C (t+ ¢, 00) for any j and g;
this means that b; ,(cp'w - 2’,2") = 0. Thus, using (6.7) and (6.8), we have Jo(¢) ~

Ry (). From this fact and Theorem 3.1, we obtain s¢ ¢ sing.supp[Srr (-, ,w)], which
completes the proof of Theorem 1.1.

To show Theorem 1.2, we need more precise forms of the oscillatory integrals in
(6.8). We put K;(t,y',w,0) = so + s, (w;y') + (t — 70)(w - OY) — 1) + cz'0 - (w-
O(y")y’ — ). From (5.27), K;(',y’,w,f) = 0 is equivalent to cplw- X(t,y)—t' =0.
This fact and (5.25) imply that

supp, [ UsZg bjq(cp'w - 2',2',7)] C {2’ € ORY ; 2/ = X (', y/) for (¢',y')
€R x supp[@bw;], lcR'o- (v — xh)] < 2, K;(t',y',w,0) =0},

Hereafter, we fix sg as so = s, (). We define M, (w) and s (0) by

— _ / . o) — . _ -1 /=1 _ —1
M9 (w)_{y €F79 Y TOvtl}gloop(t CrRT0,Y,CR 9) CRw} and

sp(w)=inf  lm (cz'qt —cg'ro,y;0) - w—1t) (= inf s, (w;y).
y'eMy ()t y' €M ()
From the definitions of sf(#) and s, (w), we obtain sy = —s,(w). We put

Me_(w) ={y € 8Ri ; 01}16‘ Yy = 5,8 > cglro,limt_)_oop(t — s,y',c;@) = cglw}
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and M, " (w) = {y € M, (w); sy (w;y') = s5 (w) }. From the assumption (1.2)
and H(y',§) = cgl¢] for (y, &) € T*(T)|(B,,), we can see that g(t — s — cr'ro, Y +
crsf,cp'0) - w — t is independent of ¢, s and y' € M, (w) if —t (> 1) is sufficiently
large and s > 0. This implies that s, (w) = inf e v () 5o (w;y') = sy (w;y') for
any y' € My """ (w). The sets Uje = {y € Uy ; |3, (w;y') — 84 (w)| < €} are open
neighborhoods of supp [1/)13_] NM, " (w) since s, (w;y') is C* iny' € Uy:,-

We put §'(z) = 0 - 250 + 20, Ujc = {z € R; §(2) € Ujc }, and UJ'™* = {z €
Uje: 7§ (2) € Mﬁ M (W )} We also define X (t,z) and t(s, z) by X(t,2) = X (t,7(2))
and t(s,2) = cg'w- X(s,2). Since X(s,2) = X(—s0 — t1,2) + cr(s + 50 +t1)O(7(2))
for s < —s¢ — t1, 50+ sy (w3 7'(2)) = 0 for z € U and O(7'(2)) = w, using (5.27),
we have s = cR w - X(s z). Thus, if € > 0 is chosen to be sufficiently small, we have
0<t(s,2)—s< cR1/2 for z € U; . and s satisfying —so —t1 — 80%1 <s< —s9—11.
This fact and the equality b5 (7 (2) + crrd, cg'0) = K5 (7(2),cx'0) (s,r € R,
Ir] <1, z € U; ) imply that

X(t(s,2), 7 (2) — cr(t(s,2) — 5)0) = X(s,2) and t(s,2) = cg'w- X(s,2) (6.9)
(for z € U; . and s satisfying —so —t1 — 801}1 <s< —s9—t1).

Since K;(t,y',w,0) = cg'w- X(t,y") —t (cf. (5.27)), X(t,2) = X(—s0 — t1,2) +
cr(t + so —i— 11)0(7 (2)) for t < —sg — t1, and X(t 4+, 2) = X(t,7(z) + cgro), the
solution y' = G(t, z) of the equation K;(t,y',w,0) =0 (in ') is fthe form G(t,z) =
crg(t,z)0 + ¢'(z), where

9lt2) = —so —ti —t+ —mm{t = el X(—s —t1,2)}
forzeuj,e—{Z€R7y(Z)EUJ)e}'

We put s(t,z) =t + g(t,z). Then, noting that G(¢,z) = cr(t — s(t, 2))0 + §'(2) and
X(t,G(t,2)) = X(,7'(z) — cr(t — s(t, 2))0), we obtain

X(t,7'(2) — cr(t — s(t,2))0) = X(s(t,2),2) and t=cp'w- X(s(t,2),2). (6.10)

From (6.9) and (6.10), it follows that t(s(', 2),2) = cg'w - X( (t',2),z) =t'. We also
have s(t(s',2),z) = s'. Indeed, (6.9) and (6.10) imply that cplw-X(s',2) =t(s,2) =
cR w - X(§ z) for 5 = s(t(s',2),2). Since X(s,2) = X(—s0 — t1,2) + cr(s' + so +
t1)0(7'(2)) and X (3,2) = X(—sof t1,2) +cr(54 so+11)O(7' (2)), we obtain § = ¢'.
Now we show that the map X : (—oo, —sg — 1] X U;V:llb{j,e — (By,)° is injective
if e >0is sufﬁciently small. It suffices to show that ¢ = ¢’ and 2z = 2’ for any t,¢ <
—so—t1 and z,2 € UN1 Z/{"“”” that satisfies X (t,z) = X (¢, 2'). If this is the case, note
that t = cp'w - X(t,z) =cplw - X(t,2)=t,ie,t=1t. Set 2’ = X(t,2) = X(t',2).
Then, noting that h*~t(z/,cp'w) = h*~™(§'(2),c5'0) (s € R), we have z = 2.

LEMMA 6.1. Let s < —sg—t1 and z € Uj. (j =1,...,N1). Then, we obtain

() {S)(cp'w - o a') = gt 2"} g ony = S0+ 5 — £(5,2),
N 0X B 0X X
(ii) det G(t,z))’ - ’detm(t,z) (t,2)].

Proof. The restriction of the canonical 1-form p-dgq on £3’+( m;) is represented
by the form (p-Oiq)dt + Zk L\ (p-9y,q)dyx in the coordinate of LT (U, +) given by



SINGULAR SUPPORT OF THE SCATTERING KERNEL 37

(t,y") — r*(t,y'). Since the tangent vector 7+ (t,y') (= &r*(t,y’)) means 2 in
the coordinate (¢,y’), p-dq(7*(t,y')) is equal to p-dyq(r*(t,y’)). Noting that 7+ (¢, 1)
is represented by 7 (¢,y') = (1,0, H,, —H,) in every canonical coordinate, we get
p-dg(r*(t,y')) = p- H, = H = 1 since H is homogeneous of order 1 with respect to
pand H(g,p) = H(y',cp'0) = 1. Thus, we obtain p-0yq(r*(t,y')) = 1 for any (,y').
This fact and (5.24) imply that S;(t,y’) = cz'0 -y’ +t — 7o. Hence, from (6.9) we

have

{Sj(cplw 2/ a") — cplw- M — % (s,0) = {9(t, X(s,2)) — t} L:cflwx(&z)
= Sj(t(s,2), X(t(s,2), §'(2) — cr(t(s, z) — 5)0)) — t(s,2) = s0 + s — t(s, 2).

Next, we show (ii). Since p-dq is a closed form on £ (Ut ), we have 0, (p-0rq) =
Ou(p - Oy, q) for k =1,2. Hence, p- 0y,q are independent of ¢, which implies that
X
-5, (b2) Oy () =0 (6.11)
since h:{TO(gj'(z),c;ilﬁ)h:To = (§(2),cz'0). Differentiating (6.10) in z and noting
that 9:X (s, z) = crO(¥'(2)), we obtain

0X

o (0 + (0.5)0) = cr(0.5)0(¥(2)) + 0. X, (6.12)
where g;(, = (%fj ;iii) For A € R near 0, we have X (t,y' +crMd) = X(t+ A, y),

which yields

X .
8_y’9 = 0(7'(2)). (6.13)

From (6.12) and (6.13), it follows that

(0,04 + 0:50) = (042D en(09)0(7 2)) + 0.%).

which implies that
‘det g—‘;(t, G(t,z))‘z - ’det (@(g'(z)),azfc) ‘2
= |det {'(6(7(2)), 0. %) (6(7 (), 0. X ) } |
From this equality and (6.11), we obtain (ii) of Lemma 6.1.

We change the variable 2/ = X (s, z) in the integral (6.8). Since supp [¢20;¢1]
C [~s0 —t1 — 2¢g", —s0 — t1 — cg'], it follows from Lemma 6.1 that

Ia(p) = /R dr /R ds /M dzeim oot (s VB, (5, 2,7) (i) 9n (1)@ (r),
J,€

) ) (6.14)
where (3 4(s,2,7) = j, (r(t(s, 2),7(2)),7) 10.X(s,2)| (1 # 0) and n(s,z) =

¢2(t(872)) 6t¢1(t(872)) ¢(X 72))
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Note that the subprincipal symbol og,(A()) of Op(x1)\(e))ﬂ% € v, (R x
I;07,Q2) is a real-valued function on {(t,7,¢) € T*(R x I'); x1(t,7,¢) = 1}.
Indeed, multiplying (E©)* (resp. E©) to (5.2) from the left (resp. right)
side, and noting that (i) of Proposition 5.4, we have (E*Op(xl)E(O)) Op(x1A®)) —
(OpLa M) E*Op(x1)E©® € U—>°(R x TI). Since 0,(E*)o,(E — E©) = 0 yields
E*Op(x1)(E — EO) ¢ v, (R x T'), we obtain

(E*Op(x1)E)* Op(a X)) = (Op(aA )" E*Op(x1)E € ¥ (R x T).

This fact and Proposition 5.1 imply c4,(A®) = 04,(A©) on {(t,7,() € T*(R x
) xalt, TC)=1}

Since IRXp)\ (T ¢) = )\e)(T, ¢) (j = 0,1), we have Ipyros,(A9) =
osp(A©)) = as,,(x yon {(t,7,¢) € T*(R x I'); x1(t,7,¢) = 1}, which yields
TN (5,5 (2)) = 05p(AD) (™ (5,7 (). We also obtain AT (r* (¢, 7(2))) =
X0 (t,7(2))) since Taxr A (7,¢) = A (1, ¢) = A (7, ¢) and because of (i) of
Prop031t1on 5.1. Therefore, combining (5.11), (5.19), (6.6), (6.4) and the equality
P6P20rd1 = 20¢¢1, we get ﬁg o(s,2,7) = Bjo(s,2)¢7(7), where

Bjo(s,2) = =2ipocrao (t(s, 2))1 (X (5, 2))d5(s0 + 5 — t(s,2)) (1 +w - O(F(2)))
717rmj/2/ ¢ +CR)\9)5>\(¢( 7 (z) +CR)\9))d)\ (6.15)

- exp ( /S Tsp ()\(e) (rt(), g'(z))))d)\) 0. X (s, 2)|*/2.

LEMMA 6.2. Set ®(s,z) = so+ s — t(s,2), and let € > 0 be sufficiently small.
Then, we obtain the following (i) and (ii) for each j (=1,...,Ny):
(i) For any fized s < —so — t1, we have 0.9(s,z) = 0 if and only if = € U]'*" (i.e.,
the stationary points of ® in z are characterized by z € Z/{Jm‘””)
(i) For any fized s < —so — t1, we have ®(s,z) = so (= s/, (0)) if 0.P(s,2) =0, i.e.,
z e U™,

Note that (i) and (ii) of this Lemma imply that J(s.)®(s,z) = 0 for s < —s¢ — t1,
z € Uj, if and only if z € UJ*.

Proof of Lemma 6.2. Note that 9,9(s, z) = 0 is equivalent to w - 9, X(s z) = 0.
This fact and (6.11) imply that {©(7'(2)),w} is linearly dependent if 9.X(s,z) #
0 is verified. This follows from the equality 9.X(s,z) = 8y X (5,9'(2))0+ and local
diffeomorphism of the map: ¢ — X(s,y’). Thus, we obtain (i) of Lemma 6.2 if
€ > 0 is chosen to be sufficiently small. For 2o € U]"**, (5.26) implies —so = cplw

X(s,20) — (5 + $0), which means (ii). Thus Lemma 6.2 is proved.

From Theorem 3.1, (6.1), (6.7), (6.14) and (6.15), we can see that Sgg(s,6,w) =
2(—2mi)2ch poSrr(s, 0,w) is reduced to a distribution Ky € D’'(R) near s = so modulo
smooth function, i.e.

<S’RR(-,6‘,w), ) ~ Ko(p) with respect to C{°(I) = C (¢ € C5°(1)),
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where K is defined by oscillatory integrals of the form

Ko (2m)~ // (2 (s, 2) (s, 2, )@ (T)dxdr, pe Ce(I). (6.16)

n (6.16), U = uj&luj,é and ((s,z,7) € S;hg(R%S .y X R7) is an amplitude function
that satisfies

B(s,z,7) ~ Bo(s, z)(iT) + Zﬁq(s, 2,7T),

q=0
N1
= Zﬁj,o(s,z), (s,2,7T) Zﬁj,q (5,2, 7)(@T)' 79 (¢ >1).
j=1

Note that each 8, (¢ > 1) is homogeneous of order 1 — ¢ in 7. Thus, the proof of
Theorem 1.2 is reduced to studying the singularities of some class of distribution that
is defined by an oscillatory integral of the form (6.16) with the phase function ®(s, z)
and amplitude function (s, z,7) having the properties described in Lemma 6.2 and
in the above, respectively.

In the section 7, we consider the oscillatory integrals that appear above (cf. The-
orems 7.1 and 7.2). From Theorem 7.2, we can immediately obtain the following
theorem, which provides more precise results than Theorem 1.2.

THEOREM 6.3. Assume that there exists an & € C with |®| = 1 such that
Re @fo(s,z) >0 in (s,2) € [=s0—t1 —2cx", —so—t1 —cp] XU, Then, we obtain
the following (i) and (ii):
(i) Srr(,0,w) ¢ H™1 at s = sg.
(ii) We assume that there exists | € N such that OL®(s,z) =0 for allp =1,2,...,1—1,
z € UN1 L{m‘”” and s satisfying —80 —t; — 201}1 <s< —s9—1t1 — c]_%l, and assume
that 8 . D (s, zo) # 0 for any zp € U LU Then, 1 is even, and we obtain

1

SRR(',@,UJ) ¢ H %J,» at s = S0, and
Srr(-0,w) € H H-3+1- at s=359 (for any eg > 0).

I»—A

Note that [ in (ii) of Theorem 6.3 is even since ®(s,z) takes the maximum at
(s, z0).

Proof of Theorem 1.2. The assumption in Theorem 1.2 means that we have only
one j with U™ # (). Furthermore, this set consists of only one point zy. From
(6.15), it follows that

@70(3,20) = —4ipgcR exp (z /OO Tsp ()\(8) (r+()\,gj’(zo))))d)\) |8ZX(S,ZO)|1/2

— 00

insé€[—sg—t — 201}1, —so—t1 — cgl].

This implies that the assumption of Theorem 6.3 is satisfied. Hence we obtain Theo-
rem 1.2.
Next, we consider the case that every stationary point of ® is “
From now on, we assume the following “non-degenerate condition”.
0

E@(g]'(z)) #0 (for any z € UN1 (UTET). (6.17)

non-degenerate”.
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In this case, using (6.11), we have

Bffb(s, 20) = —cglw . 835((3, 20) = c;%@(gj’(zo)) . %—f(s, 20) #0 (6.18)

for any zg € U;V:lll/{ﬂ”. This means that U;V:lll/{ﬂ“ is a finite set. Let U;V:lll/{ﬂ“ =
{z1,22,...,2n, }. From §'(z0) € My, """ (w), it follows that ¢(s, z) > t(s, 29) = s in
z € UNLU; . Hence, we get 924(s, z0) > 0 since s+02t(s, z0)(z—20)2+0(|z—2|*) > s.
From this fact and (6.18), we have

D2D0(s,2;) <0  j=1,2,...,Na. (6.19)
We introduce a function Ay (7) defined by

e~ im/471/2 (r >0),
A (1) = { em/4|T|1/2 (1 <0).

THEOREM 6.4. Assume (1.2) and (6.17). Then, we obtain

Ny N
(Srr(-0,0),0) = > > Qprl(v) + Bx(9),

r=1p=1

where Ry € D'((s}(0) — ¢, 5% (0) +¢)) satisfies |[Rn ()| < Cn|@ll gr/2-n (w), and each
Qp.r () is given by

Qpr(9) = Cpr(Do) A+ (Ds)*0(s5(0)).
Here, Cp, (1) € S7P(R) is homogeneous of order —p (|7| > 1), and Cy, is a constant
given by
. —imm 9 ~ -
Co.r(7) = =(2m)* ipocke™ ™™ /2| (507 (.)))| "
[ o) O G
exp (i Tsp (A G (2 )
where m, is the Morse index of the path s — 7r(r(s, 7' (2r))).

Thus, in the non-degenerate case (6.17), we can see Sgr(-,0,w) ¢ H~ !, and for
any €y > 0, Srr(-,0,w) € H17% at s = s} (#). These results are consistent with
Theorem 6.3. Concerning weakness of the singularities of Sgr(+, 0, w) at the maximal
sojourn time s}, (#), we can say that the non-degenerate case is the weakest one.

Proof of Theorem 6.4. It suffices to consider the case of the one stationary point
2o € U since the stationary points are isolated. Based on (6.18) and (6.19), the
method of stationary phase yields that

/ e”q)(s’z)n(s, 2)Bj.q(s, 2, T)dz (6.20)
R

N-1
= et o 2L N Gy (5,7 (i) P 4 Rivga (s, )|V |,

p=0
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where Cjgp(s,7) and Ry j.(s,7)(€ S°(Rs x R,)) are homogeneous of order
0, and Cj,o(s,7) = (21)Y25(s,20)Biq(5, 20, 7)|0?®(s,20)| /2. Since we have
exp(—imr|7T|~1/4) it|r|~Y/? = X (1), it follows from (6.20) and (6.14) that

N—-1
L) = Z / / Coiap(5,7) (i) P~ TN (7)™ 3(r)drds + Ry jal),

where R N,jq are the Fourier multiplier operators homogeneous of order —N +1/2—g¢.
Combining this fact, (6.7), (6.8), (6.18) and (6.15), we obtain Theorem 6.4.

7. Singularities of distributions defined by oscillatory integrals. In this
section, we examine the singularities of the distributions given by (6.16). We introduce
a class of distributions on R™ containing the one defined by (6.16) in n-dimensional
space. We change the notations since the contents of this section can be treated
independently of the previous sections.

Let S(z) be a real-valued C'* function on an open set U C R", and let 3(z,7) €
(U xR;) (m € NU{0}) be a symbol of the form

m
S phg

B, 7) ~ Bol@)(im)™ + Y B;(x,7),
=1

where each (3;(z, ) is homogeneous of order m — j in 7. We examine the distributions
K on an open interval I C R (i.e. K € D/(I)) that are defined by the oscillatory
integral

K(p) = (2m)! / /U 7S@n(a) 8, T)p(r)dedr, o € C(),

where 7 is a real-valued function belonging to C§°(U). As is described in section 6,
the proof of the main theorems has been reduced to examining the distributions.

We take a bounded open set V' C U with supp[n] C V, and put Ex = {z €
Vi S(x) > A} for A € R, Ao = inf, 7 S(z) and A = sup, .y S(x). Hereafter, we
assume that

Moo < Aso, and Re By(x) > 0 on E)_, (7.1)
n(xz) > 0 on U and n(xp) > 0 for some point zg € E)_,. (7.2)

THEOREM 7.1. Assume (7.1) and (7.2) as shown above. Then there exists an
n—1__k

integer ko with 0 < ko < n such that we have K ¢ H=™% 2 T at s = Aoo.

If the assumption in Theorem 6.3 holds, then for the distribution K introduced
by (6.16), @K, satisfies (7.1) and (7.2) with n = 2, m = 1, A = so(= s7,()), and
Ex_ =[-s0—t1— 20%1, —s0 —t1 — cl_%l] X U;V:llujﬁ”. As shown in Lemma 6.2, the
phase function ®(s, z) has stationary points along the lines s < —sg — t1, 2 € UJ"**.
This property is stated as follows:

There exists a non-negative integer k; < n — 1 such that for any (! € Ex_
all the points M) + *(0,*z") with |2”| < ,a) belong to Ey__ for some
Sy > 0, where x = {(*2/,t2"), 2’ € R"% and 2" € RF (if ky > 1).
(7.3)



42 M. KAWASHITA AND H. SOGA

Using this property, we can obtain more precise results.

THEOREM 7.2. Assume (7.1)—(7.3) as shown above. Then, we obtain the follow-
ing (1) and (ii):
(i) K ¢ H e gp g — Aoo if there exist an integer ly (> 0) and a positive
constant 8., such that we have 9% S(z}, xfj+a") = 0 for 0 < |o/| < 2lo and || < Oy, .
(ii) In (i), also assume additionally that z" € R"' (ie. ki = n — 1) and
8£$l0+1)5($) 75 0 for any * € Ex_. Then, for any ¢¢ > 0 we get K €

H™ met gy~ 3o at § = Moo

Applying Theorem 7.2 with 2]y = [ — 2, we obtain Theorem 6.3.

To show Theorems 7.1 and 7.2, we begin by decomposing the functional K. For
any integer N > m +n + 2, we put

Ky (2m)~ // e (2) (Bo (@) (iT) +Zﬁ;x7 7)dxdr

and Ry(p) = K(¢) — Kn(p). Since |[Ry(p)| < Cn|¢llg-n+m+2 (@ € C§(R)), it
suffices to consider K.
For A e R, 0 # 7 € R, we put

Bo() = /E n@po@)dz  and  Bi(A7) = /E 0(e)B; (7).

Then using the Stieltjes integral with respect to BJ—, we have

AOO ~
/eiTS(w)n(x)ﬁj(%T)dx:/ A dB; (A, 7)
U

AOO . ~
= =3 (A, T) — / TN B (A, TN (7.4)
To show (7.4), we introduce ﬁf’i(x,T) = max{:l:Reﬁj(x 7),0} and ﬁj—’i(l'ﬂ') =
max{+Img;(z,7),0} and put B;"i()\ﬂ') = [, 0z ‘?‘i (z,7)dx (o« = R,I). Then
the functions B;"i()\, T) are non-increasing and left contlnuous functions with respect
to \; and they are equal to 0 when A > A\, and equal to some constant when A < A_

We take a cutoff function ¢(A\) € C§°(R) satisfying 0 < ¢ < 1, ¢(A\) = 1 for
IN = Aso| < dp and ¢(A) = 0 for | — Aoo| > 280, and define K (¢) and K> (yp) by

Ao - N o
_ / /R ei”ir(b(/\){(h)mﬁo(x\)—I—Zﬁj(z\,T)}gﬁ(T)de)\,

K3*(e) = [ e~ {(ir)/"Bo(0 +Zﬁj Aocor )} (7 dr

R

Ao ‘ . N
+ / (1—6(A) /]R e”m{(mmﬁo(AH; B (A7) Y(r) dr A,
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where §y > 0 is a small number fixed later. Note that Kn(¢) = —(2m) YK (@) +
K™ (). It is easily seen that K™ € C™ at s = A. We put

) = 3{ G B, G )

Noting that 3;(\, 7) are homogeneous of order m —j in 7, we have 7;— N+ ﬁ%_ \) =
(i7) =™+ B;(\, 7). Thus, K% () is of the form

oo ~ N )
K} (¢) :/A SN {Bo(N) + D (v () +ivy \H)(077) T p(N)dA,
. =
where H is the Hilbert transform: ¢ — [, eiATTTif'cﬁ(T)dT =7 im o S pto(A—
w)dp. We set

_ =
o) = [ S e (7.5)

oo

Then a; belong to C7~!(R) and 8{71%# are absolutely continuous. Furthermore
it follows that aji(/\) =0 for A > A\, 8&&%(%& =0 =0,1,...,5—1) and
Bf\aj-t N\ = Wji()\) almost everywhere. Therefore, applying integration by parts and
using the skew self-adjoint property of the Hilbert transform, we obtain

N
KR (o) = /R{¢>(A)Bo(>\)+2(—1)j(¢(>\)a}“(A)—iH(sbaj_)(A)}af”lw()\)dHff&w(<P),

where Ky*°(p) € D'(I) with C® at A\ = A\o. We take ¢(\) € C5°(R) such that
0< ¢ <1, (N =1if A= Ao| < 280 and ¢(N) = 0 if |\ — Aso| > 380, and put

N
() = 70(A) +i Z(—l)”%(A)H(m;)(A), (7.6)
~ J_ N .
Y (A) = ¢M{Bo(N) + D (1) al (N}
j=1

Since supp [1 — @] N supp [¢] = 0, it follows that K — K € C™ at s = Ao, where
KR(¢) = Jpv(N)Oy T p(A)dX. Thus, we obtain the following Lemma 7.3.

LEMMA 7.3. For an integer N > m+n+2, the following (a) and (b) are equivalent
to each other:

(a) K € H at s = Moo, (b) v € HF™HL(R).

Since supp [7] NEx., (C V) is compact, from (7.1) we can choose an open set W C
V and a constant Cy > 0 such that Re Gy(z) > Cp on W and supp [n] NEN, C W.
We also take a constant §; > 0 such that supp [§] NEx C W for A > A — 01.

LEMMA 7.4. There exist an integer kg with 1 < kg < n, a constant C1 > 0 and
a constant 6o > 0 with 1 > do > 0 such that

/ n(@)dz > Cr0m — V)32 (e — 2 <A < M),
Ex
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Proof. The matrix Ay, = (Op,02;5(%0))i,j=1,...,n is non-positive since S(z) < A
on W and V,;S(zg) = 0. We denote the positive eigenvalues of —A,, by p; (j =
1,...,n—ko (En—1)) (g1 > po >+ > ln—k,). Note that kg = n if A, =0. For
P € O(n) we set S(y) = S(* Py + ). We can choose P so that in a neighborhood of
y=0

nfk()

SW) = Xeo == > iy +Qy) + O(lyl*),
J=1

where Q(y) = X013 LxS(0)y. We write y = “("y/, "), ¥/ = "(y1,- -, Yn—ko)
and 4 = *(Yn—ro41s -+, Yn). Since S(0,7”) — Moo < 0, we have Q(0,y") = 0, i.e.,
Zwl‘:g ﬁ(@;j S)(0)y®" =0 (y" € R*). Hence, there exists a constant C' > 0 such
that

1
Q) = —C{W' P + WPl + ¥/ ly"1?} = —C{36]y'|* + 2—5|y"l4} (lyl < 0).

We can choose a small § > 0 such that we have Wy = {2z € R"; 2 = P~y + 20 €
Bs(zo) } CC W (where Bs(z9) ={y € R"; |y — x| < ¢ }) and

SW) — Ao = =C'{lyP+¥'"y in  yeBs0) (7.7)

for some constant C’ > 0. We put d = min{dy,C’6*/8,(2C")~1} > 0, and put
Wi = {y € R"; |y/| < (2C")" 2| Ao = M2, |y"| < (2C") Y4 Ao — A%}, where
Moo — 02 < X < Aoo. From (7.7), it follows that |y| < 6 and S(y) > \if y € W;. Taking
§ > 0 to be sufficiently small again if necessary, we can obtain n(z) > 275 (z¢) > 0
for x € Wy. Thus, if Ao — 02 < A < A, We get

n _ ko

1 1
/ n(z)dz > —77(960)/ dz > —n(ze)Vol(W1) > C1 (A — A)2 "%
Ey 2 E\xNWy 2

This completes the proof of Lemma 7.4.
LEMMA 7.5. There exist constants 03 > 0 and Co > 0 with 0 < d3 < do such that

Re 70(A) = C26(M) (oo — N EF"F (Moo — 05 < A < Aoo).

Proof. Since |7Ji()\)| < max, v,y 16 (7,7)] fEA n(x)dz, it follows from (7.5)
that [a; (M) < On|dee = AP [, n(@)de (j = 1,2,...,N, A € R). Noing that
Re Bo(w) > Co (v € Wp) and supp[n] N Ex C Wy (Aee — 01 < A < Ao), we have
Re Bo(A) > Cy fEA n(z)dr (Ao — 91 < A < Aw). Hence, we obtain Lemma 7.5 from
Lemma 7.4 and the above estimates.

Proof of Theorem 7.1. We show Theorem 7.1 by the contradiction argument. As-
n— k
sume that K € H-"+5 — 7% at \ = Aoso for kg as stated in Lemma 7.4. From Lemma
n k.

7.3, the function v(A) in (7.6) belongs to H"% ~4 (R). We put so = 5 — %". We then
have Hyy € H*FY/2((Ay,00)) since Hyo(\) = Hy(\) + izj-v:l(—l)j¢()\)a;()\) +
iYL (DI (H(G(N) — 1)H(ga; )(A). Since 3%(\) = 0 (A > Ay), we obtain
Hyo(A) = 74 [22 (A = i) " o(u)dp € C((Aso,00)). We take p € NU {0} and
ag € [0,1) with so +1/2 = p+ « and define f by f(\) = ff;()\ — 1) " Py (p)dp.
Then, we obtain f € C°°((Aoo, 0)) N HY((Aso, 00)).



SINGULAR SUPPORT OF THE SCATTERING KERNEL 45

We fix dg > 0 with dg < d5/2 and put g(s) = f(Aeo + ) and k(1) = v (Moo — 7).
Then, we get g € C*°(Ry) N H* (Ry) (Ry = (0,00)), g(s) = [, (s + 1) Pk(r)dr
(s >0), Rek > 0in Ry, Re k(1) > CorPte0=1/2 (0 < 7 < §p) and k(1) =0 (0 > 7
or T > 2Jp). Using Lemma 7.5, we now show the contradiction in each of the cases
for ap =0 and 0 < ap < 1.

The case of ag = 0: Since s +7 < 27if 0 < s < 7, for s at 0 < s < Jg we have

) p—1/2
Re g(s) > / C(é:-_TdT > (027 P(s Y2 — 50—1/2).

This means g ¢ L?(R, ), which is contradictory.
The case of 0 < qp < 1: Since we have s+t +7<3r7and s +7<27if 0 <t <s <
7 < 60, noting that (s +t + 7)P*1 — (s + 7)PTL > (p + 1)t(s + 7)P, we have

do s 7\P P ap—1/2
“Re (gl +5) —gle)) > [ RLEDCAT Ly

0 (s +t+7)PH(s + 7)PH1
s
- C’2(p+1)t/oTa07271/2dT

- 3ptl)
if 0 <t < s < dg. Hence, there exists a constant C3 > 0 such that
—Re (g(t+s) — g(s)) > Cat(s™ 32 —5007%/2) (0 <t<s<6),

which implies that if 0 < ¢ < o,

2

%0 - C -
lgt+)—9( 32w, ) = c§t2/ 500732 g0 22 > 5 (g2a0 _gg2e022)
t 4(1 040)

This estimate implies that [~ ¢~ |g(t + ) — g(-)||%2(R+)dt < 0o does not hold.
Hence, we get g ¢ H* (R.), which is contradictory. Thus we obtain Theorem 7.1.

Proof of Theorem 7.2. We take 65, > 0 to be sufficiently small again if necessary.
Then, noting that S(x) — Ao < 0 (z € V), we obtain

1 .
S(z) — oo = Z o % S(xg, ") (2" — ()™ + G(x), (7.8)
la/|=2l0+2

|G(x)] < Cla’ P+ (¢ € B(wo,bs,) € W),

where B(xg,0z,) = {# € R™; |2/ — x| < 4y, |2 — 2| < 64, } and W is an open set
satisfying supp [n] NEx C W for A > A — 1. From this expansion, it follows that

S(2) = Aoo > —C'|2" — zh|2LFD) (2 € B(wo,04)).

We put 65 = miri{él,C’(éwO/Q)?(l”l)} > 0. Since |2' — x| < 0g if |2/ — 2(] <
(C" Ao — A|)Z@ 70 and Ay — 85 < A < Aso, we have S(z) > A. Hence, in the same
way as in the proof of Lemma 7.4, we have

/ N@)dz > C)(hoo — NTTFT (Ao — ) < A < Aoo).
Ex
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Therefore, using the same argument as in Lemma 7.5, we obtain
n—k
Re 70(0) 2 C30(0) (Ao = 1) X070 (Ao =8 < X < M)

for some constants C5 > 0 and 65 > 0. Thus, we can obtain (i) in Theorem 7.2 by
the same arguments as in Theorem 7.1. _
We now show (ii) in Theorem 7.2. Since a> € CV"'(R) and &a:(\) = 77 ()

almost everywhere, it follows that gbaj € H 1(R). Hence it suffices to show that
Py € H™@r 3¢ (R) for any e¢g > 0. In the same way as for (7.4), we obtain

_w/ e AN Bo(N)dA /e”5<r>n($)¢(5(x))ﬁo(x)dx
R U

Using the same arguments as for (7.8), we can show from the assumption (7.3) that
for (M) e E) . there exist constants §,0) > 0 and Co(:v(l)) > 0 such that

S(0) = do = g2 (a2 = oD 4 G, o),
G(z1,2")] < Co(aM)|zy — 2Vt (2 € Bz, 8,0m)).

Note that 8%?””;9(:1:&”,1:”) <0 (Jz" = (M) < §,0)) follows from S(z) < Ao
(x € V). Then, we obatin

S(x) = Ao — Az, 2W) (21 — 2{)20D (2 e Ba®,6,0)),
A(zW)y e *(B(zW,6,m)), Az, 2M) >0 (z € BzW,d,m)).

From compactness of supp [] NE__, we can take (1), 2 ... (V) € E,_ such that
supp [n] NE\, C Ué‘V:lB(I(j),(Sw(j)/3). We put W = U;VZIB(x(j),Qdm(j)/?)). Since
S(x) is continuous on V, there exists a constant d4 > 0 such that supp [n] NEx C W
for A with Ao — 04 < A < Ao We now choose the cutoff function ¢ introduced in
the proof of Lemma 7.3, and Change 0o > 0 there to dg = d4/2 > 0. Furthermore,
we take a partition {wj}J_L2 VVVVV 5 of unity on W such that ¢; € C®°(B(zY),8,)),

0<1; <1(j=1,2,...,N). Changing the variable £ = Az, 20 ))2”0+1> (x1 — xgj))

for each j, and noting that ¢(S(z)) = E;\Ll #(S(z))y;(x), we can show that for each
Jj there exists b; € C§°(R™) such that

N
—iT(QﬁﬂNo)A(T :ZEMWT/R” 1/ —irg2loth b(€,2")dedx”".

j=1

Hence, we obtain |(¢f0) (7)] < C(1 + |T|)_1_2<101+1) (r € R). This means ¢fy €
1 1
H20+ 572 7(R), which completes proof of Theorem 7.2.
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