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SINGULAR SUPPORT OF THE SCATTERING KERNEL FOR THE

RAYLEIGH WAVE IN PERTURBED HALF-SPACES∗

MISHIO KAWASHITA† AND HIDEO SOGA‡

Abstract. This paper deals with the Rayleigh wave scattering on perturbed half-spaces in the
framework of the Lax-Phillips type. Singular parts of the scattering kernel for this scattering are
closely connected with singularities of the Rayleigh wave passing through the perturbation on the
boundary. This can be described by estimating the singular support of the scattering kernel on the
Rayleigh wave channel. The proof is based on a representation formula of the scattering kernel that
was obtained in the previous work. However, the formula does not suit the situation of the Rayleigh
wave, even though it is a natural extension of Majda’s formula for the usual wave equation. Hence,
the formula needs to be reformed, and the problem needs to be reduced to a pseudo-differential
equation on the boundary governing the Rayleigh wave. Key methods for the reduced problem are
construction of an approximate solution for the Rayleigh wave and analysis of an oscillatory integral
distilled by using the solution. The phase function of the oscillatory integral is always degenerate
along the characteristic curve of the Rayleigh wave. This degeneracy is handled by introducing a
certain criterion for the regularity of the distribution defined by the oscillatory integral.
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1. Introduction. Let Ω be a perturbed space of the half-space R3
+(= {x =

(x′, x3) = (x1, x2, x3);x3 > 0}) with a C∞ boundary Γ (with bounded undulation),
and consider the elastic wave equation

{

(ρ(x)∂2
t −A(x, ∂x))u(t, x) = 0 in R × Ω,

N (x, ∂x)u(t, x) = 0 on R × Γ
(1.1)

for the displacement vector u(t, x) = t(u1(t, x), u2(t, x), u3(t, x)) of x ∈ Ω at time t.

In (1.1), ρ is the density of Ω, Au =
∑3

i,j=1 ∂xi

(

aij(x)∂xju
)

is an operator with the
coefficients aij(x) of 3× 3-matrix-valued functions, and N is the conormal derivative

of A given by Nu =
∑3

i,j=1 νi(x)aij(x)∂xju
∣

∣

Γ
, where ν(x) = t(ν1(x), ν2(x), ν3(x)) is

the unit outer normal vector to Γ at x(∈ Γ).
In this paper, the isotropic solids are considered; therefore, the (p, q)-components

aipjq(x) of aij(x) are of the forms aipjq(x) = λ(x)δipδjq +µ(x)(δijδpq + δiqδjp), where
δij is Kronecker’s delta, and λ(x) and µ(x) are the Lamé parameters. We assume
that the functions ρ(x), λ(x), and µ(x) are C∞ in R3 and satisfy

inf
x∈Ω̄

ρ(x) > 0, inf
x∈Ω̄

(λ(x) + 2µ(x)/3) > 0, inf
x∈Ω̄

µ(x) > 0.

Throughout this paper, we assume that there exists a constant r0 > 0 such that
the boundary Γ consists of the boundary of the half-space outside the ball Br0 =
{x ∈ R3; |x| < r0} and that the functions ρ(x), λ(x), and µ(x) are the constants ρ0,
λ0, and µ0, respectively, outside Br0 . Thus, outside Br0 , A(x, ∂x) is an operator with
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constant coefficients, and is denoted by A0(∂x). Note that the system of the free space
corresponding to (1.1) is given by replacing A with A0 and Ω with the half-space.

Two types of body waves exist for elastic waves: P-wave (the longitudinal wave)
and S-wave (the transversal wave). In the free system, the phase speeds of the P- and

S-waves are given by cP =
√

(λ0 + 2µ0)ρ
−1
0 and cS =

√

µ0ρ
−1
0 respectively. There

also exists a surface wave called the Rayleigh wave; this wave has the phase speed cR
that is less than the speeds of the body waves, i.e. 0 < cR < cS < cP . Note that the
speed cR is determined by an algebraic equation (cf. (5.1) or [1]).

Since the Rayleigh wave is concentrated near the boundary, it has many interest-
ing properties different from those of the body waves. In the case where the region Ω
is an exterior domain with a compact boundary, the Rayleigh waves may cause strong
trapping phenomena. For example, the local energy does not decay not quickly but
rather slow (cf. [5] and [6]). Trapping phenomena often produce resonances. Stefanov
and Vodev [17, 18] showed that the Rayleigh wave generates a sequence of resonances
that approaches the real axis very quickly.

Since our interest is in scattering of the Rayleigh wave, it is natural to choose
the half space R3

+ as the free space in scattering theory. In this case, the scattered
Rayleigh wave may contain informations on the perturbation. We study how and
what we can pick up from the scattering kernel associated with the Rayleigh wave.

According to this thought, M. Kawashita, W. Kawashita and Soga [7, 8] have
formulated a scattering theory of the Lax-Phillips type for perturbed systems from
the half space. In [7], the translation representations in the free space (the half-
space) are given. In [8], the theory for the perturbed space is developed, and the
representation formula of the scattering kernel is obtained. Here, even the plane
waves in the free space R3

+ contain the reflected waves consisting of different kinds of
waves. Furthermore, the Rayleigh wave also exists. These are classified as follows:

(P) For the incident P-wave, P- and S-waves are reflected.
(SV) For the incident S-wave, P- and S-waves are reflected.
(SH) For the incident S-wave, only the S-wave is reflected.
(SVO) For the incident S-wave, the S-wave is totally reflected.
(R) The Rayleigh wave goes on the boundary.

Here, ω denotes the propagating direction of the reflected P-waves in the case (P),
the reflected S-waves in the cases (SV), (SH), and (SVO), and the one of the Rayleigh
wave in the case (R). Corresponding to these cases, the scattering kernel in our case
is decomposed into the components Sαβ(s, θ, ω) (α, β = P, SV, SH, SVO, R). We call
Sαβ(s, θ, ω) the component for the channel of the incoming α and outgoing β.

The waves corresponding to the cases classified above are denoted by wα
0 (t, x;ω)

(α = P, SV, SH, SVO, R). For each case the wave wα
+,tot(t, x;ω) exists in the perturbed

space and is asymptotically equal to wα
0 (t, x;ω) as t → −∞. Note that these are

the Fourier transforms of the generalized eigenfunctions in the free and perturbed
spaces respectively (cf. [8]). Each Sαβ(s, θ, ω) is represented by using wα

0 (t, x; θ)
and wα

+(t, x;ω) = wα
+,tot(t, x;ω) − wα

0 (t, x;ω). These representations correspond to
Majda’s formula [11] for scattering by obstacles in the scalar-valued wave equation.
In the Majda case, the representation was expressed by using the plane waves of the
form δ(t − x · ω) in the free space and the scattered waves for these waves. In our
case, wα

0 (t, x; θ) correspond to the plane waves in the free space and wα
+(t, x;ω) to the

scattered waves. The represetation of Sαβ(s, θ, ω) is stated in Theorem 2.2 (for the
detail, see Theorem 6.1 of [8]).
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In this paper, we study singularities of the component for the channel of the
Rayleigh wave (i.e. SRR(s, θ, ω)). Roughly speaking, this component has a meaning
as follows: Let an incident (singular) Rayleigh wave come from the direction ω over a
far distance and be scattered by the perturbation of the boundary; then, SRR(s, θ, ω)
means measurement of the scattered Rayleigh wave that goes eventually in the di-
rection θ. Our problem is to find where singularities of SRR(s, θ, ω) appear and how
they are connected with singularities of the Rayleigh wave.

This type of problem was studied by Majda [11] and others for the obstacle
sattering of scalar-valued waves. Using his representation of the scattering kernel,
Majda showed where the kernel was singular and proved that the convex hull of
the obstacle was determined from these singularities. For scattering of elastic waves
by compact obstacles, similar results were obtained by Soga [16] and others. These
results are closely connected with the reflection phenomena of the plane waves by the
obstacles, while the surface waves are excluded. Thus scattering of the Rayleigh wave
itself has not yet been considered even though the Rayleigh wave may exist on the
boundary.

According to Taylor [19] and others, singularities of the Rayleigh wave propagate
only along the geodesics of the boundary Γ with the phase speed c̃R ∈ C∞(Γ) (cf.
section 5). In the microlocal sense, the original equation is reduced to a scalar-
valued pseudo-differential equation of the real principal type on the boundary R × Γ
which governs the Rayleigh wave. This principal symbol is given by c̃R(x′)‖ζ‖Γ − |τ |
((t, τ, ζ) ∈ T ∗(R)×T ∗(Γ)), where ‖ζ‖Γ is the metric on T ∗(Γ) induced by the standard
Riemann metric of Γ (for details, see Proposition 5.1). Thus, we expect that the
scattering phenomena of the Rayleigh wave are similar to those for the wave equation
on the boundary Γ if we only look at singularities and abandon other things than
singularities.

Soga [14] investigated scattering for the scalar-valued wave equation with pertur-
bation of the media in the Euclidian space. Based on his result and our expectation
mentioned above, substituting the pseudo-differential equation governing the Rayleigh
wave for the usual wave equation, we may guess the singularities of SRR(s, θ, ω) ap-
pear similarly to those in [14]. As the final conclusion, this is correct, as is stated in
Theorems 1 and 2. However, the proofs cannot be analogized with those of [14], which
is because of the focus on the Rayleigh wave: The representation of SRR(s, θ, ω) by
M. Kawashita, W. Kawashita and Soga [8] is not of the integral form on the boundary
where the Rayleigh wave is concentrated; this implies that the representation is not
suitable only for analysis of the Rayleigh wave but also for explanation of the Rayleigh
wave scattering, even though it is a natural extension of Majda’s formula [11] to our
case of elastic waves. Thus, using the differential equation in the unperturbed space
for the Rayleigh wave and employing an approximate solution of the Rayleigh wave in
the perturbed space, we reform the represetation to an appropriate form (cf. Theo-
rem 3.1). This is the first step towards analyzing the scattering kernel for the surface
waves like the Rayleigh wave, and is a crucial point. Note that this step is not needed
when treating scattering of body waves (propagating inside the media).

The next step is to construct an approximate solution for the Rayleigh wave
contained in the representation. Using this solution, we reduce the problem to the
examination of an oscillatory integral. This seems to be the same approach as that
by Majda [11], Soga [16], and others. However, in our case, even the construction
of the approximate solution is not easy compared with the previous works of [11]
and [14, 16]. Furhtermore, the phase function of the oscillatory integral is always
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degenerate along the characteristic curve of the Rayleigh wave. This also makes a
new difficulty. Thus, new techniques are needed to overcome these difficulties. Their
development is another crucial point in this paper.

Let (q(t, y′;ω), p(t, y′;ω)) be the phase flows in the cotangent bundle of Γ for the
Hamiltonian c̃R(x′)‖ζ‖Γ with (q(0, y′;ω), p(0, y′;ω)) = (y′, c−1

R ω) for ω ∈ S1 and y′

∈ Γ with y′ · ω ≤ −r0. We assume that these flows are non-trapping:

lim
t→∞

|q(t, y′;ω)| = ∞ for any ω ∈ S1 and y′ with y′ · ω ≤ −r0. (1.2)

For ω and θ ∈ S1 we set

M+
ω (θ) = {y′ ∈ Γ; y′ · ω = −r0, lim

t→∞
p(t+ c−1

R r0, y
′;ω) = c−1

R θ},
s+ω (θ) = sup

y′∈M+
ω (θ)

lim
t→∞

(c−1
R q(t+ c−1

R r0, y
′;ω) · θ − t),

and denote the set y′ ∈M+
ω (θ) attaining the supremum s+ω (θ) by M+,max

ω (θ), i.e., the
maximal sojourn time. M+

ω (θ) and s+ω (θ) are independent of the choice for r0, and
M+,max

ω (θ) 6= ∅ if M+
ω (θ) 6= ∅. Note that these above limits exist since in our case the

phase speed of the Rayleigh wave satisfies c̃R(x′) = cR outside of the ball Br0 . The
main results in this paper are the following theorems.

Theorem 1.1. For any ω and θ ∈ S1, we have
(i) if M+

ω (θ) = ∅, then SRR(s, θ, ω) is C∞ on the whole of Rs;
(ii) if M+

ω (θ) 6= ∅, then sing supp [SRR(·, θ, ω)] ⊂ (−∞, s+ω (θ)].

For a tempered distribution f ∈ S′(R) and s0 ∈ R, we say that f ∈ H l at s = s0,
if there exists a cutoff function ϕ ∈ C∞

0 (R) such that ϕ = 1 near s0 and ϕf ∈ H l(R).

Theorem 1.2. If M+,max
ω (θ) consists of only one point, SRR(·, θ, ω) /∈ H−1 at

s = s+ω (θ).

Note that Theorem 1.2 implies the following corollary:

Corollary 1.3. If M+,max
ω (θ) consists of only one point, SRR(s, θ, ω) is singular

at s = s+ω (θ).

In [14], the results corresponding to Theorem 1.1 and Corollary 1.3 were obtained
by assuming that bunches of paths of the geometrical optics near the paths attaining
the maximal sojourn time did not make caustics. In the present paper, this assumption
is removed. Instead, we assume that the paths attaining the maximum are unique.
Assumptions of this type are needed to avoid some cancellation of the principal part
(for detail see section 6). Even for the usual wave equation, we need these conditions
to avoid cancellations since the principal part contains the terms from the Maslov
index if caustics exist, which may cause the cancellations.

We now describe a rough sketch of the proofs. The first step is to reform the
representation of the scattering kernel SRR(s, θ, ω). As is explained earlier (also see
Theorem 2.2 in section 2), the obtained representation of SRR(s, θ, ω) does not suit
the scattering phenomena of the surface waves. Hence, we have to pick the main
parts from the formula that contain essential information for the Rayleigh wave . For
this purpose, we need the two steps divided into sections 2 and 3. Note that in usual
cases, these steps are not needed.

We choose any point s0 ∈ R and localize the original formula of the scattering
kernel stated in Theorem 2.2 at s0. The scattering processes can be time-reversed if
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only singularities are focused on. In section 2, using this fact, we reduce this localized
formula near s = s0 to a simple one (cf. Proposition 2.5). For this purpose, we
introduce approximate solutions for the time reversed system described in (2.8) and
(2.9). Note that even in the case of the usual wave equations this reduced formula
seems to make the proofs simpler.

In section 3, further reduction suitable to the Rayleigh wave is given (cf. Theorem
3.1) by introducing another approximate solution with the Dirichlet boundary condi-
tion (cf. (3.1) and (3.2)). In this reduction, properties of the Rayleigh wave are used
essentially. As a result, we have a reduced formula of SRR(s, θ, ω) localized at each
point s0, which consists of only one integral on the boundary R × Γ. This formula is
reasonable and consistent with the scattering phenomena of the Rayleigh wave since
it travels on the boundary. Moreover, this also has a technical advantage. Since the
original formula consists of many integrals both in R × Ω and on R × ∂(Ω ∩ R

3
+),

it is difficult to verify that these terms do not cancel each other out. To avoid this
difficulty, we need these reductions.

The next step of the proof is to actually construct the approximate solutions
introduced in sections 2 and 3. This step is divided into two parts. The data producing
singularities of the scattered Rayleigh wave is contained in some part of the initial
waves in the free space. First we have to pick up this part, which is done by introducing
the approximate solutions of the equation with the zero Dirichlet boundary data
and the non homogeneous data in Ω. (cf. (4.1)). These approximate solutions are
constructed in section 4. In section 5, the approximate solution containing scattered
Rayleigh waves is constructed.

As shown in section 4, using the approximate solutions of (4.1) mentioned above,
we can select the actual data as an inhomogeneous Neumann data for the equation
of the scattered Rayleigh waves (cf. Proposition 4.5 and (4.2)). The approximate
solution introduced in section 3 is also constructed by the same manner. Note that
the arguments in section 4 do not contain construction of the scattered Rayleigh
waves. Nevertheless, it is difficult to directly pick up the inhomogeneous boundary
data mentioned above since the Rayleigh wave in the free space is very complex.
Fortunately, the essential data are given by the commutator of ρ−1

0 A0(∂x) and a cutoff
function, and consequently, we can perform the whole calculation using a structure
of the symbols for the elastic equations (cf. Lemma 4.4).

The approximate solution containing the scattered Rayleigh wave is governed by
the equation with the inhomogeneous Neumann boundary data and the zero homo-
geneous data in Ω (cf. (4.2)). Construction of this solution is reduced to making
asymptotic solutions of the Neumann operator that is restricted in the elliptic region
of ρ∂2

t −A: this basically follows the approach due to Taylor [19]. In the last part of
section 5, we study the relations between the phase functions and sojourn times used
in the following sections.

In section 6, inserting the approximate solutions into the reduced representation
of the kernel, we prove the main theorems in a more precise form (cf. Theorem 6.3).
The proof is based on analysis of singularities for some distributions that are defined
by oscillatory integrals with a parameter. In our case, the phase functions in these
oscillatory integrals are always degenerate along the path of the maximal sojourn
time. Hence, the stationary phase method does not work well. In [15], Soga gave
sufficient conditions so that oscillatory integrals with degenerate phase functions did
not rapidly decrease. In our case, however, these conditions are not satisfied. Thus,
we need to find another criterion and improve Soga’s method [15]. Our efforts are
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presented in section 7. As a result, we can measure the singularities of a class of
distributions defined by oscillatory integrals in the sense of the usual Sobolev space
(cf. Theorems 7.1 and 7.2).

In the last part of section 6, we consider the case where the wave front of the
Rayleigh wave going through the perturbation becomes strictly convex near whole
paths corresponding to the maximal sojourn time. In this case, using the change in
variables, we can reduce the oscillatory integrals to the forms to which the stationary
phase method can be applied. Thus, the asymptotic form of SRR(s, θ, ω) is obtained
(cf. Theorem 6.4). In this procedure, a kind of non-degenerate condition is introduced
(cf. (6.17)). To the best of our knowledge, this non-degenerate condition has not
previously been introduced, even for the usual wave equations. Noting Theorem 6.3
and Theorem 6.4, we can see that the present non-degenerate case is the weakest
concerning singularities of the scattering kernels at the maximal sojourn time.

2. Reforming the kernel representation. In this section, we reform the rep-
resentation of the scattering kernel obtained in [8]. Before doing so, we describe the
notations and the basic results.

Hm(M) denotes the Sobolev space of order m on M . The mapping U(t) :
t(u(0, ·), ∂tu(0, ·)) 7→ t(u(t, ·), ∂tu(t, ·)) becomes a unitary operator on the Hilbert

space H = Ḣ1(Ω)×L2(Ω) with the inner product: (f, g)H = 2−1{∑3
i,j=1

∫

Ω aij∂xjf1 ·
∂xig1ρdx +

∫

Ω f2 · g2ρdx} (f = t(f1, f2), g = t(g1, g2)), where Ḣm(Ω) = {v(x) ∈
Hm

loc(Ω) : ∂α
x v ∈ L2(Ω) for 1 ≤ |α| ≤ m, limr→∞ r−2

∫

r≤|x|≤2r
|v|2dx = 0 }.

The family {U(t)}t∈R is a one parameter group of unitary operators with the gen-
erator L of the form Lf = t(f2,Af1), f ∈ D(L) = Ḣ2

N (Ω) × H1(Ω), where
Ḣ2

N (Ω) = { v(x) ∈ Ḣ2(Ω) ; Nv = 0} (cf. [8]).
M. Kawashita, W. Kawashita and Soga [8] have shown that we have the outgoing

and incoming translation representations T+ and T− in the Lax-Phillips sense (cf.
[10]). These representations are unitary operators from H to L2(R;N). Here, N
is of the form N = ⊕α∈ΛL

2(Sα) (Λ = {P, SV, SH, SVO, R}), and each Sα implies
the set of all directions connected with the incident (or incoming) waves correspond-
ing to the phenomena α described in the Introduction (for details, see [8]). In the
Lax-Phillips theory, the scattering operator S is defined by S = T+(T−)−1. S is a
unitary operator on L2(R;N) and is expressed with a distribution kernel S(s, θ, ω):
(Sk)(s, θ) = k(s, θ)+

∫

R
S(s− s̃, θ, ω̃)k(s̃, ω̃)ds̃dω̃ ( k(s̃, ω̃) ∈ L2(R;N) ). S(s, θ, ω) is

called the scattering kernel. The scattering kernel S(s, θ, ω) consists of 5×5 matrices
(

Sαβ(s, θ, ω)
)

α,β∈Λ
.

In [7], considering the reduced wave equation (σ2 +ρ−1A)u = 0 with the constant
coefficients, we have introduced the following plane incident waves φα,i

0 (α = P, SV,

SH, SVO) and their reflected (or the totally reflected) waves φα,r
0 :

φP,i
0 (x;σ, ω) = eiσc−1

P ω̌·xaP (ω̌), φSV O,i
0 (x;σ, ω) = γ(σ, ω)eiσc−1

S ω̌·xaSV (ω̌),

φSV,i
0 (x;σ, ω) = eiσc−1

S ω̌·xaSV (ω̌), φSH,i
0 (x;σ, ω) = eiσc−1

S ω̌·xaSH(ω̌),

where ω̌ = t(ω′,−ω3), ω
′ = t(ω1, ω2), aP (ξ) = ξ = t(ξ′, ξ3), aSV (ξ) = t(−(ξ3/|ξ′|)ξ′,

|ξ′|), aSH(ξ) = (1/|ξ′|) t(−ξ2, ξ1, 0) and γ(σ, ω) is a certain function constant for σ > 0
and for σ < 0 (for details, see [7]). Here, we use ω in the notation φα,i

0 (x;σ, ω) to note
the propagation direction by ω̌, since this simplifies description of the calculations.
We use the following generalized eigenfunctions:

φα
0 (x;σ, ω) = φα,i

0 (x;σ, ω) + φα,r
0 (x;σ, ω) (α ∈ Λ \ {R}).
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We also use the generalized eigenfunction corresponding to the Rayleigh wave:

φR
0 (x;σ, ω) =

√

2πρ0C
R
0 e

iσc−1
R ω·x′

2
∑

j=1

CR
j e

−|σ|c−1
R ξ

(j)
R x3a

(j)
R (σ, ω), (2.1)

where ω ∈ S1 is the propagation direction and ξ
(1)
R = {1 − (cR/cP )2}1/2, ξ

(2)
R =

{1 − (cR/cS)2}1/2, CR
1 = 2 − (cR/cS)2, CR

2 = −2ξ
(1)
R , a

(1)
R (σ, ω) = t(ω, (iσ/|σ|)ξ(1)R ),

a
(2)
R (σ, ω) = t(ξ

(2)
R ω, iσ/|σ|), and the positive constant CR

0 is taken so that

|σ|(2πρ0cR)−1

∫ ∞

0

|φR
0 (x;σ, ω)|2d x3 = 1. (2.2)

We need this system of the generalized eigenfunction to represent the scattering kernel.

We set

wα
0 (t, x;ω) = (2π)−1

∫

R

eiσtφα
0 (x;−σ, ω)dσ (α ∈ Λ).

Then, for α = P, SV, SH, SVO, wα
0 (t, x;ω) is of the Dirac delta function type; it

represents the reflection phenomena for the incident wave going in the direction ω̌ in
the half-space. wR

0 (t, x;ω) is the Rayleigh wave of the same type on the boundary
going in the direction ω. Note that the form of wR

0 (t, x;ω) given in section 1 is
obtained by calculating the above Fourier integral.

We take a cutoff function ψ ∈ C∞(R3) satisfying 0 ≤ ψ ≤ 1, ψ(x) = 1 for
|x| > r0 + 5/3 and ψ(x) = 0 for |x| < r0 + 4/3. For each wα

0 (t, x;ω), there exists
a solution wα

±,tot(t, x;ω) ∈ C∞(Ω;S′(Rt)) uniquely in the perturbed space (for the
equation (1.1)) such that wα

±,tot(t, x;ω) −ψ(x)wα
0 (t, x;ω) satisfies the following (+)-

condition (for details, see section 5 of [8]).

Definition 2.1. ((±)-condition) We say that the solutions v±(t, x) of the equa-
tion (1.1) satisfy the (±)-condition ( respectively ) if there exists a constant t0 > 0
such that

v± ∈ C∞(I∓t0 ; Ḣ
∞(Ω)) with ∂tv± ∈ C∞(I∓t0 ;H

∞(Ω)) and

limt→∓∞

∑

|γ|=1 ‖∂γ
(t,x)v±(t, ·)‖L2(Ω) = 0,

where I−t0 = (−∞,−t0] and I+
t0 = [t0,∞).

Note that for wα
±,tot(t, x;ω)−ψ(x)wα

0 (t, x;ω), it suffices to choose t0 = c−1
R (r0+3).

The leading part (singular support) of wα
0 (t, x;ω) goes out of Br0+2 as |t| → ∞, and

therefore, roughly speaking, the wave

wα
+(t, x;ω) ≡ wα

+,tot(t, x;ω) − wα
0 (t, x;ω)

restricted in Ω ∩ R
3
+ means the outgoing scattered wave for wα

0 (t, x;ω) in the free
space.

The components Sαβ(s, θ, ω) (α, β ∈ Λ) of the scattering kernel are represented
as follows using wα

+(t, x;ω) and wα
0 (t, x;ω).

Theorem 2.2. For (α, β ∈ Λ), we put S̃αβ(s, θ, ω) =
2(−2πi)2(cαcβ)3/2ρ0Sαβ(s, θ, ω), where cSV = cSH = cSV O = cS. Then we
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have

S̃αβ(s, θ, ω) =

∫

Ω∩R3
+

∫

R

(∂2
s′ − ρ−1

0 A0(∂y))wβ
+(s′ − s, y;ω) · ∂s′wα

0 (s′, y; θ)ρ0ds
′dy

+

∫

∂(Ω∩R3
+)

{∫

R

(Ñ0(∂y)wβ
+)(s′ − s, y;ω) · ∂s′wα

0 (s′, y; θ)ds′

−
∫

R

wβ
+(s′ − s, y;ω) · Ñ0(∂y)∂s′wα

0 (s′, y; θ)ds′
}

dSy,

where Ñ0(∂y)u = N0(∂y)u on ∂R3
+ and Ñ0(∂y)u =

∑3
i,j=1 νi(y)a

0
ij∂yju on Γ.

Theorem 2.2 was proved by W. Kawashita, M. Kawashita and Soga [8] (cf. The-
orem 6.1 of [8]).

We first rewrite the expression of S̃αβ(s, θ, ω) in Theorem 2.2 as follows:

Proposition 2.3. Let ψ(x) be a C∞ cutoff function satisfying 0 ≤ ψ ≤ 1,
ψ(x) = 1 for |x| > r0 + 5/3 and ψ(x) = 0 for |x| < r0 + 4/3. Then for α, β ∈ Λ we
have

S̃αβ(s, θ, ω) =

−
∫

Ω

∫

R

wβ
+,tot(s

′ − s, y;ω) · (∂2
s′ − ρ−1

0 A0(∂y))
(

ψ∂s′wα
0

)

(s′, y; θ)ds′ρ0dy

−
∫

Γ

∫

R

wβ
+,tot(s

′ − s, y;ω) · N0(∂y)
(

ψ∂s′wα
0

)

(s′, y; θ)ds′dSy.

Proof. We decompose ∂s′wα
0 into ψ∂s′wα

0 +(1 − ψ)∂s′wα
0 . Then, noting that

(∂2
t − ρ−1

0 A0)w
β
+(t, x;ω) = 0 in R × (Ω ∩ supp [ψ] ), we have by integration by parts

∫

Ω∩R3
+

∫

R

(∂2
s′ − ρ−1

0 A0)w
β
+(s′ − s, y;ω) · ∂s′wα

0 (s′, y; θ)ds′ρ0dy

=

∫

Ω∩R3
+

∫

R

wβ
+(s′ − s, y;ω) · (∂2

s′ − ρ−1
0 A0)

(

(1 − ψ)∂s′wα
0

)

(s′, y; θ)ds′ρ0dy

−
∫

∂(Ω∩R3
+)

{∫

R

(Ñ0w
β
+)(s′ − s, y;ω) · (1 − ψ)∂s′wα

0 (s′, y; θ)ds′ (2.3)

−
∫

R

wβ
+(s′ − s, y;ω) · Ñ0

(

(1 − ψ)∂s′wα
0

)

(s′, y; θ)ds′
}

dSy.

Here, we note that the integration in s′ (in (2.3)) is well-defined and that the inte-
gration by parts is valid. These verifications are reduced to examination of the decay
properties of wβ

+ and wα
0 as s′ → ±∞ (cf. section 2 and 6 of [8]). Combining (2.3)

and Theorem 2.2, we have

S̃αβ(s, θ, ω) = −
∫

Ω∩R3
+

∫

R

wβ
+(s′ − s, y;ω) · (∂2

s′ − ρ−1
0 A0)(ψ∂s′wα

0 )(s′, y; θ)ds′ρ0dy

+

∫

∂(Ω∩R3
+)

∫

R

{

(Ñ0w
β
+)(s′ − s, y;ω) · (ψ∂s′wα

0 )(s′, y; θ)ds′ (2.4)

− wβ
+(s′ − s, y;ω) · Ñ0(ψ∂s′wα

0 )(s′, y; θ)ds′
}

dSy,
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where we use (∂2
t − ρ−1

0 A0)w
α
0 (t, x; θ) = 0 in R × R3

+.

Using (∂2
t − ρ−1

0 A0)w
α
0 (t, x; θ) = 0 again and noting that supp [1 − ψ(y)] is

bounded, we obtain the following in the same way as in (2.3):

0 =

∫

Ω∩R3
+

∫

R

(∂2
s′ − ρ−1

0 A0)w
β
0 (s′ − s, y;ω) · (1 − ψ(y))∂s′wα

0 (s′, y; θ)ds′ρ0dy

= −
∫

Ω∩R3
+

∫

R

wβ
0 (s′ − s, y;ω) · (∂2

s′ − ρ−1
0 A0)

(

ψ∂s′wα
0

)

(s′, y; θ)ds′ρ0dy

−
∫

∂(Ω∩R3
+)

∫

R

{

Ñ0w
β
0 (s′ − s, y;ω) · (1 − ψ)∂s′wα

0 (s′, y; θ)

−wβ
0 (s′ − s, y;ω) · Ñ0

(

(1 − ψ)∂s′wα
0

)

(s′, y; θ)
}

ds′dSy.

Summing each side of the above equality and each of (2.4) and noting supp [ψ] ⊂ Bc
r0

(= R3 \Br0), we have

S̃αβ(s, θ, ω)

= −
∫

Ω

∫

R

(wβ
0 + wβ

+)(s′ − s, y;ω) · (∂2
s′ − ρ−1

0 A0)
(

ψ∂s′wα
0

)

(s′, y; θ)ds′ρ0dy

+

∫

Γ

∫

R

{

N (wβ
0 + wβ

+)(s′ − s, y;ω) · (ψ∂s′wα
0 )(s′, y; θ)

−(wβ
0 + wβ

+)(s′ − s, y;ω) · N0(ψ∂s′wα
0 )(s′, y; θ)

}

ds′dSy

−
∫

∂(Ω∩R3
+)

∫

R

{

Ñ0w
β
0 (s′ − s, y;ω) · ∂s′wα

0 (s′, y; θ)

−wβ
0 (s′ − s, y;ω) · Ñ0∂s′wα

0 (s′, y; θ)
}

ds′dSy

= −
∫

Ω

∫

R

wβ
+,tot(s

′ − s, y;ω) · (∂2
s′ − ρ−1

0 A0)
(

ψ∂s′wα
0

)

(s′, y; θ)ds′ρ0dy

−
∫

Γ

∫

R

wβ
+,tot(s

′ − s, y;ω) · N0(ψ∂s′wα
0 )(s′, y; θ)ds′dSy

−
∫

Γ∩R3
+

∫

R

{

(Ñ0w
β
0 )(s′ − s, y;ω) · ∂s′wα

0 (s′, y; θ)

− wβ
0 (s′ − s, y;ω) · Ñ0∂s′wα

0 (s′, y; θ)ds′
}

dSy.

Here, note that ∂(Ω∩R3
+) = (Ω∩ ∂R3

+) ∪ (Γ∩R3
+) and that Ñ0w

γ
0 = 0 on R× ∂R3

+.

The last integral −
∫

Γ∩R3
+

∫

R
{· · · }ds′dSy is equal to 0 since Ω

c ∩ R3
+ is bounded and

0 =

∫

Ω
c
∩R3

+

∫

R

(∂2
s′ − ρ−1

0 A0)w
β
0 (s′ − s, y;ω) · ∂s′wα

0 (s′, y; θ)ds′ρ0dy

=

∫

Ω
c
∩R3

+

∫

R

wβ
0 (s′ − s, y;ω) · (∂2

s′ − ρ−1
0 A0)∂s′wα

0 (s′, y; θ)ds′ρ0dy

−
∫

∂(Ω
c
∩R3

+)

∫

R

{

Ñ0w
β
0 (s′ − s, y;ω) · ∂s′wα

0 (s′, y; θ)

−wβ
0 (s′ − s, y;ω) · Ñ0∂s′wα

0 (s′, y; θ)
}

ds′dSy

= −
∫

Γ∩R3
+

∫

R

{

Ñ0w
β
0 (s′ − s, y;ω) · ∂s′wα

0 (s′, y; θ)

−wβ
0 (s′ − s, y;ω) · Ñ0∂s′wα

0 (s′, y; θ)
}

ds′dSy,

where we use ∂(Ω
c ∩ R3

+) = (Ω
c ∩ ∂R3

+) ∪ (Γ ∩ R3
+). Thus Proposition 2.3 is proved.
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From here, we reduce the expression of the kernel stated in Proposition 2.3 to the
form containing only one integral as shown in Theorem 3.1. The idea of this reduction
is as follows. We introduce the incoming solution w(t, x) of the perturbed equation

{

(∂2
t − ρ−1A)w(t, x) = qα(t, x; θ) in R × Ω,

Nw(t, x) = mα(t, x; θ) on R × Γ,

where qα(t, x; θ) = (∂2
t − ρ−1

0 A0)(ψw
α
0 )(t, x; θ) and mα(t, x; θ) = N0(ψw

α
0 )(t, x; θ).

Using w(t, x), we substitute the operators (∂2
t − ρ−1A) and N for (∂2

t − ρ−1
0 A0) and

N0 in the expression of the kernel in Proposition 2.3. Then, we can get the required
expression through integration by parts. However, it is difficult to carry out this
procedure exactly. We consider the product 〈S̃(·, ω, θ), ϕ〉 in the distribution sense
for the localized test functions ϕ(s) ∈ C∞

0 (I), where I is a finite open interval for the
localization. Then, taking the integrals of convolution type between the data qα and
mα with the test function ϕ, we can make an (approximate) solution concretely to
substitute (∂2

t − ρ−1A) and N for (∂2
t − ρ−1

0 A0) and N0. We examine properties of
S̃(·, ω, θ) as the functional: ϕ 7→ 〈S̃(·, ω, θ), ϕ〉. Note that the distribution J belongs
to Hm(R) if |J(ϕ)| ≤ C‖ϕ‖H−m(R). Hence, examining the singular support of the
distributions in I, we can neglect those terms which are estimated in the following
definition.

Definition 2.4. Let J be a linear functional (mapping) from C∞
0 (I) to the

Banach space X with the norm ‖ ·‖X . We say that the functional J is negligible when
for any positive integer N

‖J(ϕ)‖X ≤ CN‖ϕ‖H−N (R), ϕ ∈ C∞
0 (I).

Furthermore, fixing I, we write J ≃ K when J − K is negligible; if a more precise
description is necessary, we write “J ≃ K with respect to C∞

0 (I) → X”.

Let s0 ∈ R and fix I = (s0 − ε, s0 + ε) for a sufficiently small constant ε > 0. For
any ϕ ∈ C∞

0 (I) we have by Proposition 2.3

〈S̃αβ(·, θ, ω), ϕ〉 = −
∫

Ω

∫

R

wβ
+,tot(s

′, y;ω) · ϕ ⋆ (∂sq
α)(s′, y; θ)ds′ρ0dy

−
∫

Γ

∫

R

wβ
+,tot(s

′, y;ω) · ϕ ⋆ (∂sm
α)(s′, y; θ)ds′dSy,

where ⋆ means f ⋆g(t) =
∫

R
f(s)g(s+ t)ds, which is connected with the convolution ∗

as f⋆g (t) = f∗(g(−·)) (−t). We can check that ϕ⋆(∂sq
α)(s, y; θ) and ϕ⋆(∂sm

α)(s, y; θ)
are C∞ functions and that the above integrals in s′ are well defined. Note that
∂sq

α(·, y; θ) and ∂sm
α(·, y; θ) have singularities of the type of the Dirac δ-function

(for the precise form, see section 5 of [8]), and that

supp [qα(·, ·; θ)] ⊂ R ×
(

Ω ∩ R
3
+ ∩ (Br0+2 \Br0+1)

)

,

supp [mα(·, ·; θ)] ⊂ R ×
(

Γ ∩ ∂R
3
+ ∩ (Br0+2 \Br0+1)

)

, (2.5)

sing supp [qα(·, ·; θ)] ⊂ { (s, y) ∈ R × Ω ; |s| ≤ c−1
R (r0 + 2), r0 + 1 ≤ |y| ≤ r0 + 2 },

sing supp [mα(·, ·; θ)] ⊂ { (s, y) ∈ R × Γ ; |s| ≤ c−1
R (r0 + 2), r0 + 1 ≤ |y| ≤ r0 + 2 }.

We choose t1 > max{c−1
R (r0 + 5) + 3ε,−s0 + c−1

R (r0 + 5)} and a cutoff function
φ1 ∈ C∞

0 (R) with 0 ≤ φ1 ≤ 1, φ1(t) = 1 if |t + s0| ≤ t1 + c−1
R , φ1(t) = 0 if
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|t+ s0| ≥ t1 + 2c−1
R , and put

J1(ϕ) = −
∫

Ω

∫

R

φ1(s
′)wβ

+,tot(s
′, y;ω) · ϕ ⋆ (∂sq

α)(s′, y; θ)ds′ρ0dy

−
∫

Γ

∫

R

φ1(s
′)wβ

+,tot(s
′, y;ω) · ϕ ⋆ (∂sm

α)(s′, y; θ)ds′dSy.

Then, we have J1(ϕ) ≃ 〈S̃αβ(·, θ, ω), ϕ〉, i.e., J1− S̃αβ(·, θ, ω) is negligible in the sense
of Definition 2.4 with X = C. This follows from (2.5) and the following estimates for
any N,N ′ ∈ N and δ < 1/2:















‖(1 − φ1(·))(1 + | · |)1+δϕ ⋆ (∂sq
α)(·, y; θ)‖HN (R) ≤ CN,N ′‖ϕ‖H−N′(R)

for any y ∈ Ω, ϕ ∈ C∞
0 (I),

‖(1 − φ1(·))(1 + | · |)1+δϕ ⋆ (∂sm
α)(·, y; θ)‖HN (R) ≤ CN,N ′‖ϕ‖H−N′(R)

for any y ∈ Γ, ϕ ∈ C∞
0 (I).

(2.6)

These estimates are derived from the form of wα
0 (s, y; θ) (cf. section 5 of [8]).

To estimate J1(ϕ), we have only to take account of the integrals in s′ on the inter-
val It1+3c−1

R
(s0) = [−s0−(t1 +3c−1

R ),−s0+(t1 +3c−1
R )]. We construct an approximate

solution of the following equation in the later sections (sections 4 and 5):
{

(∂2
t − ρ−1A)vα(t, x; θ) = ϕ ⋆ (∂tq

α)(t, x; θ) in It1+3c−1
R

(s0) × Ω,

Nvα(t, x; θ) = ϕ ⋆ (∂tm
α)(t, x; θ) on It1+3c−1

R
(s0) × Γ.

(2.7)

More precisely, the approximate solution vα
ϕ(t, x; θ) of this equation has the properties

(i) and (ii):
(i) There exists a constant l0 ∈ R such that for any η ∈ C∞

0 (It1+3c−1
R

(s0)) and integers

m ∈ Z, j, N(≥ 0), we have

max
|γ|≤N

sup
x∈Ω

‖η(·)∂j
s∂

γ
xv

α
ϕ(·, x; θ)‖Hm(R) ≤ Cη,m,j,N‖ϕ‖Hm+N+l0+j(R), (ϕ ∈ C∞

0 (I)).

(2.8)
(ii) For any positive integer N the function vα

ϕ(t, x; θ) satisfies



































(∂2
t − ρ−1A)vα

ϕ(t, x; θ) ≃ ϕ ⋆ (∂tq
α)(t, x; θ)

with respect to C∞
0 (I) → BN(It1+3c−1

R
(s0) × Ω),

N (x, ∂x)vα
ϕ(t, x; θ) ≃ ϕ ⋆ (∂tm

α)(t, x; θ)

with respect to C∞
0 (I) → BN(It1+3c−1

R
(s0) × Γ),

vα
ϕ(t, x; θ) = 0, if |x| ≥ r1 (= r0 + 2 + cP (t1 + 3c−1

R )),

vα
ϕ ≃ 0 with respect to C∞

0 (I) → BN([−s0 + c−1
R (r0 + 3) + 2ε,∞) × Ω),

(2.9)

where BN(D) is the set consisting of N -th order differentiable functions satisfying all
derivatives are continuous and bounded on D.

Hereafter (in this and next sections), we assume that the above vα
ϕ exists. For

J1(ϕ), using vα
ϕ , we substitute (∂2

t −ρ−1A)∂tv
α
ϕ and N∂tv

α
ϕ for ϕ⋆(∂tq

α)
(

= ϕ⋆(∂2
t −

ρ−1
0 A0)∂t(ψw

α
0 )

)

and ϕ ⋆ (∂tm
α)

(

= ϕ ⋆ ∂tN0(ψw
α
0 )

)

respectively. Then, noting that
the commutator ∂2

s(φ1·) − φ1(∂
2
s ·) is of the form ∂2

sφ1 + 2∂sφ1∂s and that support of
qα and mα is estimated in (2.5), we see by (2.9) and integration by parts that

J1(ϕ) ≃ −
∫

Ω

∫

R

ρ(y)
(

∂2
sφ1(s) + 2∂sφ1(s)∂s

)

wβ
+,tot(s, y;ω) · vα

ϕ(s, y; θ)dsdy. (2.10)
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Applying a further reduction to the right side of (2.10), we obtain the required
form of the functional 〈S̃αβ(·, θ, ω), ϕ〉:

Proposition 2.5. Let φ2(s) be a C∞ cutoff function such that 0 ≤ φ2 ≤ 1,
φ2(s) = 1 for s < −s0 − c−1

R and φ2(s) = 0 for s > −s0 + c−1
R , and set

J2(ϕ) = −
∫

Ω

∫

R

φ2(s)ρ(y)∂sφ1(s)ψ(y){∂sw
β
0 (s, y;ω) · vα

ϕ(s, y; θ)

− wβ
0 (s, y;ω) · ∂sv

α
ϕ(s, y; θ)}dsdy.

Then, J2(ϕ) − 〈S̃αβ(·, θ, ω), ϕ〉 is negligible, i.e.,

〈S̃αβ(·, θ, ω), ϕ〉 ≃ J2(ϕ) with respect to C∞
0 (I) → C.

Proof. We see from (2.9) that
∫

Ω

∫

R
(1 − φ2)ρ

(

∂2
sφ1 + 2(∂sφ1)∂s

)

wβ
+,tot · vα

ϕdsdy

≃ 0, which implies that J1(ϕ) in (2.10) (≃ 〈S̃αβ(·, θ, ω), ϕ〉) satisfies

J1(ϕ) ≃ −
∫

Ω

∫

R

φ2(s)ρ(y)
(

∂2
sφ1(s) + 2∂sφ1(s)∂s

)

wβ
+,tot(s, y;ω) · vα

ϕ(s, y;ω)dsdy.

It follows from ∂sφ2∂sφ1 = 0 that φ2(∂
2
sφ1)w

β
+,tot = ∂s(φ2(∂sφ1)w

β
+,tot) −

φ2∂sφ1∂sw
β
+,tot. Hence, using integration by parts, we obtain

J1(ϕ) ≃ −
∫

Ω

∫

R

φ2(s)ρ(y)∂sφ1(s){∂sw
β
+,tot(s, y;ω) · vα

ϕ(s, y; θ)

− wβ
+,tot(s, y;ω) · ∂sv

α
ϕ(s, y; θ)}dsdy.

Take a C∞ cutoff function φ3(t) such that φ3(t) = 1 for t < −c−1
R (r0 + 5) and

φ3(t) = 0 for t > −c−1
R (r0 + 4), and set

qβ
1 (t, x;ω) = (1 − φ3(t))q

β(t, x;ω), qβ
2 (t, x;ω) = φ3(t)q

β(t, x;ω),

mβ
1 (t, x;ω) = (1 − φ3(t))m

β(t, x;ω), mβ
2 (t, x;ω) = φ3(t)m

β(t, x;ω).

We employ the solutions of the equation










(∂2
t − ρ−1A)w̃β

+,j(t, x;ω) = −qβ
j (t, x;ω) in R × Ω,

N w̃β
+,j(t, x;ω) = −mβ

j (t, x;ω) on R × Γ,

w̃β
+,j(t, x;ω) satisfies (+)-condition.

Then, we can decompose wβ
+,tot in the form wβ

+,tot = ψwβ
0 +w̃β

+,1 +w̃β
+,2, and by

(2.5) have w̃β
+,1(t, x;ω) = 0 for t < −c−1

R (r0 + 5) and w̃β
+,2(t, x;ω) ∈ C∞(R × Ω).

Therefore, noting that supp [φ2∂sφ1] ⊂ (−s0 − t1 − 2c−1
R ,−s0 − t1 − c−1

R ) ⊂ (−s0 −
t1 − 2c−1

R ,−c−1
R (r0 + 6)) and supp [∇xψ] ⊂ Br0+2 \Br0+1, we see that

wβ
+,tot(t, x;ω) − ψ(x)wβ

0 (t, x;ω) and (∇xψ)wβ
0 (t, x;ω) are

C∞ for t in a neighborhood of supp [φ2∂sφ1] and x ∈ Ω.
(2.11)

From this fact, it follows that hβ
+,−∞(s, x;ω) = wβ

+,tot(s, x;ω) − ψ(x)wβ
0 (s, x;ω) sat-

isfies φ2∂sφ1h
β
+,−∞ ∈ C∞(R × Ω). On the other hand we have

J1(ϕ) ≃ J2(ϕ) −
∫

Ω

∫

R

φ2(s)ρ(y)∂sφ1(s)
{

∂sh
β
+,−∞(s, y;ω) · vα

ϕ(s, y; θ)

− hβ
+,−∞(s, y;ω) · ∂sv

α
ϕ(s, y; θ)

}

dsdy.
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We can verify that the second term of the above right side is negligible if we show the
following lemma. Thus, Proposition 2.5 is proved.

Lemma 2.6. Let h(s, y) ∈ C∞(R × Ω) and η(s) ∈ C∞
0 (It1+3c−1

R
(s0)), and set

J−∞(ϕ) =

∫

Ω

∫

R

η(s)h(s, y) · vα
ϕ(s, y; θ)dsdy, ϕ ∈ C∞

0 (I).

Then, J−∞(ϕ) is negligible, i.e., J−∞(ϕ) ≃ 0 with respect to C∞
0 (I) → C.

Proof. We take a cutoff function η̃(s) ∈ C∞
0 (It1+3c−1

R
(s0)) with η̃(s) = 1 near

supp [η]. Since supp [vα
ϕ(·, ·; θ)] ⊂ It1+3c−1

R
(s0) × (Ω ∩Br1), we have

|J−∞(ϕ)| =
∣

∣

∣

∫

Ω

∫

R

η(s)h(s, y) · η̃(s)vα
ϕ(s, y; θ)dsdy

∣

∣

∣

=
∣

∣

∣

∫

Ω

∫

R

〈Ds〉N+l0(η(s)h(s, y)) · 〈Ds〉−(N+l0)(η̃(s)vα
ϕ(s, y; θ))dsdy

∣

∣

∣

≤ |Br1 | sup
x∈Ω∩Br1

{

‖〈Ds〉N+l0
(

η(·)h(·, x)
)

‖L2(R)‖〈Ds〉−(N+l0)(η̃(·)vα
ϕ(·, x; θ))‖L2(R)

}

,

where 〈s〉 = (1 + |s|2)1/2, |Br1 | is the volume of Br1 and l0 is the number in (2.8).
From this estimate and (2.8), it follows that

|J−∞(ϕ)| ≤ |Br1 | sup
x∈Ω∩Br1

{

‖η(·)h(·, x)‖HN+l0 (R)‖η̃(·)vα
ϕ(·, x; θ)‖H−(N+l0)(R)

}

≤ |Br1 |CN sup
x∈Ω∩Br1

‖η(·)h(·, x)‖HN+l0 (R)‖ϕ‖H−N (R).

This completes the proof of Lemma 2.6.

3. Reduction for the channel of the Rayleigh wave. The Rayleigh wave
is concentrated on the boundary Γ, i.e., it is C∞ inside the domain Ω and decays in
distance from Γ even if it has singularities on Γ. Furthermore, the hyperbolicity of
the Rayleigh wave seems to be characterized by the terms of the Neumann operator
acting on R×Γ. In this section we reduce the representation in Proposition 2.5 when
α = β = R to the one with the integral on R × Γ to make the representation more
connected with the Neumann operator. This reduced representation is more useful
for examinating the singularities of the kernel SRR(·, θ, ω). We continue to use the
notations in the previous sections.

The following equality is a basic formula for this reduction:

(∂t + cR∂ω)wR
0 (t, x;ω) = 0 in R × Ω,

where ∂ω =
∑2

i=1 ωi∂xi is the tangential derivative on ∂R3
+. This is seen from the

form of wR
0 (cf. section 1 or section 5 of [8]). From the above equality, noting that

supp [ψ] ⊂ Bc
r0

, we obtain
∫

Ω

∫

R

φ2(s)∂sφ1(s)ρ(y)ψ(y)∂sw
R
0 (s, y;ω) · vR

ϕ (s, y; θ)dsdy

= −
∫

Ω

∫

R

φ2(s)∂sφ1(s)ρ(y)ψ(y)cR(∂ωw
R
0 ) · vR

ϕ dsdy

=

∫

Ω

∫

R

ρ(y)φ2(s)∂sφ1(s){ψwR
0 · cR∂ωv

R
ϕ + cR(∂ωψ)wR

0 · vR
ϕ }dsdy.
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Combining this and Proposition 2.5, we see from (2.8), (2.11) and Lemma 2.6 that
〈S̃RR(·, θ, ω), ϕ〉 is equal to the following JR

1 (ϕ) modulo negligible terms, i.e., JR
1 (ϕ)−

〈S̃RR(·, θ, ω), ϕ〉 ≃ 0:

JR
1 (ϕ) =

∫

Ω

∫

R

ρ(x)φ2(s)∂sφ1(s)ψ(x)wR
0 (s, x;ω) · (∂s − cR∂ω)vR

ϕ (s, x; θ)dsdx.

The idea to reduce JR
1 (ϕ) to the form with the integral on Γ is as follows. We

make an approximate solution uR(t, x;ω) (∈ C2(Ωx;H−∞(Rt)) ) such that






(∂2
t − ρ−1A)uR(t, x;ω) = φ2(t)∂tφ1(t)ψ(x)wR

0 (t, x;ω) mod C∞(R × Ω),
uR = 0 mod C∞(R × Γ),
uR(t, x;ω) = 0 if − s0 − t1 − c−1

R < t,

(3.1)

sing supp [uR(·, ·;ω)] ⊂ { (t, x) : −s0 − t1 − 2c−1
R ≤ t ≤ −s0 − t1 − c−1

R , (3.2)

cR(−s0 − t1 − 2c−1
R ) ≤ x′ · ω ≤ cR(−s0 − t1 − c−1

R ), x3 = 0 },

and substitute (∂2
t − ρ−1A)uR for φ2(t)∂tφ1ψw

R
0 . Then, using integration by parts,

we can change the integral on Ω (in JR
1 (ϕ)) for the one on Γ modulo negligible terms.

Namely we obtain

Theorem 3.1. We assume that the approximate solution uR in (3.1) and (3.2) is
constructed. Take a cutoff function ψ1(x) ∈ C∞(R3) such that 0 ≤ ψ1 ≤ 1, ψ1(x) = 1
for |x| ≥ r0 + 2/3 and ψ1(x) = 0 for |x| ≤ r0 + 1/2, and φ0(t) ∈ C∞

0 (R) such that
0 ≤ φ0 ≤ 1, φ0(t) = 1 for t with −s0 − t1 − 5c−1

R /2 ≤ t ≤ −s0 − t1 − c−1
R /2 and

φ0(t) = 0 for t /∈ [−s0 − t1 − 3c−1
R ,−s0 − t1]. Set

J0(ϕ) = −
∫

Γ

∫

R

φ0(s)ψ1(y)NuR(s, y;ω) · (∂s − cR∂ω)vR
ϕ (s, y; θ)dsdSy.

Then, J0(ϕ) −〈S̃RR(·, θ, ω), ϕ〉 is negligible, i.e.,

〈S̃RR(·, θ, ω), ϕ〉 ≃ J0(ϕ) with respect to C∞
0 (I) → C.

Proof. Since (∂2
t − ρ−1A)uR(t, x;ω) = φ2(t)∂tφ1(t)ψ(x)wR

0 (t, x;ω) mod C∞(R ×
Ω), by Lemma 2.6 we see that

JR
1 (ϕ) ≃

∫

Ω

∫

R

ρ(∂2
s − ρ−1A)uR(s, y;ω) · φ0ψ1(∂s − cR∂ω)vR

ϕ (s, y; θ)dsdy.

Noting that supp [ψ1] ⊂ Bc
r0

and applying integration by parts to the right side of
the above relation, we can decompose JR

1 (ϕ) as follows:

JR
1 (ϕ) ≃ J0(ϕ) + JR

Ω,−∞(ϕ) + JR
Γ,−∞(ϕ),

JR
Ω,−∞(ϕ) =

∫

Ω

∫

R

ρ(y)uR(s, y;ω) · (∂2
s − ρ−1A)

(

φ0ψ1(∂s − cR∂ω)vR
ϕ

)

(s, y; θ)dsdy,

JR
Γ,−∞(ϕ) =

∫

Γ

∫

R

ρuR(s, y;ω) · φ0N
(

ψ1(∂s − cR∂ω)vR
ϕ

)

(s, y; θ)dsdSy .

By the same argument as for the proof of Lemma 2.6, we have

sup
y∈Γ

‖η(s)N
(

ψ1(y)(∂s − cR∂ω)vR
ϕ (s, y; θ)

)

‖Hm(Rs) ≤ Cη,m‖ϕ‖Hm+l0+2(R)
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for any integer m and η ∈ C∞
0 (It1+3c−1

R
(s0)). This implies JR

Γ,−∞(ϕ) ≃ 0 since

uR
∣

∣

R×Γ
∈ C∞(R × ∂Ω) (cf. (3.1)).

Noting that ρ(y) = ρ0 and A(y, ∂y) = A0(∂y) in a neighborhood of supp [ψ1(y)],
we can decompose JR

Ω,−∞(ϕ) as follows way:

JR
Ω,−∞(ϕ) = J

(1)
Ω,−∞(ϕ) + J

(2)
Ω,−∞(ϕ) + J

(3)
Ω,−∞(ϕ),

J
(1)
Ω,−∞(ϕ) =

∫

Ω

∫

R

ρφ0ψ1u
R(s, y;ω) · (∂s − cR∂ω)

(

(∂2
s − ρ−1A)vR

ϕ

)

(s, y; θ)dsdy,

J
(2)
Ω,−∞(ϕ) =

∫

Ω

∫

R

ρψ1 u
R(s, y;ω) · [∂2

s , φ0] (∂s − cR∂ω)vR
ϕ (s, y; θ)dsdy,

J
(3)
Ω,−∞(ϕ) = −

∫

Ω

∫

R

φ0u
R(s, y;ω) · [A, ψ1] (∂s − cR∂ω)vR

ϕ (s, y; θ)dsdy,

where [A, B] denotes AB − BA. The support of (∂j
sφ0)u

R (j ≥ 1) is contained
in R \ [−s0 − t1 − 5c−1

R /2,−s0 − t1 − c−1
R /2]. Combining this and (3.2), we obtain

ρψ1(∂
j
sφ0)u

R(s, y;ω) ∈ C∞(It1+3c−1
R

(s0) × Ω) for any j ≥ 1. Therefore, we have

J
(2)
Ω,−∞(ϕ) ≃ 0 by the same reason that for JR

Γ,−∞(ϕ) ≃ 0.

Since −s0 − t1 < −c−1
R (r0 + 4), (3.2) yields

sing supp [uR(·, ·;ω)] ⊂ { (s, y) ; −s0 − t1 − 2c−1
R ≤ s ≤ −s0 − t1 − c−1

R , r0 + 5 ≤ |y| }.

Hence, we obtain ∂γ
yψ1(y)u

R(s, y;ω) ∈ C∞(It1+3c−1
R

(s0) × Ω) (|γ| > 0) since supp

[∂yiψ1(y)] ⊂ { y ; r0 + 1/2 < |y| < r0 + 2/3 }. Thus, we have J
(3)
Ω,−∞(ϕ) ≃ 0, which is

similar to J
(2)
Ω,−∞(ϕ) ≃ 0.

Since (∂2
t − ρ−1A)vR

ϕ ≃ ϕ ⋆ (∂tq
α) and vR

ϕ = 0 if |x| ≥ r1 (cf. (2.9)), it follows
that

J
(1)
Ω,−∞(ϕ) ≃

∫

Ω∩Br1

∫

R

ρφ0ψ1u
R(s, y;ω) · (∂s − c−1

R ∂ω)ϕ ⋆ (∂sq
α)(s, y; θ)dsdy.

We have uR ∈ C2(Ωx;H−Ñ (Rt)) for some Ñ , and

∣

∣

∣

∫

Ω∩Br1

∫

R

ρφ0ψ1u
R(s, y;ω) · (∂s − cR∂ω)ϕ ⋆ (∂sq

R)(s, y; θ)dsdx
∣

∣

∣

≤ CÑ |Br1 | sup
y∈Ω∩Br1

‖φ0(·)(∂s − cR∂ω)ϕ ⋆ (∂sq
R)(·, y; θ)‖HÑ (R).

Noting that supp [φ0] ⊂ [−s0−t1−3c−1
R ,−c−1

R (r0+4)], we apply the same argument as
for (2.6) to the right side of the above formula. Then, we obtain ‖φ0(·)(∂s − cR∂ω)ϕ⋆

(∂sq
R)‖HÑ (R×Ω) ≤ CN‖ϕ‖H−N (R) for any integer N . This means that J

(1)
Ω,−∞(ϕ) ≃ 0.

Thus Theorem 3.1 is proved.

Theorem 3.1 means that every piece of information with respect to singularities
of S̃RR(s, θ, ω) at s = s0 is contained in the functional J0(ϕ) in Theorem 3.1. Hence,
the next step is to construct the approximate solutions vR

ϕ (t, x; θ) and uR(t, x;ω).

4. Approximate solutions with the zero Dirichlet data. In this section
and section 5, we make the approximate solution vR(t, x; θ) of the equation (2.7). As
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described in the introduction, we consider the following equations (4.1) and (4.2).
{

(∂2
t − ρ−1

0 A0)v
R,i(t, x; θ) = ϕ ⋆ (∂tq

R)(t, x; θ) in It1+3c−1
R

(s0) × R3
+,

vR,i(t, x′; θ) = 0 on It1+3c−1
R

(s0) × ∂R3
+,

(4.1)











(∂2
t − ρ−1A)vR,b(t, x; θ) = 0 in It1+3c−1

R
(s0) × Ω,

NvR,b(t, x; θ) = ϕ ⋆ (∂tm
R)(t, x; θ) −N (ψ2(x)v

R,i(t, x; θ))
on It1+3c−1

R
(s0) × Γ,

(4.2)

where ψ2(x) is a cutoff C∞ function such that ψ2(x) = 1 if r0 + 1/2 ≤ |x| ≤ r0 + 2
and ψ2(x) = 0 if |x| ≤ r0 + 1/3 or r0 + 3 ≤ |x|. The coefficients of the operator
(∂2

t − ρ−1A) coincide with those of (∂2
t − ρ−1

0 A0) in a neighborhood of supp [qR]
(cf.(2.5)). Furthermore, WF[qR] is contained in the elliptic region of the operator
(∂2

t − ρ−1
0 A0), and the boundary value problem (4.1) is coercive in a neighborhood

of WF[qR], i.e., the Lopatinski condition is satisfied there (for the wave front set
WF[·], see [9]). From these facts we see that the solution vR,i of (4.1) satisfies (∂2

t −
ρ−1A)(ψ2v

R,i) ≃ ϕ ⋆ (∂tq
R) in It1+3c−1

R
(s0) × Ω. This implies that the solution vR of

(2.7) is decomposed into the form

vR(t, x; θ) ≃ ψ2(x)v
R,i(t, x; θ) + vR,b(t, x; θ). (4.3)

Hence, to obtain the approximate solution vR
ϕ (t, x; θ) satisfying (2.8) and (2.9), we

have only to construct approximate solutions vR,i
ϕ and vR,b

ϕ of vR,i and vR,b respec-
tively.

In this section we construct the approximate solution vR,i
ϕ of (4.1). Namely, we

make vR,i
ϕ (t, x; θ) such that for any integer N ≥ 0



































(∂2
t − ρ−1

0 A0)v
R,i
ϕ (t, x; θ) ≃ ϕ ⋆ (∂tq

α)(t, x; θ)

with respect to C∞
0 (I) → BN(It1+3c−1

R
(s0) × R3

+),

vR,i
ϕ (t, x′; θ) ≃ 0 (on R × ∂R3

+)

with respect to C∞
0 (I) → BN(It1+3c−1

R
(s0) × ∂R3

+),

vR,i
ϕ (t, x; θ) = 0 if |x| ≥ r1,

vR,i
ϕ ≃ 0 with respect to C∞

0 (I) → BN([−s0 + c−1
R (r0 + 3) + 2ε,∞) × R3

+).
(4.4)

Note that the arguments for the construction of vR,i
ϕ (t, x; θ) do not contain the con-

struction of the scattered Rayleigh wave. However, this is an important step for
determining the actual data of the scattered wave. The data are given as the in-
homogeneous Neumann data of equation (4.2). The scattered wave is contained in
vR,b(t, x; θ). The approximation of vR,b(t, x; θ) is accomplished in the next section.
Note that while constructing vR,i

ϕ , we also obtain the approximate solution uR in
(3.1).

Let E0 = { (τ, ξ) ∈ R × R2 ; |τ | < c0|ξ| } for a sufficiently small constant c0, and
take a C∞ cutoff function χ0(τ, ξ) such that supp [χ0] ⊂ { (τ, ξ) ∈ E0 ; |τ |2 + |ξ|2 ≥
1/2 } and that χ0(τ, ξ) = 1 for (τ, ξ) satisfying |τ |2 + |ξ|2 ≥ 1 and |τ | ≤ cS(1−ε0)|ξ| in
E0. Here, ε0 is a positive constant that is sufficiently small. We consider the Poisson
operator Pχ0 restricted by χ0(Dt, Dx′), i.e.,

Pχ0m(t, x) = (2π)−3

∫

R×R2

ei(τt+ξ·x′)χ0(τ, ξ)V
(0)
− (x3; τ, ξ)m̂(τ, ξ)dτdξ, (4.5)
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where V
(0)
− (x3; τ, ξ) is the solution of the equation











(−τ2 − ρ−1
0 A0(iξ, ∂x3))V

(0)
± (x3; τ, ξ) = 0 in R,

V
(0)
± (0; τ, ξ) = I (the identity matrix),

V
(0)
± (x3; τ, ξ) is bounded in ± x3 < 0.

Here, note that V
(0)
± is of the form

V
(0)
± (x3; τ, ξ) =

∑

β=P,S

e±ξ
(0)
β (τ,ξ)x3P

±,(0)
β (τ, ξ) ((τ, ξ) ∈ E0), (4.6)

P
±,(0)
P (τ, ξ) =

1

ξ2 − ξ
(0)
P (τ, ξ)ξ

(0)
S (τ, ξ)

η
±,(0)
P (τ, ξ) ⊗ η

±,(0)
S (τ, ξ),

P
±,(0)
S = I − P

±,(0)
P (τ, ξ),

where ξ2 = ξ21 + ξ22 , ξ
(0)
β (τ, ξ) =

√

ξ2 − τ2/c2β , η
±,(0)
β (τ, ξ) = t(ξ1, ξ2,∓iξ(0)β (τ, ξ))

(β = P, S), cP =
√

ρ−1
0 (λ0 + 2µ0), cS =

√

ρ−1
0 µ0 and a ⊗ b = (aibj | i ↓ 1,2,3

j→1,2,3) (a =
t(a1, a2, a3), b = t(b1, b2, b3)).

We employ the Neumann operator Tχ0 restricted by χ0(Dt, Dx′):

Tχ0m(t, x′) = (N0(∂x)Pχ0m)(t, x)
∣

∣

R×∂R3
+

, m ∈ C∞
0 (R × ∂R

3
+).

Then, we can see in the same way as [5] or [19] that Tχ0 is a Fourier multiplier with

the symbol ρ0χ0(τ, ξ)B(0)(τ, ξ), where B(0)(τ, ξ) = N0(iξ, ∂x3)V
(0)
− (x3; τ, ξ)

∣

∣

x3=0
and

satisfies the following proposition.

Proposition 4.1. (i) Let R∂R3
+

= { (τ, ξ) ∈ E0 ; |τ | = cR|ξ| }. Then, B(0)(τ, ξ) is

a non-singular matrix if and only if (τ, ξ) /∈ R∂R3
+
.

(ii) B(0)(τ, ξ) is Hermit matrix for (τ, ξ) ∈ E0.

(iii) There exists a conic neighborhood E(0)
0 ⊂ E0 such that B(0)(τ, ξ) has the distinct

eigenvalues λ
(0)
j (τ, ξ) (j = 0, 1, 2) of constant multiplicity possessing the properties

λ
(0)
0 (τ, ξ) = (cR|ξ|2 − τ2)λ̃

(0)
0 (τ, ξ) on E(0)

0 ,

λ
(0)
1 (τ, ξ) > 0 on E(0)

0 ,

λ
(0)
2 (τ, ξ) = c2Sξ

(0)
S (τ, ξ) > 0 on E(0)

0 ,

where λ̃
(0)
0 (τ, ξ) is a positive C∞ function homogeneous of order −1 in (τ, ξ) on E(0)

0 .

(iv) The eigenfunctions of λ
(0)
j (τ, ξ) are written in the forms

e
j,(0)
0 (τ, ξ) =

1

iτ











i
( τ2

ξ2 − ξ
(0)
P ξ

(0)
S

− 2µ
)

ξ

λ
(0)
j − τ2ξ

(0)
P

ξ2 − ξ
(0)
P ξ

(0)
S











(j = 0, 1), e
2,(0)
0 (τ, ξ) =





ξ2
−ξ1
0



 .

As described in Proposition 4.2 below, the Neumann operator Tχ0 is connected
closely with the Rayleigh wave wR

0 (in the free space) of the form wR
0 (t, x;ω) =
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(2π)−1
∫

R
eiσtφR

0 (x;−σ, ω)dσ, where φR
0 is the generalized eigenfunction of A0 corre-

sponding to the Rayleigh wave given in (2.1).

Proposition 4.2. (i) If f(t, x′) ∈ S′(R × R2) satisfies (∂2
t − c2R△x′)f(t, x′) = 0

in R × R2, then it follows that Tχ0e
0,(0)
0 (Dt, Dx′)f(t, x′) = 0.

(ii) Let α(0) = c−2
S cR(1 − ξ

(1)
R ξ

(2)
R )

√
2πρ0C

R
0 . Then, we have

wR
0 (t, x;ω) = α(0)Pχ0e

0,(0)
0 (Dt, Dx′)

(

δ(t− c−1
R x′ · ω)

)

mod C∞(R × R
3
+).

Proof. (i) is obtained immediately from λ
(0)
0 (τ, ξ)f̂(τ, ξ) = 0. For the proof of

(ii), first note that ξ
(0)
P = |τ |ξ(1)R /cR, ξ

(0)
S = |τ |ξ(2)R /cR, η

−,(0)
P = −c−1

R
t(tω,−iξ(1)R ) and

η
−,(0)
S = −c−1

R
t(tω,−iξ(2)R ) on ξ = −c−1

R τω. Furthermore we note that

Pχ0χ0(Dt, Dx′)e
0,(0)
0 (Dt, Dx′)

(

δ(t− c−1
R x′ · ω)

)

= (2π)−1

∫

R

eiτ(t−c−1
R ω·x′)

(

χ0(τ, ξ)V
(0)
− (x3; τ, ξ)e

0,(0)
0 (τ, ξ)

)∣

∣

ξ=−c−1
R τω

dτ. (4.7)

q(0) = τ−2(ξ2−ξ(0)P ξ
(0)
S )|ξ=−c−1

R τω satisfies (1−2c2Sq
(0))2 = ξ

(1)
R ξ

(2)
R since (2−c2R/c2S)2−

4ξ
(1)
R ξ

(2)
R = 0 (cf. [1]). Therefore we have

(

V
(0)
− (x3; τ, ξ)e

0,(0)
0 (τ, ξ)

)∣

∣

ξ=−c−1
R τω

=
c2S

c3Rq
(0)

√
2πρ0CR

0

e−ic−1
R τω·x′

φR
0 (x; τ, ω). (4.8)

(ii) of Proposition 4.2 is derived from (4.7) and (4.8). Thus, the proof is complete.

To construct the approximate solution vR,i
ϕ (t, x; θ), we employ the following op-

erator Vχ0 : q(t, x) 7→ u(t, x):
{

(∂2
t − ρ−1

0 A0)u(t, x) = χ0(Dt, Dx′)q(t, x′, x3) in R × R3
+,

u(t, x′) = 0 on R × ∂R3
+.

(4.9)

Then, as seen later, we can express Vχ0 concretely by V(0), which is defined by

V(0)q̂(x3; τ, ξ) =

∫ x3

0

V
(0)
− (x3 − y3; τ, ξ)q̂(y3; τ, ξ)dy3

+

∫ ∞

x3

V
(0)
+ (x3 − y3; τ, ξ)q̂(y3; τ, ξ)dy3 (4.10)

− V
(0)
− (x3; τ, ξ)

∫ ∞

0

V
(0)
+ (−y3; τ, ξ)q̂(y3; τ, ξ)dy3.

Note that V(0)q̂(x3; τ, ξ) satisfies






(−τ2 − ρ−1
0 A0(iξ, ∂x3))V(0)q̂(x3; τ, ξ) = Q(τ, ξ)q̂(x3; τ, ξ) in x3 ≥ 0,

V(0)q̂(0; τ, ξ) = 0 on x3 = 0,
V(0)q̂(x3; τ, ξ) is bounded in x3 ≥ 0,

where Q(τ, ξ) = ρ−1
0 A0(ν

0)(∂x3V
(0)
+ (0; τ, ξ) − ∂x3V

(0)
− (0; τ, ξ)) (ν0 = t(0, 0,−1)).

We can see from the following Lemma 4.3 that Vχ0q is of the form

Vχ0q(t, x) = (2π)−3

∫

R×R2

ei(τt+ξ·x′)χ0(τ, ξ)(V(0)Q−1q̂)(x3; τ, ξ)dτdξ. (4.11)
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Lemma 4.3. (i) Q(τ, ξ) is symmetric and positive definite for (τ, ξ) ∈ E0.
(ii) For (τ, ξ) ∈ E0 it holds that

(

V
(0)
− (x3; τ, ξ)

)∗
= tV

(0)
+ (−x3; τ, ξ) = Q(τ, ξ)V

(0)
+ (−x3; τ, ξ)Q(τ, ξ)−1.

Proof. By direct calculation, we see that Q(τ, ξ) is of the form

Q(τ, ξ) = 2

(

c2P I 0
0 0 c2S

)

(

ξ
(0)
S I +

ξ
(0)
P − ξ

(0)
S

ξ2 − ξ
(0)
P ξ

(0)
S

(

ξ ⊗ ξ 0

0 0 −ξ(0)P ξ
(0)
S

)

)

.

Hence, noting that

ξ
(0)
S − (ξ

(0)
P − ξ

(0)
S )ξ

(0)
P ξ

(0)
S /(ξ2 − ξ

(0)
P ξ

(0)
S ) = ξ

(0)
S τ2/c2P (ξ2 − ξ

(0)
P ξ

(0)
S ) > 0,

we obtain (i).
The first part of the equalities in (ii) is clear from the form (4.6). For the rest, it

suffices to show
∫ ∞

0

(

(V
(0)
− (x3))

∗Qq̂(x3), a
)

C3dx3 =

∫ ∞

0

(

QV
(0)
+ (−x3)q̂(x3), a

)

C3dx3 (4.12)

for any a(∈ C3) and q̂(x3) (omitting the variables τ and ξ). Noting that Qq̂(x3) =
(−τ2−ρ−1

0 A0(∂x3)) V(0)q̂(x3) and using integration by parts, we see that the left side
of (4.12) is equal to

∫ ∞

0

(

(−τ2−ρ−1
0 A0(iξ, ∂x3))V(0)q̂(x3), V

(0)
− (x3)a

)

C3dx3 = −
(

ρ−1
0 N0(iξ, ∂x3)q̂|x3=0, a

)

C3

Since P
±,(0)
β P

±,(0)
β′ = δβ,β′P

±,(0)
β (β, β′ = P, S), we see that ∂x3V

(0)
± (x3) is of the form

∂x3V
(0)
± (x3; τ, ξ) = Λ±(τ, ξ)V

(0)
± (x3; τ, ξ), Λ±(τ, ξ) = (∂x3V

(0)
± )(0; τ, ξ). (4.13)

Combining this and (4.10), and noting the forms of Q and N0 and the fact that
V(0)q̂|x3=0 = 0, we have

N0(iξ, ∂x3)V(0)q̂|x3=0 = −ρ0Q(τ, ξ)

∫ ∞

0

V
(0)
+ (−y3; τ, ξ)q̂(y3; τ, ξ)dy3. (4.14)

Therefore, the left side of (4.12) is equal to
∫ ∞

0

(

QV
(0)
+ (−y3)q̂(y3), a

)

C3dy3. Hence,
(4.12) holds. The proof is complete.

Let ϕ be the function in (4.1), and set ϕ̃θ(t, x) = ϕ(c−1
R x′ · θ − t). Then, we

see from Proposition 4.2 that the following function vR,i
ϕ (t, x; θ) is an approximate

solution of (4.1) (i.e., satisfies (4.4)):

vR,i
ϕ = α(0)Vχ̃0([−ρ−1

0 A0(∂x), ψ]∂tPχ0e
0,(0)
0 ϕ̃θ), (4.15)

where the cutoff function χ̃0(τ, ξ) is chosen so that 0 ≤ χ̃0 ≤ 1, supp [χ̃0] ⊂ E0 and
χ̃0(τ, ξ) = 1 in a neighborhood of supp [χ0]. Here, note that the operator:

ϕ̃ 7→ α(0)Vχ̃0([−ρ−1
0 A0(∂x), ψ]∂tPχ0e

0,(0)
0 ϕ̃)
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is a pseudo-differential operator with the parameter x3 ≥ 0.
We can also construct the approximate solution uR in (3.1) and (3.2) in the same

way as for vR,i
ϕ :

uR(t, x;ω) = ψ3(x)α
(0)Vχ̃0(φ2(t)∂tφ1(t)ψ(x)Pχ0e

0,(0)
0 (δ(t− c−1

R ω · x′))) in R × Ω,

where ψ3(x) is a C∞ cutoff function such that 0 ≤ ψ3 ≤ 1, ψ3(x) = 1 if r0 +2/3 ≤ |x|
and ψ3(x) = 0 if |x| ≤ r0 + 1/2.

We need to know the properties of N (ψ2v
R,i
ϕ )

∣

∣

R×Γ
when constructing the approxi-

mate solution vR,b
ϕ (t, x; θ) of (4.2) in section 5. Since supp [ψ2v

R,i
ϕ ] ⊂ R×Bc

r0
it follows

that N
(

ψ2v
R,i
ϕ

)∣

∣

R×Γ
≃ N0

(

ψ2v
R,i
ϕ

)∣

∣

R×∂R3
+

. Therefore, noting the form (4.15) of vR,i
ϕ ,

we have only to examine the operator

F0 : ϕ̃(t, x′) 7→ N0

(

α(0)Vχ̃0 [−ρ−1
0 A0(∂x), ψ]∂tPχ0e

0,(0)
0 ϕ̃

)∣

∣

R×∂R3
+

. (4.16)

F0 is a classical pseudo-differential operator of order 1 on R × ∂R3
+ (for a detailed

description of pseudo-differential operators, see Hörmander [2]), and has the following
properties:

Lemma 4.4. (i) F0 is expressed by a symbol supported in supp [∇x′(ψ|∂R3
+
)]×

supp [χ] mod S−∞.
(ii) The principal symbol σp(F0) of F0 is of the form

σp(F0)(t, x, τ, ξ) = −α(0)τχ0(τ, ξ)A0(ν
0)(∇x′ ψ̃)(x′) · ∇ξΛ−(τ, ξ)e

0,(0)
0 (τ, ξ),

where Λ±(τ, ξ) = (∂x3V
(0)
± )(0; τ, ξ) and ψ̃(x′) = ψ(x′, 0).

(iii) σp(F0) satisfies

(

σp(F0)(t, x, τ, ξ), e
0,(0)
0 (τ, ξ)

)

C3 =α(0)τχ0(τ, ξ){∇x′ψ̃(x′) · ∇ξλ
(0)
0 (τ, ξ)|e0,(0)

0 (τ, ξ)|2

+ i
(

(N0(∂x)ψ̃(x′))e
0,(0)
0 (τ, ξ), e

0,(0)
0 (τ, ξ)

)

C3}.

Proof. From the definition (4.16) and (4.11), we obtain

F0ϕ̃ = (2π)−3

∫

R×R2

ei(τt+ξ·x′)χ0(τ, ξ)N0(iξ, ∂x3)V(0)Q−1ĥdτdξ
∣

∣

x3=0

with h = α(0)[−ρ−1
0 A0(∂x), ψ]∂tPχ0e

0,(0)
0 ϕ̃. Using (4.14) and (ii) of Lemma 4.3, we

have

F0ϕ̃ = (2π)−3

∫

R×R2

ei(τt+ξ·x′)α(0)ρ0χ̃0(τ, ξ)

∫ ∞

0

(

V
(0)
− (y3; τ, ξ)

)∗F ′
[

[ρ−1
0 A0, ψ]∂tPχ0e

0,(0)
0 ϕ̃

]

(τ, ξ, y3)dy3dτdξ,

where F ′ is the Fourier transformation in (t, x′). From this and (4.5), we see that
F0 is a pseudo-differential operator represented by the following double symbol in the
variables ∈ R3

(t,x′) × R3
(τ,ξ) × R3

(s,y′) × R3
(τ̃ ,ξ̃)

:

p(t, x′, τ, ξ, s, y′, τ̃ , ξ̃) = iα(0)τρ0χ̃0(τ, ξ)

∫ ∞

0

(V
(0)
− (y3; τ, ξ))

∗

[ρ−1
0 A0, ψ](y′, y3; iξ̃, ∂y3)V

(0)
− (y3; τ̃ , ξ̃)dy3χ0(τ̃ , ξ̃)e

0,(0)
0 (τ̃ , ξ̃),
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which yields (i).

Since |∂α
(τ,ξ)∂

l
y3
V

(0)
− (y3; τ, ξ)| ≤ Cα,le

−c0(|τ |+|ξ|)y3(1+|τ |+|ξ|)l−|α| (y3 ≥ 0, (τ, ξ) ∈
R×R2, |τ |+|ξ| ≥ 1) and

∫ ∞

0
yl
3V

(0)
− (y3; τ, ξ)dy3 = O((|τ |+|ξ|)−1−l) (as |τ |+|ξ| → ∞),

it is seen from the form of p(t, x′, τ, ξ, s, y′, τ̃ , ξ̃) that the principal symbol of F0 is of
the form

σp(F0)(t, x
′, τ, ξ) = α(0)τρ0χ0(τ, ξ)

∫ ∞

0

(V
(0)
− (y3; τ, ξ))

∗ (4.17)

σp([ρ
−1
0 A0, ψ̃])(x′; iξ, ∂y3)V

(0)
− (y3; τ, ξ)e

0,(0)
0 (τ, ξ)dy3.

Let ξ̃(s) = ξ + s∇x′ψ̃(x′). Then we have

iσp

(

[A0(∂x), ψ̃]
)

(x′, ξ, ξ3) = ∂s

(

A0(iξ̃(s), iξ3)
)∣

∣

∣

s=0
. (4.18)

Since va(y3; s) = V
(0)
− (y3; τ, ξ̃(s))a (a ∈ C3) satisfies

(−τ2 − ρ−1
0 A0(iξ̃(s), ∂y3))va(y3, s) = 0,

we obtain

∂

∂s

∫ ∞

0

(

(−τ2 − ρ−1
0 A0(iξ̃(s), ∂y3))va(y3, s), vb(y3, s)

)

C3dy3

∣

∣

∣

s=0
= 0

for any a, b ∈ C3. Combining this, (4.18) and va(0, s) = a and using integration by
parts, we have

ρ−1
0

(

σp

(

[A0, ψ̃]
)

(x′, iξ, ∂x3)va(·, 0), vb(·, 0)
)

L2([0,∞))

= −ρ−1
0

(

A0(ν
0)∂x3∂sva(0, 0), b

)

C3 . (4.19)

(4.13) yields ∂s∂x3V
(0)
− (0; τ, ξ̃(s))|s=0 = ∂s(Λ−(τ, ξ̃(s)))|s=0 =

(

∇x′ ψ̃(x′)·∇ξ

)

Λ−(τ, ξ).
Therefore, (ii) of Lemma 4.4 follows from (4.19) and (4.17).

Since B(0)(τ, ξ)e
0,(0)
0 (τ, ξ) = λ

(0)
0 (τ, ξ)e

0,(0)
0 (τ, ξ) and B(0)(τ, ξ) =

−A0(ν
0)Λ−(τ, ξ) + N0(iξ, 0), we have A0(ν

0)Λ−e
0,(0)
0 = −λ(0)

0 e
0,(0)
0 + N0(iξ, 0)e

0,(0)
0

and (A0(ν
0)Λ−)∗e

0,(0)
0 = −λ(0)

0 e
0,(0)
0 + (N0(iξ, 0))∗ e

0,(0)
0 . Here, note that B(0)(τ, ξ)

is a Hermite matrix. (iii) of Lemma 4.4 is derived from these relations and
(∇x′ ψ̃ · ∇ξ)N0(iξ, 0) = −i(N0(∂x)ψ̃)(x′). The proof is complete.

By the above arguments, we can find the concrete form of the boundary data in
(4.2) as follows. Choose the function ψ(x) so that ψ depends only on |x|. Then, we
have ∂x3ψ(x′, 0) = 0; by (ii) of Proposition 4.2

ϕ ⋆ (∂tm
R)(t, x′; θ) ≃ (N0ψ̃)∂tχ0(Dt, Dx′)e

0,(0)
0 (Dt, Dx′)(α(0)ϕ̃θ)(t, x

′). (4.20)

Since N (ψ2v
R,i
ϕ )

∣

∣

R×Γ
≃ ψ2F0ϕ̃, we can see that the boundary data of (4.2) are ap-

proximated by the operator

F1 = α(0)(N0ψ̃)∂tχ0(Dt, Dx′)e
0,(0)
0 (Dt, Dx′) − ψ2F0.

Namely, using (4.20), (4.16) and Lemma 4.4, we can verify the following lemma:

Proposition 4.5. (i) F1 is a classical pseudo-differential operator of order 1 on
R × ∂R3

+ (i.e. F1 ∈ Ψ1
phg(R × ∂R3

+; C,C3), which is defined in [2]), and is expressed
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by a symbol supported in supp [∇x′(ψ|∂R3
+
)] ×supp [χ] mod S−∞. Furthermore, the

principal symbol σp(F1) satisfies

(

σp(F1)(t, x, τ, ξ), e
0,(0)
0 (τ, ξ)

)

C3 = −α(0)τχ0(τ, ξ)∇x′ ψ̃(x′) · ∇ξλ
(0)
0 (τ, ξ)|e0,(0)

0 (τ, ξ)|2.

(ii) F1ϕ̃θ is approximate to the boundary data in (4.2), i.e., for any integer N ≥ 0

ϕ⋆(∂tm
R)−N

(

ψ2v
R,i
ϕ

)∣

∣

R×Γ
≃ ψ1F1ϕ̃θ with respect to C∞

0 (I) → BN(It1+3c−1
R

(s0) × Γ).

By the same method as for the proof of Lemma 4.4, we can express NuR
∣

∣

R×Γ
with

a pseudo-differential operator. Namely, there exists a pseudo-differential operator G0

of order −1 such that NuR
∣

∣

R×Γ
= G0(δ(t − c−1

R ω · x′)) mod C∞(R × Γ), and the
principal symbol of G0 is of the form

σp(G0)(t, x
′, τ, ξ) = −α(0)ρ0χ0(τ, ξ)φ2(t)∂tφ1(t)ψ̃(x′)

∫ ∞

0

(V
(0)
− (y3; τ, ξ))

∗V
(0)
− (y3; τ, ξ)e

0,(0)
0 (τ, ξ)dy3.

The lower symbols of the asymptotic expansion of G0 contain derivatives of φ2∂tφ1

and ψ̃, and it holds for any l ≥ 1, |α| ≥ 1 that (∂l
t(φ2(t)∂tφ1(t))∂

α
x′ ψ̃(x′))|t=c−1

R ω·x′ = 0

(x′ ∈ ∂R3
+). This implies that NuR|R×Γ = σp(G0)(t, x

′, Dt, Dx′)(δ(t−c−1
R ω ·x′)) mod

C∞(R × Γ). Noting this fact and the equality supp [φ2∂tφ1ψ̃] ∩ supp [1 − φ0ψ1] = ∅,
we can rewrite the expression of NuR

∣

∣

R×Γ
using the pseudo-differential operator G1

of order −1 that satisfies

NuR
∣

∣

R×Γ
= G1(φ2(t)∂tφ1(t)ψ̃(x′)δ(t− c−1

R ω · x′)) mod C∞(R × Γ), (4.21)

σp(G1)(t, τ, x
′, ξ) = −α(0)ρ0χ0(τ, ξ)φ0(t)ψ1(x

′)
∫ ∞

0

(V
(0)
− (y3; τ, ξ))

∗V
(0)
− (y3; τ, ξ)e

0,(0)
0 (τ, ξ)dy3, (4.22)

supp[σ(G1)(t, τ, x
′, ξ)] ⊂ supp[φ] × supp[ψ̃] × R

3
(τ,ξ)

∩ { (t, τ, ζ) ∈ T ∗(R × Γ) ; r0 + 1 ≤ |πΓ(ζ)|, (4.23)

− (t1 + 2c−1
R ) ≤ t+ s0 ≤ −(t1 + c−1

R ) },

where σ(G1)(t, τ, x
′, ξ) denotes the full symbol of G1, and πΓ : T ∗(Γ) → Γ is the

projection to Γ.

5. Approximate solutions with inhomogeneous Neumann data. In this
section we construct the approximate solution vR,b

ϕ of (4.3) using the Neumann oper-
ator T±. T± are operators of the forms T± = NP± . Here, P± denotes the Poisson
operators: m(t, x′) 7→ w±(t, x), where w±(t, x) are the solutions of the equations







(ρ∂2
t −A)w±(t, x) = 0 in R × Ω,

w±(t, x′) = m(t, x′) on R × Γ,
w±(t, x) = 0 if ∓ t (> 1) is sufficiently large.

Hereafter, when expressing points on the boundary Γ, we use the notations x′, y′,
etc. Therefore, the points on Γ ∩Bc

r0
are written as x′ = t(x1, x2, 0). In the previous
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sections x′ = t(x1, x2) represents the first two components of x = t(x1, x2, x3). Al-
though the notation x′ contains these different meanings, we use it since it is simple
and does not cause confusion.

For m ∈ C∞(R × Γ) vanishing for large ±t >> 1, we put u(t, x) =
P±(T±)−1m(t, x). Then, this function u(t, x) becomes the solution for the elastic
wave equation with the inhomogeneous Neumann condition N (x, ∂x)u = m on R×Γ.
This implies that the construction of vR,b

ϕ can be reduced to that of the inverse of
T±. In the elliptic region of ρ∂2

t − A, T± are given by a pseudo-differential opera-
tor on R × Γ modulo smoothing operators. Taylor [19] investigated propagation of
singularities of the Rayleigh wave by using this expression of the Neumann operator
as pseudo-differential operators. Our construction of vR,b

ϕ essentially follows Taylor’s
outline.

The first step is to examine the principal symbol of T− that is restricted in the
elliptic region of (ρ∂2

t − A). We denote points in T ∗(R) and T ∗(Γ) by (t, τ) and
ζ = (x′, ζx′) respectively, and by ‖ζ‖Γ the metric on T ∗(Γ) induced by the standard
Riemann metric of Γ. Let E be the elliptic region of ρ∂2

t − A, i.e., E = { (t, τ, ζ) ∈
T ∗(R × Γ) ; |τ | < c̃S(x′)‖ζ‖Γ } for c̃S(x′) =

√

µ(x′)/ρ(x′).
Hereafter, when we take a conic neighborhood V in T ∗(R×Γ), we always choose V

so that ǏR×Γ(V ) = V for the operator ǏR×Γ: (t, τ, ζ) = (t, τ, x′, ζx′) 7→ (t,−τ, x′,−ζx′).
Let c̃R(x′) be the propagation speed of the Rayleigh wave at x′ ∈ Γ, and set RΓ =
{ (t, τ, ζ) ∈ T ∗(R × Γ) ; c̃R(x′)‖ζ‖Γ = |τ | }. Note that c̃R(x′) is given by c̃R(x′) =
c̃S(x′)s0(x

′), where s = s0(x
′) is the unique root of the following equation in s ∈ (0, 1):

s3 − 8s2 + 8
(

3 − 2
µ(x′)

λ(x′) + 2µ(x′)

)

s+ 16
( µ(x′)

λ(x′) + 2µ(x′)
− 1

)

= 0. (5.1)

We take conic neighborhoods V0, V1 and Ṽ1 such that RΓ ⊂ V1 ⊂⊂ Ṽ1 ⊂⊂ V0 ⊂⊂ E ,
where A ⊂⊂ B means that A ⊂ B. Let W0 = { (t, τ, ζ) ∈ V0 ; |t+ s0| < t1 + 8c−1

R },
W1 = { (t, τ, ζ) ∈ V1 ; |t+ s0| < t1 + 6c−1

R } and W̃1 = { (t, τ, ζ) ∈ Ṽ1 ; |t + s0| < t1 +
7c−1

R }, and take a cutoff function χ1(t, τ, ζ) ∈ C∞(T ∗(R × Γ)) such that 0 ≤ χ1 ≤ 1,

supp [χ1] ⊂ W0, χ1(t, τ, ζ) = 1 on W̃1 and χ1(t, τ, ζ) = 0 near the zero section of
T ∗(R × Γ).

Hereafter, we use the notations in Hörmander [2] for pseudo-differential opera-
tors on manifolds M (e.g., the classes of the pseudo-differential operators Ψm

phg(M),

Ψ±∞(M), etc.). As is checked by the method presented in Chapter 6 of Kumano-go
[9], the operator

Bχ1 = T−Op(χ1)

is known to possess the following properties (cf., e.g., [5] or [19]).

Proposition 5.1. (i) Let V0 be sufficiently small. Then, we have Bχ1 ∈ Ψ1
phg(R×

Γ; C3,C3). Furthermore, there exists a (matrix-valued) function B1(τ, ζ) (∈ C∞(V0))
homogeneous of order one (depending only on Γ, ρ, λ and µ) such that

σp(Bχ1 )(t, τ, ζ) = χ1(t, τ, ζ)B1(τ, ζ) on T ∗(R × Γ).

(ii) The above B1(τ, ζ) is a Hermite matrix, and has the distinct eigenvalues λ(e),j(τ, ζ)
(j = 0, 1, 2) of constant multiplicity. Moreover, λ(e),j(τ, ζ) > 0 holds on V0 for j =
1, 2, and λ(e),0(τ, ζ) is of the form

λ(e),0(τ, ζ) =
(

c̃R(x′)‖ζ‖Γ − |τ |
)

λ̃(e),0(τ, ζ), (τ, ζ) = (τ, x′, ζx′) ∈ V ′
0 ,
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where V ′
0 = { (τ, ζ) ∈ R × T ∗(Γ) ; (t, τ, ζ) ∈ V0 for some t ∈ R } and λ̃(e),0(τ, ζ) ∈

C∞(V ′
0) is homogeneous of order 0 and satisfies λ̃(e),0(τ, ζ) > 0 on V ′

0 .
(iii) For any local coordinate κ : R × Ũ ∋ (t, σ) 7→ (t, s(σ)) ∈ R × Γ, the local symbol
σ(Bχ1 )|R×Ũ of Bχ1 satisfies

σ(Bχ1 )|R×Ũ (t,−τ, σ,−ξ) = σ(Bχ1 )|R×Ũ (t, τ, σ, ξ).

Op(χ1) restricts the boundary data to the elliptic region of (ρ∂2
t − A) and to

the finite interval in Rt. This implies that (Bχ1 =) T−Op(χ1) = T+Op(χ1) mod
Ψ−∞

phg (R × Γ). From this fact, we see that

(Op(χ1))
∗Bχ1 − (Bχ1)

∗Op(χ1) ∈ Ψ−∞
phg (R × Γ). (5.2)

In fact, using integration by parts, we can check that for any f , g ∈ C∞
0 (R × Γ)

(T−Op(χ1)f,Op(χ1)g)L2(R×Γ) = (Op(χ1)f, T
+Op(χ1)g)L2(R×Γ).

Therefore, we obtain (5.2) since Bχ1 = T−Op(χ1) = T+Op(χ1) mod Ψ−∞
phg (R × Γ).

From Proposition 5.1, two eigenvalues λ(e),j(τ, ζ) (j = 1, 2) are positive, which
are elliptic parts. On the other hand, λ(e),0(τ, ζ) is a symbol of the real principal type.
Thus, this component is hyperbolic. Using the properties of the principal symbol of
Bχ1 , we decompose Bχ1 into elliptic and hyperbolic parts with a symbol of the real
principal type.

Definition 5.2. For P , Q ∈ Ψ∞(R × Γ), and conic neighborhoods V0 and V1

with V1 ⊂⊂ V0 ⊂ T ∗(R × Γ), we say that P = Q mod Ψ−∞
V1,V0

(R × Γ) if (ess.suppP ∪
ess.suppQ) ⊂ V0 and PX −QX,XP −XQ ∈ Ψ−∞(R×Γ) for any X ∈ Ψ0

phg(R×Γ)
with ess.suppX ⊂ V1.

Let e
(e)
0 (τ, ζ) be the eigenvector of λ(e),0(τ, ζ), and set

P0(τ, ζ) = I − |e(e)0 (τ, ζ)|−2e
(e)
0 (τ, ζ) ⊗

(

e
(e)
0 (τ, ζ)

)∗
,

Q1(τ, ζ) = B1(τ, ζ) + |τ |λ̃(e),0(τ, ζ)(I − P0(τ, ζ)).

Note that P0(τ, ζ) is the projection to the orthogonal complement of the eigenspace for
λ(e),0(τ, ζ). From Proposition 5.1, we see that Q1(τ, ζ) is non-degenerate and satisfies

Q1(τ, ζ)P0(τ, ζ) = B1(τ, ζ)P0(τ, ζ) = P0(τ, ζ)B1(τ, ζ) = P0(τ, ζ)Q1(τ, ζ). (5.3)

By the method prensented in Chapter 9 of Taylor [20], we obtain

Lemma 5.3. (i) There exists a pseudo-differential operator Ẽ ∈ Ψ0
phg(R×Γ; C,C3)

such that

σp(Ẽ)(τ, ζ) = |e(e)0 (τ, ζ)|−1e
(e)
0 (τ, ζ) (on V1), Ẽ∗Ẽ = 1 mod Ψ−∞

V1,Ṽ1
(R × Γ).

(ii) Set P̃0 = I − ẼẼ∗. Then, P̃0 becomes a pseudo-differential operator in Ψ0
phg(R ×

Γ; C3,C3) and satisfies

σp(P̃0) = P0 (on V1), Ẽ∗P̃0 = P̃0Ẽ = 0 mod Ψ−∞
V1,Ṽ1

(R × Γ).
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Proposition 5.4. (i) There exist a scalar-valued symbol λ(e)(τ, ζ) ∈ S1
phg(V1)

and a pseudo-differential operator Ẽ(0) ∈ Ψ0
phg(R × Γ; C,C3) independent of t such

that Ẽ(0) − Ẽ ∈ Ψ−1
phg(R × Γ; C,C3) and that

Bχ1Ẽ
(0) = ẼOp(χ1λ

(e)) mod Ψ−∞
W1,W̃1

(R × Γ), σp(Ẽ
∗)σp(Ẽ

(0) − Ẽ) = 0,

λ(e)(τ, ζ) ∼ λ(e),0(τ, ζ) +

∞
∑

j=0

λ
(e)
−j(τ, ζ), ǏR×Γλ

(e)(τ, ζ) = λ(e)(τ, ζ) on V1,

where each λ
(e)
−j belongs to S−j(V1) and is homogeneous of order −j.

(ii) There exist pseudo-differential operators Q̃ ∈ Ψ−1
phg(R × Γ; C3,C3) and F̃ (0) ∈

Ψ0
phg(R × Γ; C3,C) such that

σp(Q̃)(t, τ, ζ) = χ1(t, τ, ζ)Q1(τ, ζ)
−1 on W̃1,

σp(F̃
(0))(t, τ, ζ)e

(e)
0 (τ, ζ) =

|τ |χ1(t, τ, ζ)

cR‖ζ‖Γ
|e(e)0 (τ, ζ)| on T ∗(R × Γ),

σp(F̃
(0))(t, τ, ζ)P0(τ, ζ) = 0 on T ∗(R × Γ),

Bχ1Q̃ = Op(χ1) − ẼF̃ (0) mod Ψ−∞
W1,W̃1

(R × Γ).

Proof. Since B1e
(e)
0 (τ, ζ) = λ(e),0e

(e)
0 (τ, ζ) on T ∗(R × Γ), there exists Ẽ0 ∈

Ψ0
phg(R × Γ; C,C3) such that

Bχ1Ẽ = ẼOp(χ1λ
(e),0) + Ẽ0. (5.4)

By Lemma 5.3 and (5.3), we get a scalar-valued symbol λ
(e)
0 (τ, ζ) ∈ S0(T ∗(R × Γ))

such that

σp(Ẽ0)(τ, ζ) = σp(Ẽ)λ
(e)
0 (τ, ζ) +B1P0Q

−1
1 σp(Ẽ0)(τ, ζ) on V1. (5.5)

We take a cutoff function χ̃1(t, τ, ζ) ∈ C∞(T ∗(R × Γ)) such that 0 ≤ χ̃1 ≤ 1,
supp [χ̃1] ⊂ W̃1, χ̃1(t, τ, ζ) = 1 on W1 and χ̃1(t, τ, ζ) = 0 on a neighborhood

of the zero section of T ∗(R × Γ), and set Ẽ−1 = Op(χ1)Ẽ0 − ẼOp(χ1λ
(e)
0 ) −

Bχ1Op(χ̃1P0Q
−1
1 σp(Ẽ0)). Then, using (5.4) and (5.5), we see that Ẽ−1 ∈ Ψ−1

phg(R ×
Γ; C,C3) and

Bχ1

(

Ẽ −Op(χ̃1P0Q
−1
1 σp(Ẽ0))

)

= ẼOp(χ1(λ
(e),0 + λ

(e)
0 )) + Ẽ−1 + (I −Op(χ1))Ẽ0.

Furthermore, there exists a scalar-valued symbol λ
(e)
−1(τ, ζ) ∈ S−1(V1) such that

σp(Ẽ−1)(τ, ζ) = σp(Ẽ)λ
(e)
−1(τ, ζ) +B1P0Q

−1
1 σp(Ẽ−1)(τ, ζ). Next we set

Ẽ−2 = Op(χ1)Ẽ−1 − ẼOp(χ1λ
(e)
−1)−Bχ1Op(χ̃1P0Q

−1
1 σp(Ẽ−1)) ∈ Ψ−2

phg(R×Γ; C,C3).

We then obtain

Bχ1

(

Ẽ −Op(χ̃1P0Q
−1
1 σp(Ẽ0)) −Op(χ̃1P0Q

−1
1 σp(Ẽ−1))

)

= ẼOp(χ1(λ
(e),0 + λ

(e)
0 + λ

(e)
−1)) + Ẽ−2 + (I −Op(χ1))(Ẽ0 + Ẽ−1).
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Here, note that ǏR×Γλ
(e)
j (τ, ζ) = λ

(e)
j (τ, ζ) (j = 0, 1), which follows from (iii) in

Proposition 5.1. Noting that ess.supp (I − Op(χ1)) ∩ W̃1 = ∅ and repeating these
procedures, we obtain (i) in Proposition 5.4. It is also seen that σp(Ẽ

∗)σp(Ẽ
(0)−Ẽ) =

0 since the equalities σp(Ẽ
∗)σp(Op(χ̃1P0Q

−1
1 σp(Ẽj))) = 0 (j = 0, 1, 2, . . .) follow from

σp(Ẽ
∗)P0 = |e(0)|−1(e(0))∗P0 = 0.

We see from Lemma 5.3 that σp

(

Bχ1 +Ẽ Op(|τ |χ1λ̃
(e),0)Ẽ∗

)

= χ1(t, τ, η)Q1(τ, η)

on W̃1. Therefore, noting that Q1(τ, η) is non-degenerate on V ′
0 , we have a pseudo-

differential operator Q̃ ∈ Ψ−1
phg(R × Γ; C3,C3) such that σp(Q̃)(t, τ, η) = χ1(t, τ, η)

Q1(τ, η)
−1 and
(

Bχ1 + Ẽ Op(|τ |χ1λ̃
(e),0)Ẽ∗

)

Q̃ = Op(χ1) mod Ψ−∞
W1,W̃1

(R × Γ). (5.6)

We put F̃ (0) = Op(|τ |χ1λ̃
(e),0)Ẽ∗Q̃. Since ess.supp (I − Op(χ1)) ∩ W̃1 = ∅

and Q−1
1 (τ, ζ)e

(e)
0 (τ, ζ) =

(

cR‖ζ‖Γλ̃
(e),0(τ, ζ)

)−1
e
(e)
0 (τ, ζ), it follows that F̃ (0) ∈

Ψ0
phg(R×Γ; C3,C), σp(F̃

(0)) = |τ |χ1λ̃
(e),0σp(Ẽ

∗) Q−1
1 and σp(F̃

(0))(t, τ, ζ)e
(e)
0 (τ, ζ) =

c−1
R ‖ζ‖−1

Γ |τ | χ1(t, τ, ζ)|e(e)0 (τ, ζ)|. Hence, (ii) of Proposition 5.4 is obtained. The proof
is complete.

The next step is to reduce the construction of the solution vR,b
ϕ to a problem given

by a scalar-valued pseudo-differential equation of the real principal type (cf. (5.7)).
Before this, we prepare the following lemma used for error estimation.

Lemma 5.5. Let Pj ∈ Ψmj(R × Γ) (j = 1, 2), γ ∈ C∞
0 (∂R3

+), and η ∈ C∞
0 (R).

Then, for any s ∈ R there is a constant C > 0 such that

‖ηP1γP2ϕ̃θ‖Hs(R×∂R3
+) ≤ C‖ϕ‖Hm1+m2+s(R), ϕ ∈ C∞

0 (I).

Proof of Lemma 5.5. Take a cutoff function γ̃(x′) ∈ C∞
0 (∂R3

+) that satisfies
γ̃(x′) = 1 in a neighborhood of supp [γ]. Since ηP1γP2 ∈ Ψm1+m2(R × Γ) and
(γ̃ϕ̃θ )̂ (τ, ξ) = ϕ̂(−τ)ˆ̃γ(ξ + τc−1

R θ), it follows that

‖ηP1γP2γ̃ϕ̃θ‖Hs(R×∂R3
+) ≤ C‖γ̃ϕ̃θ‖Hm1+m2+s(R×∂R3

+) ≤ C′‖ϕ‖Hm1+m2+s(R).

Noting that supp [γ] ∩ supp [(1 − γ̃)] = ∅ and γ ∈ C∞
0 (∂R

3
+), we obtain ηP1γP2(I −

γ̃)〈x′〉l ∈ Ψ−∞(R × Γ). Therefore, we have

‖ηP1γP2(I − γ̃)ϕ̃θ‖Hs(R×∂R3
+) ≤ C‖〈·〉−lϕ̃θ‖H−s′ (R×∂R3

+)

for s′ ≥ 0 and l ≥ 2. Combining this with ‖〈·〉−lϕ̃θ‖H−s′ (R×∂R3
+) ≤ Cl,s′‖ϕ‖H−s′(R), we

obtain ‖ηP1γP2(I− γ̃)ϕ̃θ‖Hs(R×∂R3
+) ≤ Cs,s′‖ϕ‖Hs′ (R). Thus, Lemma 5.5 is obtained.

Now we begin to reduce the problem. Take a conic neighborhood V2 of RΓ such
that V2 ⊂⊂ V1, and set W2 = { (t, τ, ζ) ∈ V2 ; |t| < t1 + 5c−1

R }. Furthermore, take a
cutoff function χ2(t, τ, ζ) ∈ C∞(T ∗(R × Γ)) satisfying 0 ≤ χ2 ≤ 1, supp [χ2] ⊂ W1,
χ2(t, τ, ζ) = 1 on W2 and χ2(t, τ, ζ) = 0 near the zero section in T ∗(R × Γ). Assume
that there exists a B∞(It1+5c−1

R
(s0) × Γ)-valued linear mapping kϕ(t, x′; θ) on C∞

0 (I)

such that

Op(χ1λ
(e))kϕ(t, x′; θ) ≃ F̃ (0)Op(χ2)ψ2F1ϕ̃θ(t, x

′) (5.7)

with respect to C∞
0 (I) → B∞(It1+5c−1

R
(s0) × Γ),



SINGULAR SUPPORT OF THE SCATTERING KERNEL 27

which is proved later.
Using Proposition 5.4, we can construct the boundary value vR,b

ϕ (t, x′; θ)|R×Γ.

This means that the required vR,b
ϕ (t, x; θ) is obtained by applying P−Op(χ2) to the

boundary value. We show here the construction of vR,b
ϕ (t, x′; θ)|R×Γ. Set

gϕ(t, x′; θ) = Q̃Op(χ2)ψ2F1ϕ̃θ(t, x
′) + Ẽ(0)kϕ(t, x′; θ). (5.8)

Then, we obtain

Bχ1gϕ(t, x′; θ) =Op(χ2)ψ2F1ϕ̃θ(t, x
′) + (Op(χ1) − I)Op(χ2)ψ2F1ϕ̃θ(t, x

′)

+R−∞,1Op(χ2)ψ2F1ϕ̃θ(t, x
′) +R−∞,2kϕ(t, x′; θ) +R−∞,3ϕ̃θ(t, x

′),

where R−∞,1 = Bχ1Q̃ − Op(χ1) − ẼF̃ (0), R−∞,2 = Bχ1Ẽ
(0) − ẼOp(χ1λ

(e)) and

R−∞,3ϕ̃θ = Ẽ{Op(χ1 λ
(e))kϕ−F̃ (0)Op(χ2)ψ2F1ϕ̃θ}. We haveR−∞,jOp(χ2) (j = 1, 2)

∈ Ψ−∞(R × Γ) since ess.suppOp(χ2) ⊂W1.
By Lemma 5.5, we obtain R−∞,1Op(χ2)ψ2F1ϕ̃θ ≃ 0 with respect to C∞

0 (I) →
B∞(It1+4c−1

R
(s0) ×Γ). It follows from supp [χ2] ∩ supp [(χ1 − 1)] = ∅ that

Op(χ2)(Op(χ1) −I)ψ2F1ϕ̃θ ≃ 0 with respect to C∞
0 (I) → B∞(It1+4c−1

R
(s0) × Γ).

Furthermore, the ellipticity of λ(e) on V1 \ RΓ yields that (I − Op(χ2))kϕ ≃ 0
with respect to C∞

0 (I) → B∞(It1+4c−1
R

(s0) × Γ) since kϕ satisfies the equation (5.7).

From the form of kϕ that is constructed later, we can also see that R−∞,2Op(χ2)kϕ ≃
0 with respect to C∞

0 (I) → B∞(It1+4c−1
R

(s0) × Γ) (cf. Proposition 5.6). It fol-

lows from (5.7) and Lemma 5.5 that R−∞,3ϕ̃θ ≃ 0 with respect to C∞
0 (I) →

B∞(It1+4c−1
R

(s0)×Γ). Thus, we have Bχ1gϕ ≃ Op(χ2)ψ2F1ϕ̃θ with respect to C∞
0 (I)

→ B∞(It1+4c−1
R

(s0)×Γ). Therefore, by (ii) of Proposition 4.5 we can put vR,b
ϕ (t, x; θ) =

(

P−Op(χ1)gϕ(·, ·; θ)
)

(t, x) and obtain

vR,b
ϕ (t, x′; θ)|R×Γ ≃ Op(χ1)gϕ(t, x′; θ) (5.9)

with respect to C∞
0 (I) → B∞(It1+3c−1

R
(s0) × Γ).

Thus, we have reduced the construction of the solution vR,b
ϕ to solving (5.7).

The final step is to construct the asymptotic solution kϕ(t, x′; θ) of the equation

(5.7). As is used in Hörmander [2], C∞
0 (R×Γ; Ω

1
2 ⊗Cm) denotes the space of smooth

sections of Ω
1
2 ⊗ Cm with compact support, where Ω

1
2 is the half-density bundle

on R × Γ. We denote the half-density on R × Γ, which is defined by the standard

Riemann metric on R × Γ, by dV
1
2

R×Γ. Note that any section in C∞
0 (R × Γ; Ω

1
2 ⊗ Cm)

can be expressed by multiplying dV
1
2

R×Γ to functions in C∞
0 (R × Γ; Cm). For pseudo-

differential operators P ∈ Ψl(R × Γ; Cm1 ,Cm2), we employ the pseudo-differential

operators P
Ω

1
2

from C∞
0 (R × Γ; Ω

1
2 ⊗ Cm1) to C∞

0 (R × Γ; Ω
1
2 ⊗ Cm2):

P
Ω

1
2
(fdV

1
2

R×Γ) = (Pf)dV
1
2

R×Γ, f ∈ C∞
0 (R × Γ; Cm1).

Note that the space Ψl(R×Γ; Ω
1
2 ⊗Cm1 ,Ω

1
2 ⊗Cm2) consists of these operators P

Ω
1
2
.

We simply write Ψl(R×Γ; Ω
1
2 ,Ω

1
2 ) if m1 = m2 = 1. For pseudo-differential operators

Q ∈ Ψl(R × Γ; Ω
1
2 ,Ω

1
2 ), σp(Q) and σsp(Q) denote the principal symbol and the

subprincipal symbol, respectively.
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Take a pseudo-differential operator A0 ∈ Ψ0(R × Γ; Ω
1
2 ,Ω

1
2 ) such that

σp(A0)(t, τ, ζ) = (λ̃
(e),0
0 (τ, ζ))−1, σsp(A0)(t, τ, ζ) = 0.

Then, we obtain A0Op(χ1λ
(e))

Ω
1
2
∈ Ψ1(R × Γ; Ω

1
2 ,Ω

1
2 ) and















σp(A0Op(χ1λ
(e))

Ω
1
2
)(t, τ, ζ) = χ1(t, τ, ζ)(c̃R(x′)‖ζ‖Γ − |τ |)

on T ∗(R × Γ),

σsp(A0Op(χ1λ
(e))

Ω
1
2
)(t, τ, ζ) = σsp(Op(χ1λ

(e))
Ω

1
2
)(t, τ, ζ)

on { (t, τ, ζ) ∈ T ∗(R × Γ) ; χ1(t, τ, ζ) = 1 }.

Note that F̃ (0)Op(χ2)ψ2F1 can be regarded as a pseudo-differential operator on R ×
∂R3

+ since supp [ψ2] ⊂ Br0+2\Br0+1. We take φ5(s) ∈ C∞
0 ((s0−2ε, s0+2ε)) satisfying

φ5(s) = 1 on [s0 − ε, s0 + ε], and set (φ̃5)θ(t, x
′) = φ5(c

−1
R θ · x′ − t). Noting that

(ϕ̃θ )̂ (τ, ξ) = (2π)2δ(ξ + τc−1
R θ)ϕ̂(−τ) and using Proposition 5.4 and Proposition 4.5,

we can rewrite the equation (5.7) as follows:

A0Op(χ1λ
(e))

Ω
1
2
k̃ϕ(t, x′; θ)

≃
(

(2π)−1

∫

R

eiτ(c−1
R θ·x′−t)(φ̃5)θ(t, x

′)a(t, x′, τ)ϕ̂(τ)dτ
)

dV
1
2

R×Γ

with respect to C∞
0 (I) → B∞(It1+5c−1

R
(s0) × Γ; Ω

1
2 ), (5.10)

where a ∈ S1
phg(Rt × R

2
x′ × Rτ ) satisfies

supp [a] ⊂ [−(s0 + t1 + 6c−1
R ),−s0 + t1 + 6c−1

R ] × (Br0+2\Br0+1) × Rτ

and has an asymptotic expansion a ∼ ∑∞
j=0 a1−j with

a1(t, x
′, τ) = α(1)|τ |χ2(t,−τ, x′,

τ

cR
θ)θ · ∇x′ψ̃(x′) (5.11)

(α(1) = c3Rc
−2
S CR

0

√

2πρ0ξ
(1)
R (ξ

(1)
R + ξ

(2)
R )). Namely, the solution kϕ(t, x′; θ) of (5.7) is

obtained from k̃ϕ(t, x′; θ) as follows:

kϕ(t, x′; θ)dV
1
2

R×Γ = k̃ϕ(t, x′; θ). (5.12)

We now construct k̃ϕ(t, x′; θ). For θ = t(θ1, θ2) ∈ S1, we put θ⊥ = t(θ2,−θ1).
We set L±

r0
= { x′ ∈ ∂R3

+ ; θ · x′ = ±(r0 + 3/2), |θ⊥ · x′| ≤ r0 + 1/2 }, L0
r0

= { x′ ∈
∂R3

+ ; θ · x′ = r0 + 3/2, r0 + 1/2 < |θ⊥ · x′| ≤ r0 + 2 }. For any x′0 ∈ L±
r0

, we take a
neighborhood Ux′

0
= { x′ ∈ ∂R3

+ ; |θ · (x′ − x′0)| < δ + 1/2, |θ⊥ · (x′ − x′0)| < δ }, and

for x′1 ∈ L0
r0

, Ux′
1

= { x′ ∈ ∂R3
+ ; |θ · x′| < r0 + 2 + δ, |θ⊥ · (x′ − x′1)| < δ }, where δ > 0

is chosen to be sufficiently small. Let T = c−1
R (r0 + 3/2) + t1 + 8c−1

R , and set

L2,±(Ux′
0
) = { (x′,±c−1

R θ) ∈ T ∗(Γ) ; x′ ∈ Ux′
0
},

L3,±
T (Ux′

0
) = { (s,∓H(hs−τ0

± (ζ)), hs−τ0
± (ζ)) ∈ T ∗(R × Γ) ; |t− τ0| < T, ζ ∈ L2,±(Ux′

0
) },

where τ0 = c−1
R (r0 + 3/2) − s0 and hs

±(ζ)(= h−s
∓ (ζ)) is the phase flow of the Hamil-

tonian ±H(ζ) = ±c̃R(x′)‖ζ‖Γ with h0
±(ζ) = ζ. Note that L3,±

T (Ux′
0
) are Lagrangian

manifolds in T ∗(R × Γ), and that hs
± satisfies

ǏΓ(ht
−(y′,−c−1

R θ)) = ht
+(y′, c−1

R θ) , t ∈ R, y′ ∈ Ux′
0
, (5.13)



SINGULAR SUPPORT OF THE SCATTERING KERNEL 29

(where ǏΓ : ζ = (x′, ζx′) 7→ (x′,−ζx′)).
It follows from (1.2) that if t1(> 0) chosen in section 2 is sufficiently large, then

|πΓ(ht−τ0
± (x′,± c−1

R θ))| ≥ r0 + 1, (5.14)

t ≤ −s0 − t1, x
′ ∈ Ux′

0
, x′0 ∈ L±

r0
∪ L0

r0
,

where πΓ : T ∗(Γ) → Γ is the projection to the base space Γ. Since H(ζ) = cR|ξ| with
ζ = t(x′, ξ) ∈ T ∗(∂R3

+) if |πΓ(ζ)| ≥ r0, the set {(t, τ, ζ) ∈ L3,±
T (Ux′

0
); t ≥ τ0} and L̃3,±

T

(Ux′
0
) = { (t, τ, ζ) ∈ L3,±

T (Ux′
0
) ; t ≤ τ0 − (s0 + t1) } are of the forms

{ (t, τ, ζ) ∈ L3,±
T (Ux′

0
) ; t ≥ τ0 } = { (t,∓1, x′ + cR(t− τ0)θ,±cR−1θ) ; (5.15)

x′ ∈ Ux′
0
, τ0 ≤ t ≤ τ0 + T },

L̃3,±
T (Ux′

0
) = { (τ0 − (s0 + t1) + τ,∓1, zx′ + cRτθx′ ,±cR−1θx′) ; (5.16)

x′ ∈ Ux′
0
,−8 ≤ τ ≤ 0 },

where (zx′ , θx′) is defined by h−(s0+t1)−τ0(x′,±cR−1θ) = (zx′ ,±cR−1θx′). If Ux′
0

is
small enough (i.e. δ > 0 is small enough), we can make the Maslov canonical operator

K±
x′
0

(with the parameter τ) from C∞
0 (L3,±

T (Ux′
0
)) to C∞

0 (R × Γ; Ω
1
2 ), which is used

to construct the asymptotic solution kϕ(t, x; θ). We breafly explain the construction
of K±

x′
0

here.

We choose an open set Ũx′
0

with Ux′
0
⊂ Ũx′

0
, and define L3,±

T (Ũx′
0
) and L̃3,±

T (Ũx′
0
)

in the same way as L3,±
T (Ux′

0
) and L̃3,±

T (Ux′
0
), respectively. We put

r±(t, y′) = (t,∓H(ht−τ0
± (y′,±c−1

R θ)), ht−τ0
± (y′,±c−1

R θ)) ((t, y′) ∈ R × Ũx′
0
).

We can choose connected open sets O±
j ⊂ L3,±

T (Ũx′
0
) (j = 0, 1, . . . , Nx′

0
) with following

properties:

(i) The closure of L3,±
T (Ux′

0
) in T ∗(R × Γ) is contained in ∪

Nx′
0

j=1O±
j .

(ii) O±
j ∩ O±

k 6= ∅ for |j − k| ≥ 2, { (t, τ, ζ) ∈ L3,±
T (Ux′

0
) ; t ≥ τ0 } ⊂ O±

0 and

L̃3,±
T (Ux′

0
) ⊂ O±

Nx′
0

.

(iii) There exists a local coordinate system Vj of Γ such that π̃Γ(O±
j ) ⊂ Vj , where

π̃Γ : T ∗(R × Γ) → Γ is the projection.
(iv) For Vj in (iii), T ∗(Vj) ∋ ζ 7→ (x(j)(ζ), p(j)(ζ)) ∈ Rn−1 × Rn−1 denotes the

local coordinate system of T ∗(Γ) induced by Vj . There exists a subset Kj =
{i1, i2, · · · , i|Kj|} ⊂ {1, 2, . . . , n− 1} such that

O±
j ∋ r±(s, y′) 7→ (s, x

(j)
K′

j
(hs−τ0

± (y′,±cR−1θ)),

p
(j)
Kj

(hs−τ0
± (y′,±cR−1θ))) ∈ R × R

n−1

is a local coordinate system, where K ′
j = {1, 2, . . . , n − 1} \ Kj(=

{j1, j2, · · · , j|K′
j|
}) and x

(j)
K′

j
(ζ) = (x

(j)
j1

(ζ), x
(j)
j2

(ζ), . . . , x
(j)
j|K′

j
|
(ζ)), p

(j)
Kj

(ζ) =

(p
(j)
i1

(ζ), p
(j)
i2

(ζ), . . . , p
(j)
i|Kj |

(ζ)).

Let gj(x
′)(> 0) be a C∞-function on R×Vj defined by dVR×Γ = g

1
2

j (x′)|dt∧dx(j)|.
We denote by dV± the pull back of dVR×Γ by C∞- immersion in L3,±

T (Ũx′
0
) ∋ r(t, y′) 7→
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(t, y′) ∈ R× Ũx′
0
. Let J±

j (r) be a C∞-function on O±
j given by dV± = (J±

j (r))−1|dt∧
dx

(j)
K′

j
∧ dp(j)

Kj
|.

For each local coordinate system O±
j given above, we define the precanonical

operators K±(O±
j ,Kj) : C∞(O±

j ) → C∞
0 (R × Γ) and K̃±(O±

j ,Kj) : C∞(O±
j ) →

C∞
0 (R × Γ; Ω

1
2 ) by

(K±(O±
j ,Kj)ϕ)(t, x′) = χj(x

′)g
1
4

j (x′)

F
τ ;p

(j)
Kj

→x
(j)
Kj

[eiτ(S̃±(r)−t)

J±
j (r)

ϕ(r)
∣

∣

∣

r=r±(t,x
(j)

K′
j
,p

(j)
Kj

)

]

(t, x′) (±τ >> 1)

(5.17)

and K̃±(O±
j ,Kj)ϕ = K±(O±

j ,Kj)dV
1
2

R×Γ, where χj ∈ C∞
0 (Vj) with χj = 1 near

π̃(O±
j ), r±(t, x

(j)
K′

j
, p

(j)
Kj

) is the inverse of the local coordinate system of O±
j introduced

in (iv), and

F
τ ;p

(j)
Kj

→x
(j)
Kj

[f(t, xK′
j
, pKj)] =

( |τ |
2π

)|Kj |/2
∫

R
|Kj |

e
iτx

(j)

K′
j
·p

(j)
Kj f(t, x

(j)
K′

j
, p

(j)
Kj

)dp
(j)
Kj
.

In (5.17), the phase function S̃±(r) corresponding to the Lagrangian manifold
L3,±

T (Ũx′
0
) is given by the integral of the canonical one-form on L3,±

T (Ux′
j
): S±

j (r) =

±
∫ r

r0
pdq + c−1

R θ · y′ (r = r±(t, y′)).

Using these K̃±(O±
j ,Kj), we define the Maslov canonical operator K±

x′
0

by

K±
x′
0
[k](t, x′) =

Nx′
0

∑

j=0

eiσ(O±
j )K̃±(O±

j ,Kj)[χ̃jk](t, x
′) (k ∈ C∞

0 (L3,±
T (Ux′

0
))),

where χ̃j ∈ C∞
0 (O±

j ) with
∑Nx′

0
j=0 χ̃j = 1 on L3,±

T (Ux′
0
), and σ(O±

j ) are real constants
given by the Maslov index.

The basic properties of the Maslov canonical operator K±
x′
0

are as follows:

Proposition 5.6. (i) For any k ∈ C∞
0 (L3,±

T (Ux′
0
)) and [a, b] ⊂ IT (s0) (a, b ∈ R),

we have

‖K±
x′
0
k‖2

L2([a,b]×Γ;Ω
1
2 )

=

∫

[a,b]×Ux′
0

∣

∣k(s,∓1, hs−τ0
± (x′,±c−1

R θ))
∣

∣

2
dsdx′ +O(τ−1) as τ → ∞.

(ii) For any A ∈ Ψm
phg(R × Γ; Ω

1
2 ,Ω

1
2 ), there exist pseudo-differential operators W±

l

on L3,±
T (Ux′

0
) of order less than 2l such that for any N ∈ N and m′ ≥ 0

(AK±
x′
0
k)(t, x′) = K±

x′
0
[

N−1
∑

l=0

(iτ)m−lW±
l k](t, x

′) + (RN,τk)(t, x
′),

‖RN,τk‖
Hm′ (IT (s0)×Γ;Ω

1
2 )

= O(|τ |m+m′−N ) (for k ∈ C∞
0 (L3,±

T (Ux′
0
)) ).



SINGULAR SUPPORT OF THE SCATTERING KERNEL 31

Note that W±
0 k(r) = i−mσp(A)(r)k(r) (for r ∈ L3,±

T (Ux′
0
)).

(iii) If A = A0Op(χ1λ
(e))

Ω
1
2

in (ii), we obtain

W±
1 k(r) = i−1

{( d

ds

)

±
+ iσsp(λ

(e))(r)
}

k(r) (for r ∈ L3,±
T (Ux′

0
) with χ1(r) = 1),

where
(

d
ds

)

±
denotes the differentiation along the phase flow hs

±, and σsp(λ
(e))(r)

denotes the subprincipal symbol of the operator Op(χ1λ
(e))

Ω
1
2

on the set {r ∈ T ∗(R×
Γ) : χ1(r) = 1}.

Using the stationary phase methods (cf. Matsumura [13]), we can obtain Propo-
sition 5.6 by the same methods as in Ichinose [3, 4] or Maslov and Fedoriuk [12].

As shown later, k̃ϕ(t, x′; θ) is made by summing up the approximate solutions lx′
0

of the equations

A0Op(χ1λ
(e))

Ω
1
2
lx′

0
(t, x′; τ)

− eiτ(c−1
R θ·x′−t)(φ̃5)θ(t, x

′)a(t, x′, τ)ψx′
0
(x′)dV

1
2

R×Γ = O(|τ |−∞), (5.18)

where ψx′
0

is a cutoff function in C∞
0 (Ux′

0
) that is determined later. We can

make this approximate solution lx′
0
(t, x′; τ) by constructing its asymptotic expan-

sion lx′
0
(t, x′; τ) ∼ ∑∞

j=1K
±
x′
0

[

φ6(πR(r))l̃x′
0,j(r, τ) (i|τ |)1−j

]

. Here, πR is the mapping:

r = (t, τ, ζ) 7→ t, φ6(t) is a cutoff function in C∞
0 (R) that satisfies 0 ≤ φ6 ≤ 1,

φ6(t) = 1 if |t + s0| ≤ t1 + 5c−1
R and φ6(t) = 0 if |t + s0| ≥ t1 + 6c−1

R , and l̃x′
0,j

(j = 0, 1, . . .) are determined inductively as follows. Let ã1−j(r, τ) be the lift of

(φ̃5)θ(t, x
′)a1−j(t, x

′, τ)ψx′
0
(x′) to the Lagrangian manifold L3,±

T (Ux′
0
). Noting that

supp [ψx′
0
] ⊂ Ux′

0
⊂ ∂R

3
+ \ Br0 , O±

0 ⊂ T ∗(R × ∂R
3
+) and chooseing K0 = ∅, by

Proposition 5.6 we have the following equations of l̃x′
0,j(r, τ) (j = 0, 1, . . .):

i−1
{( d

ds

)

±
+ iσsp(λ

(e))(r)
}

l̃x′
0,0(r, τ) = i−1ã1(r, τ)|τ |−1, (5.19)

i−1
{( d

ds

)

±
+ iσsp(λ

(e))(r)
}

l̃x′
0,j(r, τ) = ij−1ã1−j(r, τ)|τ |j−1 (5.20)

−
j−1
∑

p=0

W±
j+1−p l̃x′

0,p(r, τ) (j = 1, 2, . . .).

Using these solutions l̃x′
0,j(r, τ), we set the function

l
(N)
x′
0

(t, x′; τ) =

N
∑

j=0

K±
x′
0

[

φ6(πR(r))l̃x′
0,j(r, τ)(i|τ |)1−j

]

(±τ > 1)

for any non-negative integer N . Then, it follows that

‖Op(χ1λ
(e))

Ω
1
2
l
(N)

x
′
0

− e
iτ(c

−1
R θ·x′−t)(φ̃5)θ(t, x

′)a(t, x′
, τ )ψx′

0
(x′)dV

1
2

R×Γ‖
Hm(I

t1+5c
−1
R

(s)×Γ;Ω
1
2 )

= O(|τ |m−N ) as |τ | → ∞.
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Thus, choosing l̃x′
0
(r, τ) ∼ ∑∞

j=0 l̃x′
0,j(r, τ)(i|τ |)1−j , we obtain the approximate solu-

tion lx′
0
(t, x′; τ) of (5.18) by

lx′
0
(t, x′; τ) = K±

x′
0

[

φ6(πR(r))l̃x′
0
(r, τ)

]

(t, x′) (±τ > 1). (5.21)

Since L+
r0

∪ L−
r0

∪ L0
r0

is a compact set, we can take a finite number of points
x′1, . . . , x

′
N0

∈ L+
r0

and x′N0+1, . . . , x
′
N1

∈ L−
r0

∪ L0
r0

such that the open sets Ux′
j
∋ x′j

(j = 1, 2, . . . , N1) consist of a finite open covering of L+
r0

∪L−
r0

∪L0
r0

in each of which
the construction of the approximate solution of (5.18) is valid. We choose a partition

{ψx′
j
}j=1,...,N1 of unity with supp [ψx′

j
] ⊂ Ux′

j
and

∑N1

j=1 ψx′
j
ψ̃ = ψ̃, and construct the

same approximate solutions lx′
j
(t, x′, τ) (j = 1, 2, . . . , N1) in each Ux′

j
(replacing ψ′

x0

with ψ′
xj

) as shown in (5.18). Then, we see that the function

k̃ϕ(t, x′; θ) =
1

2π

∫

R

N1
∑

j=1

lx′
j
(t, x′, τ)φ7(τ)ϕ̂(τ)dτ (5.22)

is the required solution for (5.10), where φ7(τ) is a C∞ function satisfying 0 ≤ φ7 ≤ 1,
φ7(τ) = 1 if |τ | ≥ 2 and φ7(τ) = 0 if |τ | ≤ 1. Thus, we finish the construction of all
the approximate solutions introduced in sections 2 and 3.

At the end of this section, we explain the properties of k̃ϕ(t, x′; θ) that are needed

later for proof of the main theorems. We see from the construction of k̃ϕ that

supp[k̃ϕ] ⊂ [−(s0 + t1 + 6c−1
R ),−s0 + t1 + 6c−1

R ] × (Br3 ∩ Γ)

for a constant r3 > 0 depending only on t1 > 0. The mapping: (s, y′) 7→ (s, hs−τ0
± (y′,

±c−1
R θ)) is diffeomorphic for s ≤ −s0 − t1 and y′ ∈ Ux′

j
(j = 1, 2, . . . , N1). If

hs̃
+(y′, c−1

R θ) ∈ T ∗(Γ)|(Br0 )c , we can write hs̃
+ in the form hs̃

+(y′, c−1
R θ) = (q(s̃, y′, c−1

R θ),

p(s̃, y′, c−1
R θ)). Set X(s, y′) = πΓ(hs−τ0

+ (y′, c−1
R θ)), and Θ(y′) = cRp(−s0 − t1 −

τ0, y, c
−1
R θ). Then, using (5.13), we haveX(s, y′) = πΓ(hs−τ0

− (y′,−c−1
R θ)); using (5.16),

X(t, y′) = X(−s0 − t1, y
′) + cR(t+ s0 + t1)Θ(y′) (for t ≤ −s0 − t1).

From (5.16), we can take KNx′
0

= ∅. Hence, each lx′
j
(t, x′, τ) in (5.22) satisfies

lx′
j
(t, X̃(t, y′), τ) = K±

x′
j

[

φ6(πR(r))l̃x′
j
(r, τ)

]

(t, X̃(t, y′)) (5.23)

=
e−

π
2 imj

| det(∂X
∂y′ )(t, y′)|1/2

eiτ(S±
j (t,y′)−t)φ6(t)l̃x′

j
(r(t, y′), τ) (±τ > 0),

where S±
j (t, y′) = S̃±

j (r±(t, y′)), and mj is the Morse index of the path γ
(j)
+ (t, y′) :

[−s0 − t1, τ0] ∋ s 7→ r+(s, y′) ∈ L3,+
T (Ux′

j
). Note that mj coincides with the Morse

index of the path γ
(j)
− (t, y′) : [−s0 − t1, τ0] ∋ s 7→ r−(s, y′) ∈ L3,−

T (Ux′
j
) since (5.13)

yields ǏR×Γ(L3,−
T (Ux′

j
)) = L3,+

T (Ux′
j
).

From (5.13), we see that S+
j (t, y′) = S−

j (t, y′). We write Sj(t, y
′) = S+

j (t, y′) =

S−
j (t, y′). Sj(t, y

′) is expressed of the form

Sj(t, y
′) =

∫

γ
(j)
+ (t,y′)

pdq + c−1
R θ · y′. (5.24)
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Note that it follows from (5.19), (5.20) and (5.15) that for any i = 0, 1, . . .

supp[lx′
j ,i(π

−1(·, ·), τ)] ⊂ { (t, πΓ(ht−τ0
± (y′,±c−1

R θ))) ∈ R × Γ ;

t ≤ τ0, y
′ ∈ Ux′

j
, y′ + cR(s− τ0)θ ∈ supp[ψx′

j
] (for some s ≥ τ0 − 2c−1

R ), (5.25)

|c−1
R θ · y′ − (τ0 + s0)| ≤ 2ǫ }.

For ω, θ ∈ S1 and y′ ∈ Γ ∩ (Br0)
c, we put

s−θ (ω; y′) = lim
t→−∞

(c−1
R q(t− c−1

R θ · y′, y′, c−1
R θ) − tcRp(t− c−1

R θ · y′, y′, c−1
R θ)) · ω.

Then, using (5.14) and the equality H(y′, ξ) = cR|ξ| for (y′, ξ) ∈ T ∗(Γ)|(Br0 )c , we have

s−θ (ω; y′) = c−1
R ω · πΓ(ht−τ0

± (y′,±c−1
R θ)) − (t+ c−1

R θ · y′ − τ0)ω · Θ(y′) (5.26)

for t ≤ −s0 − t1. Furthermore, using c−1
R θ · x′j = s0 + τ0, we obtain

c−1
R ω · πΓ(ht−τ0

± (y′,±c−1
R θ)) = s0 + s−θ (ω; y′) + t+ c−1

R θ · (y′ − x′j) (5.27)

+ (ω · Θ(y′) − 1)(t− τ0 + c−1
R θ · y′).

Since it follows from (5.27) that c−1
R ω ·πΓ(ht−τ0

± (y′,±c−1
R θ)) ≥ s0+s−θ (ω; y′)+t−2ǫ for

t ≤ −s0 − t1, and from the defnitions of s−θ (ω; y′) and s+ω (θ) that s−θ (ω; y′) ≥ −s+ω (θ),
we have by (5.25)

{ω · x′ ; x′ ∈ supp [lx′
j
(t, ·, τ)] } ⊂ [cRt+ cR(s0 − s+ω (θ) − 2ǫ),∞) (5.28)

(for τ ∈ R, t ≤ −s0 − t1).

6. Singularities of SRR(s, θ, ω). In this section we study singularities of
SRR(s, θ, ω). According to Theorem 3.1, we have only to examine J0(ϕ). We have
(∂t − cR∂ω)vR

ϕ (t, x; θ)
∣

∣

x3=0
= (∂t − cR∂ω)vR,b

ϕ (t, x; θ)
∣

∣

x3=0
since vR

ϕ (t, x; θ)|x3=0 =

vR,b
ϕ (t, x; θ)|x3=0 (cf. (4.4), (4.3)) and the derivative ∂ω =

∑2
i=1 ωi∂xi is tangent

to supp[ψ2] ∩ Γ. This fact, (4.21) and Theorem 3.1 imply that

J0(ϕ) ≃ −
∫

Γ

φ2(s)∂sφ1(s)ψ̃(x′)

tG1

[

φ0(s)ψ1(x
′)(∂t − cR∂ω)vR,b

ϕ (t, x′; θ)
]

∣

∣

∣

t=c−1
R ω·x′

dSx′ (6.1)

with respect to C∞
0 (I) → C.

Noting that t1 > −s0 + c−1
R (r0 + 5) and (4.23), we have

ess.supp tG1 ∩ { (t, τ, x′, ξ) ∈T ∗(R × ∂R
3
+) ; t = c−1

R ω · x′, |x′| ≥ r0 + 1}
⊂ { (t, τ, x′, ξ) ; ω · x′ ≤ −(r0 + 6) }. (6.2)

Proposition 4.5 and (6.2) yield
∫

Γ

φ2(s)∂sφ1(s)ψ̃(x′)tG1

[

φ0(s)ψ1(x
′)(∂t − cR∂ω)

Op(χ1)Q̃Op(χ2)ψ2F1ϕ̃θ

]

∣

∣

∣

t=c−1
R ω·x′

(t, x′)dSx′ ≃ 0.
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Hence, using (5.9), (5.8) and (6.1), we obatin

J0(ϕ) ≃ −
∫

Γ

φ2(s)∂sφ1(s)ψ̃(x′)tG1

[

φ0(s)ψ1(x
′)(∂t − cR∂ω)

Op(χ1)Ẽ
(0)kϕ

]

(c−1
R ω · x′, x′)dSx′ . (6.3)

Put D = −φ2(s)∂sφ1(s)ψ̃(x′)
(

tG1φ0(s)ψ1(x
′)(∂t − cR∂ω)Op(χ1)Ẽ

(0)
)

Ω
1
2

∈
Ψ0

phg(R × Γ; Ω
1
2 , Ω

1
2 ), and define the map I

Ω− 1
2

: C∞
0 (R × Γ; Ω

1
2 ) 7→ C∞

0 (R × Γ; C)

by (I
Ω− 1

2
f)dV

R×Ω
1
2

= f . Since φ0(s) = 1 in a neighborhood of supp [φ2∂tφ1], and

ψ1(x
′) = 1 in a neighborhood of supp [ψ̃], using (4.23) and (5.12), we can regard (6.3)

as

J0(ϕ) ≃
∫

Γ

(

I
Ω− 1

2
D(φ0ψ1k̃ϕ(·, ·; θ))

)

∣

∣

∣

t=c−1
R ω·x′

dSx′ .

From (4.22) and Lemma 5.3, the principal symbol σp(D) of D is of the form

σp(D)(t, τ, x′, ξ) = iα(0)χ1(t, τ, x
′, ξ)φ0(t)ψ1(x

′)(τ − cRω · ξ)|e0,(0)
0 (τ, ξ)|−1

∫ ∞

0

t
(

V
(0)
− (y3;−τ,−ξ)e0,(0)

0 (−τ,−ξ)
)

V
(0)
− (y3;−τ,−ξ)e0,(0)

0 (τ, ξ)dy3.

From (iv) of Proposition 4.1, it follows that e
0,(0)
0 (−τ,−ξ) = e

0,(0)
0 (τ, ξ). Noting that

the constant CR
0 in φR

0 is chosen so that ‖φ(R)
0 (x′, ·; τ, θ̃)‖2

L2([0,∞)) = 2πρ0cR|τ |−1 (cf.

(2.2)), and using (4.8) and the equality 2cRα
(0)|e0,(0)

0 (−τ,−τc−1
R θ̃)| = α(1) (for any

τ ∈ R and θ̃ ∈ S1), we obtain

σp(D)(t, τ, x′, ξ)
∣

∣

ξ=−τc−1
R θ̃

= 4πiρ0c
2
R(α(1))−1φ0(t)ψ1(x

′)|τ |−1τ (6.4)

(1 + ω · θ̃)χ1(t, τ, x
′,−τc−1

R θ̃).

(5.22), (5.21) and Proposition 5.6 yield

J0(ϕ) ≃
N1
∑

j=1

∫

∂R3
+

φ2(t)∂tφ1(t)ψ̃(x′)

{

∫ ∞

0

I
Ω− 1

2

{

K+
x′

j

[

N
∑

q=0

bj,q(r, 1)(i|τ |)1−q
]

(t, x′)
}

|t=c−1
R ω·x′φ7(τ)ϕ̂(τ)dτ (6.5)

+

∫ 0

−∞

I
Ω− 1

2

{

K−
x′

j

[

N
∑

q=0

bj,q(r,−1)(i|τ |)1−q
]

(t, x′)
}

|t=c−1
R ω·x′φ7(τ)ϕ̂(τ)dτ

}

dx′

+RN (ϕ).

In (6.5), each bj,q(r, τ) ∈ C∞
0 (L3,±

T (Ux′
0
)) (q = 0, 1, 2, . . .) is homogeneous of order 0

with respect to τ (|τ | ≥ 1), and bj,0 is of the form

bj,0(r, τ) = (2π)
−1
φ6(πR(r))σp(D)(r)lx′

j ,0(r, τ). (6.6)

The remainder terms RN (ϕ) in (6.5) are given by

RN (ϕ) =

∫

∂R3
+

∫

R

N1
∑

j=1

RN,τ,j(c
−1
R ω · x′, x′)φ7(τ)ϕ̂(τ)dτdx′,
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where RN,τ,j ∈ C∞
0 (R × Γ; C) satisfies supp [RN,τ,j] ⊂ supp [φ0] × (supp [ψ1]∩Br1)

and

‖RN,τ,j‖H2(I
t1+6c

−1
R

(s0)
×Γ) ≤ CN,j(1+ |τ |)2−N (for any τ ∈ R and j,N = 1, 2, . . .).

Hence, we have |RN (ϕ)| ≤ CN‖ϕ‖H2−N (R) (for any ϕ ∈ C∞
0 ((s0 − ǫ, s0 + ǫ))), which

means that the distributions RN belong to HN−2(s0 − ǫ, s0 + ǫ).
From (4.23), it follows that π(supp[bj,q]) ⊂ [−s0− (t1 +3c−1

R ),−s0− (t1 + c−1
R )]×

(Br0+1)
c since ess.suppD ⊂ (supp[φ] × supp[ψ̃]) × R3

(τ,ξ). This fact, (5.23) and (6.5)
imply that

J0(ϕ) ≃
N1
∑

j=1

N−1
∑

q=0

Ij,q(ϕ) +RN (ϕ) with respect to C∞
0 (I) → C, (6.7)

where

Ij,q(ϕ) =

∫

R

∫

∂R3
+

φ2(t)∂tφ1(t)ψ̃(x′)
{

eiτ(S̃j(t,x
′)−t)b̃j,q(t, x

′, τ)
}

∣

∣

∣

t=c−1
R ω·x′

(6.8)

(iτ)1−qφ7(τ)ϕ̂(τ)dτdx′.

Here, b̃j,q(t, x
′, τ) are defined by

b̃j,q(t,X(t, y′), τ)

= e−imjπ/2bj,q(r
±(t, y′), τ)(τ |τ |−1)q−1| det(∂y′X(t, y′))|−1/2 (±τ > 0),

and S̃j(t, x
′) are defined by S̃j(t,X(t, y′)) = Sj(t, y

′) for t ∈ R and y′ ∈ Ux′
j

(where

Sj(t, y
′) are defined in (5.24)).

Proof of Theorem 1.1. Let s0 > s+ω (θ). We choose ǫ > 0 with ǫ′ = s0−s+ω (θ)−3ǫ >
0. From (5.28), we have { c−1

R ω · x′ ; (t, x) ∈ supp [b̃j,p] } ⊂ (t+ ǫ′,∞) for any j and q;

this means that b̃j,p(c
−1
R ω · x′, x′) = 0. Thus, using (6.7) and (6.8), we have J0(ϕ) ≃

RN (ϕ). From this fact and Theorem 3.1, we obtain s0 /∈ sing.supp̃[SRR(·, θ, ω)], which
completes the proof of Theorem 1.1.

To show Theorem 1.2, we need more precise forms of the oscillatory integrals in
(6.8). We put Kj(t, y

′, ω, θ) = s0 + s−θ (ω; y′) + (t − τ0)(ω · Θ(y′) − 1) + c−1
R θ · (ω ·

Θ(y′)y′−x′j). From (5.27), Kj(t
′, y′, ω, θ) = 0 is equivalent to c−1

R ω ·X(t′, y′)− t′ = 0.
This fact and (5.25) imply that

suppx′

[

∪∞
q=0 b̃j,q(c

−1
R ω · x′, x′, τ)

]

⊂ {x′ ∈ ∂R
3
+ ; x′ = X(t′, y′) for (t′, y′)

∈ R × supp[ψx′
j
], |c−1

R θ · (y′ − x′j)| ≤ 2ǫ, Kj(t
′, y′, ω, θ) = 0 }.

Hereafter, we fix s0 as s0 = s+ω (θ). We define M−
θ (ω) and s−ω (θ) by

M−
θ (ω) = { y′ ∈ Γ ; θ · y′ = r0, lim

t→−∞
p(t− c−1

R r0, y
′, c−1

R θ) = c−1
R ω } and

s−θ (ω) = inf
y′∈M−

θ (ω)
lim

t→−∞
(c−1

R q(t− c−1
R r0, y

′; θ) · ω − t) (= inf
y′∈M−

ω (θ)
s−θ (ω; y′)).

From the definitions of s+ω (θ) and s−θ (ω), we obtain s0 = −s−θ (ω). We put

M̃−
θ (ω) = { y′ ∈ ∂R3

+ ; c−1
R θ · y′ = s, s ≥ c−1

R r0, limt→−∞ p(t − s, y′, c−1
R θ) = c−1

R ω }
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and M−,max
θ (ω) = { y′ ∈ M̃−

θ (ω) ; s−θ (ω; y′) = s−θ (ω) }. From the assumption (1.2)
and H(y′, ξ) = cR|ξ| for (y′, ξ) ∈ T ∗(Γ)|(Br0 )c , we can see that q(t − s − c−1

R r0, y
′ +

cRsθ, c
−1
R θ) · ω − t is independent of t, s and y′ ∈ M−

θ (ω) if −t (> 1) is sufficiently
large and s ≥ 0. This implies that s−θ (ω) = infy′∈M̃−

θ (ω) s
−
θ (ω; y′) = s−θ (ω; y′) for

any y′ ∈ M−,max
θ (ω). The sets Uj,ǫ = { y′ ∈ Ux′

j
; |s−θ (ω; y′) − s−θ (ω)| < ǫ } are open

neighborhoods of supp [ψx′
j
] ∩M−,max

θ (ω) since s−θ (ω; y′) is C∞ in y′ ∈ Ux′
j
.

We put ỹ′(z) = θ · x′jθ + zθ⊥, Uj,ǫ = { z ∈ R ; ỹ′(z) ∈ Uj,ǫ }, and Umax
j,ǫ = { z ∈

Uj,ǫ ; ỹ′(z) ∈M−,max
θ (ω) }. We also define X̃(t, z) and t(s, z) by X̃(t, z) = X(t, ỹ′(z))

and t(s, z) = c−1
R ω · X̃(s, z). Since X̃(s, z) = X̃(−s0 − t1, z) + cR(s+ s0 + t1)Θ(ỹ′(z))

for s ≤ −s0 − t1, s0 + s−θ (ω; ỹ′(z)) = 0 for z ∈ Umax
j,ǫ and Θ(ỹ′(z)) = ω, using (5.27),

we have s = c−1
R ω · X̃(s, z). Thus, if ǫ > 0 is chosen to be sufficiently small, we have

0 ≤ t(s, z) − s ≤ c−1
R /2 for z ∈ Uj,ǫ and s satisfying −s0 − t1 − 8c−1

R ≤ s ≤ −s0 − t1.
This fact and the equality hs−τ0

+ (ỹ′(z) + cRrθ, c
−1
R θ) = hs+r−τ0

+ (ỹ′(z), c−1
R θ) (s, r ∈ R,

|r| < 1, z ∈ Uj,ǫ) imply that

X(t(s, z), ỹ′(z) − cR(t(s, z) − s)θ) = X̃(s, z) and t(s, z) = c−1
R ω · X̃(s, z) (6.9)

(for z ∈ Uj,ǫ and s satisfying −s0 − t1 − 8c−1
R ≤ s ≤ −s0 − t1).

Since Kj(t, y
′, ω, θ) = c−1

R ω ·X(t, y′) − t (cf. (5.27)), X̃(t, z) = X̃(−s0 − t1, z) +

cR(t + s0 + t1)Θ(ỹ′(z)) for t ≤ −s0 − t1, and X̃(t + r, z) = X(t, ỹ′(z) + cRrθ), the
solution y′ = G(t, z) of the equation Kj(t, y

′, ω, θ) = 0 (in y′) is of the form G(t, z) =
cRg(t, z)θ + ỹ′(z), where

g(t, z) = −s0 − t1 − t+
1

ω · Θ(ỹ′(z))

{

t− c−1
R ω · X̃(−s0 − t1, z)}

for z ∈ Uj,ǫ = { z ∈ R ; ỹ′(z) ∈ Uj,ǫ }.

We put s(t, z) = t + g(t, z). Then, noting that G(t, z) = cR(t − s(t, z))θ + ỹ′(z) and
X(t, G(t, z)) = X(t, ỹ′(z) − cR(t− s(t, z))θ), we obtain

X(t, ỹ′(z) − cR(t− s(t, z))θ) = X̃(s(t, z), z) and t = c−1
R ω · X̃(s(t, z), z). (6.10)

From (6.9) and (6.10), it follows that t(s(t′, z), z) = c−1
R ω · X̃(s(t′, z), z) = t′. We also

have s(t(s′, z), z) = s′. Indeed, (6.9) and (6.10) imply that c−1
R ω · X̃(s′, z) = t(s′, z) =

c−1
R ω · X̃(s̃, z) for s̃ = s(t(s′, z), z). Since X̃(s′, z) = X̃(−s0 − t1, z) + cR(s′ + s0 +

t1)Θ(ỹ′(z)) and X̃(s̃, z) = X̃(−s0 − t1, z) + cR(s̃+ s0 + t1)Θ(ỹ′(z)), we obtain s̃ = s′.
Now we show that the map X̃ : (−∞,−s0 − t1] × ∪N1

j=1Uj,ǫ → (Br0)
c is injective

if ǫ > 0 is sufficiently small. It suffices to show that t = t′ and z = z′ for any t, t′ ≤
−s0−t1 and z, z′ ∈ ∪N1

j=1Umax
j,ǫ that satisfies X̃(t, z) = X̃(t′, z′). If this is the case, note

that t = c−1
R ω · X̃(t, z) = c−1

R ω · X̃(t′, z) = t′, i.e., t = t′. Set x′ = X̃(t, z) = X̃(t′, z′).
Then, noting that hs−t(x′, c−1

R ω) = hs−τ0(ỹ′(z), c−1
R θ) (s ∈ R), we have z = z′.

Lemma 6.1. Let s ≤ −s0 − t1 and z ∈ Uj,ǫ (j = 1, . . . , N1). Then, we obtain
(i) {Sj(c

−1
R ω · x′, x′) − c−1

R ω · x′}|x′=X̃(s,z) = s0 + s− t(s, z),

(ii)
∣

∣

∣ det
∂X

∂y′
(t, G(t, z))

∣

∣

∣ =
∣

∣

∣det
∂X̃

∂(t, z)
(t, z)

∣

∣

∣ =
∣

∣

∣

∂X̃

∂z
(t, z)

∣

∣

∣.

Proof. The restriction of the canonical 1-form p·dq on L3,+
T (Ux′

j
) is represented

by the form (p·∂tq)dt +
∑2

k=1(p·∂yk
q)dyk in the coordinate of L3,+

T (Ux′
j
) given by
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(t, y′) 7→ r+(t, y′). Since the tangent vector ṙ+(t, y′) (= ∂
∂tr

+(t, y′)) means ∂
∂t in

the coordinate (t, y′), p·dq(ṙ+(t, y′)) is equal to p·∂tq(r
+(t, y′)). Noting that ṙ+(t, y′)

is represented by ṙ+(t, y′) = t(1, 0, Hp,−Hq) in every canonical coordinate, we get
p·dq(ṙ+(t, y′)) = p · Hp = H = 1 since H is homogeneous of order 1 with respect to
p and H(q, p) = H(y′, c−1

R θ) = 1. Thus, we obtain p·∂tq(r
+(t, y′)) = 1 for any (t, y′).

This fact and (5.24) imply that Sj(t, y
′) = c−1

R θ · y′ + t − τ0. Hence, from (6.9) we
have

{Sj(c
−1
R ω · x′, x′) − c−1

R ω · x′}|x′=X̃(s,z) =
{

S̃j(t, X̃(s, z)) − t
}

∣

∣

∣

t=c−1
R ω·X̃(s,z)

= Sj(t(s, z), X(t(s, z), ỹ′(z) − cR(t(s, z) − s)θ)) − t(s, z) = s0 + s− t(s, z).

Next, we show (ii). Since p·dq is a closed form on L3,+
T (Ux′

j
), we have ∂yk

(p·∂tq) =

∂t(p · ∂yk
q) for k = 1, 2. Hence, p · ∂yk

q are independent of t, which implies that

∂X̃

∂z
(t, z) · Θ(ỹ′(z)) = 0 (6.11)

since ht−τ0
+ (ỹ′(z), c−1

R θ)|t=τ0 = (ỹ′(z), c−1
R θ). Differentiating (6.10) in z and noting

that ∂sX̃(s, z) = cRΘ(ỹ′(z)), we obtain

∂X

∂y′
(

θ⊥ + (∂zs)θ
)

= cR(∂zs)Θ(ỹ′(z)) + ∂zX̃, (6.12)

where ∂X
∂y′ =

(

∂Xi

∂yj

∣

∣

i ↓ 1,2

j→1,2

)

. For λ ∈ R near 0, we have X(t, y′ + cRλθ) = X(t+λ, y′),

which yields

∂X

∂y′
θ = Θ(ỹ′(z)). (6.13)

From (6.12) and (6.13), it follows that

∂X

∂y′

(

θ, θ⊥ + (∂zs)θ
)

=
(

Θ(ỹ′(z)), cR(∂zs)Θ(ỹ′(z)) + ∂zX̃
)

,

which implies that

∣

∣

∣det
∂X

∂y′
(t, G(t, z))

∣

∣

∣

2

=
∣

∣

∣det
(

Θ(ỹ′(z)), ∂zX̃
)∣

∣

∣

2

=
∣

∣

∣det
{

t
(

Θ(ỹ′(z)), ∂zX̃
)(

Θ(ỹ′(z)), ∂zX̃
)}∣

∣

∣.

From this equality and (6.11), we obtain (ii) of Lemma 6.1.

We change the variable x′ = X̃(s, z) in the integral (6.8). Since supp [φ2∂tφ1]
⊂ [−s0 − t1 − 2c−1

R ,−s0 − t1 − c−1
R ], it follows from Lemma 6.1 that

Ij,q(ϕ) =

∫

R

dτ

∫

R

ds

∫

Uj,ǫ

dzeiτ(s0+s−t(s,z))η(s, z)βj,q(s, z, τ)(iτ)
1−qφ7(τ)ϕ̂(τ),

(6.14)
where βj,q(s, z, τ) = b̃j,q(r

±(t(s, z), ỹ′(z)), τ) |∂zX̃(s, z)| (τ 6= 0) and η(s, z) =

φ2(t(s, z)) ∂tφ1(t(s, z)) ψ̃(X̃(s, z)).
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Note that the subprincipal symbol σsp(λ(e)) of Op(χ1λ
(e))

Ω
1
2

∈ Ψ1
phg(R ×

Γ; Ω
1
2 ,Ω

1
2 ) is a real-valued function on { (t, τ, ζ) ∈ T ∗(R × Γ) ; χ1(t, τ, ζ) = 1 }.

Indeed, multiplying (Ẽ(0))∗ (resp. Ẽ(0)) to (5.2) from the left (resp. right)
side, and noting that (i) of Proposition 5.4, we have (Ẽ∗Op(χ1)Ẽ

(0))∗Op(χ1λ
(e)) −

(Op(χ1λ
(e)))∗Ẽ∗Op(χ1)Ẽ

(0) ∈ Ψ−∞(R × Γ). Since σp(Ẽ
∗)σp(Ẽ − Ẽ(0)) = 0 yields

Ẽ∗Op(χ1)(Ẽ − Ẽ(0)) ∈ Ψ−2
phg(R × Γ), we obtain

(Ẽ∗Op(χ1)Ẽ)∗Op(χ1λ
(e)) − (Op(χ1λ

(e)))∗Ẽ∗Op(χ1)Ẽ ∈ Ψ−1
phg(R × Γ).

This fact and Proposition 5.1 imply σsp(λ
(e)) = σsp(λ(e)) on { (t, τ, ζ) ∈ T ∗(R ×

Γ) ; χ1(t, τ, ζ) = 1 }.
Since ǏR×Γλ

(e)
j (τ, ζ) = λ

(e)
j (τ, ζ) (j = 0, 1), we have ǏR×Γσsp(λ

(e)) =

σsp(λ(e)) = σsp(λ
(e)) on { (t, τ, ζ) ∈ T ∗(R × Γ) ; χ1(t, τ, ζ) = 1 }, which yields

σsp(λ
(e))(r+ (s, ỹ′(z))) = σsp(λ

(e))(r−(s, ỹ′(z))). We also obtain λ̃
(e),0
0 (r+(t, ỹ′(z))) =

λ̃
(e),0
0 (r−(t, ỹ′(z))) since ǏR×Γλ

(e)
0 (τ, ζ) = λ

(e)
0 (τ, ζ) = λ

(e)
0 (τ, ζ) and because of (i) of

Proposition 5.1. Therefore, combining (5.11), (5.19), (6.6), (6.4) and the equality
φ6φ2∂tφ1 = φ2∂tφ1, we get βj,0(s, z, τ) = β̃j,0(s, z)φ7(τ), where

β̃j,0(s, z) = −2iρ0cRφ0(t(s, z))ψ1(X̃(s, z))φ5(s0 + s− t(s, z))
(

1 + ω · Θ(ỹ′(z))
)

·e−iπmj/2

∫ ∞

s

ψx′
j
(ỹ′(z) + cRλθ)∂λ

(

ψ̃(ỹ′(z) + cRλθ)
)

dλ (6.15)

· exp
(

i

∫ ∞

s

σsp

(

λ(e)(r+(λ, ỹ′(z)))
)

dλ
)

|∂zX̃(s, z)|1/2.

Lemma 6.2. Set Φ(s, z) = s0 + s − t(s, z), and let ǫ > 0 be sufficiently small.
Then, we obtain the following (i) and (ii) for each j (= 1, . . . , N1):

(i) For any fixed s ≤ −s0 − t1, we have ∂zΦ(s, z) = 0 if and only if z ∈ Umax
j,ǫ (i.e.,

the stationary points of Φ in z are characterized by z ∈ Umax
j,ǫ ).

(ii) For any fixed s ≤ −s0 − t1, we have Φ(s, z) = s0 (= s+ω (θ)) if ∂zΦ(s, z) = 0, i.e.,
z ∈ Umax

j,ǫ .

Note that (i) and (ii) of this Lemma imply that ∂(s,z)Φ(s, z) = 0 for s ≤ −s0 − t1,
z ∈ Uj,ǫ if and only if z ∈ Umax

j,ǫ .

Proof of Lemma 6.2. Note that ∂zΦ(s, z) = 0 is equivalent to ω · ∂zX̃(s, z) = 0.
This fact and (6.11) imply that {Θ(ỹ′(z)), ω} is linearly dependent if ∂zX̃(s, z) 6=
0 is verified. This follows from the equality ∂zX̃(s, z) = ∂X

∂y′ (s, ỹ
′(z))θ⊥ and local

diffeomorphism of the map: y′ 7→ X(s, y′). Thus, we obtain (i) of Lemma 6.2 if
ǫ > 0 is chosen to be sufficiently small. For z0 ∈ Umax

j,ǫ , (5.26) implies −s0 = c−1
R ω ·

X̃(s, z0) − (s+ s0), which means (ii). Thus Lemma 6.2 is proved.

From Theorem 3.1, (6.1), (6.7), (6.14) and (6.15), we can see that S̃RR(s, θ, ω) =
2(−2πi)2c3Rρ0SRR(s, θ, ω) is reduced to a distribution K0 ∈ D′(R) near s = s0 modulo
smooth function, i.e.

〈S̃RR(·, θ, ω), ϕ〉 ≃ K0(ϕ) with respect to C∞
0 (I) → C (ϕ ∈ C∞

0 (I)),
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where K0 is defined by oscillatory integrals of the form

K0(ϕ) = (2π)−1

∫

R

∫

U

eiτΦ(s,z)η(s, z)β(s, z, τ)ϕ̂(τ)dxdτ , ϕ ∈ C∞
0 (I). (6.16)

In (6.16), U = ∪N1

j=1Uj,ǫ and β(s, z, τ) ∈ S1
phg(R

2
(s,z) × Rτ ) is an amplitude function

that satisfies

β(s, z, τ) ∼ β0(s, z)(iτ) +

∞
∑

q=0

βq(s, z, τ),

β0(s, z) =

N1
∑

j=1

β̃j,0(s, z), βq(s, z, τ) =

N1
∑

j=1

βj,q(s, z, τ)(iτ)
1−q (q ≥ 1).

Note that each βq (q ≥ 1) is homogeneous of order 1 − q in τ . Thus, the proof of
Theorem 1.2 is reduced to studying the singularities of some class of distribution that
is defined by an oscillatory integral of the form (6.16) with the phase function Φ(s, z)
and amplitude function β(s, z, τ) having the properties described in Lemma 6.2 and
in the above, respectively.

In the section 7, we consider the oscillatory integrals that appear above (cf. The-
orems 7.1 and 7.2). From Theorem 7.2, we can immediately obtain the following
theorem, which provides more precise results than Theorem 1.2.

Theorem 6.3. Assume that there exists an ω̃ ∈ C with |ω̃| = 1 such that
Re ω̃β0(s, z) > 0 in (s, z) ∈ [−s0− t1−2c−1

R ,−s0− t1− c−1
R ]×Umax

j,ǫ . Then, we obtain
the following (i) and (ii):
(i) SRR(·, θ, ω) /∈ H−1 at s = s0.
(ii) We assume that there exists l ∈ N such that ∂p

zΦ(s, z) = 0 for all p = 1, 2, . . . , l−1,
z ∈ ∪N1

j=1Umax
j,ǫ and s satisfying −s0 − t1 − 2c−1

R ≤ s ≤ −s0 − t1 − c−1
R , and assume

that ∂l
zΦ(s, z0) 6= 0 for any z0 ∈ ∪N1

j=1Umax
j,ǫ . Then, l is even, and we obtain

SRR(·, θ, ω) /∈ H− 3
2+ 1

l at s = s0, and

SRR(·, θ, ω) ∈ H− 3
2+ 1

l −ǫ0 at s = s0 (for any ǫ0 > 0).

Note that l in (ii) of Theorem 6.3 is even since Φ(s, z) takes the maximum at
(s, z0).

Proof of Theorem 1.2. The assumption in Theorem 1.2 means that we have only
one j with Umax

j,ǫ 6= ∅. Furthermore, this set consists of only one point z0. From
(6.15), it follows that

β̃j,0(s, z0) = −4iρ0cR exp
(

i

∫ ∞

−∞

σsp

(

λ(e)(r+(λ, ỹ′(z0)))
)

dλ
)

|∂zX̃(s, z0)|1/2

in s ∈ [−s0 − t1 − 2c−1
R ,−s0 − t1 − c−1

R ].

This implies that the assumption of Theorem 6.3 is satisfied. Hence we obtain Theo-
rem 1.2.

Next, we consider the case that every stationary point of Φ is “non-degenerate”.
From now on, we assume the following “non-degenerate condition”.

∂

∂z
Θ(ỹ′(z)) 6= 0 (for any z ∈ ∪N1

j=1Umax
j,ǫ ). (6.17)
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In this case, using (6.11), we have

∂2
zΦ(s, z0) = −c−1

R ω · ∂2
zX̃(s, z0) = c−1

R

∂

∂z
Θ(ỹ′(z0)) ·

∂X̃

∂z
(s, z0) 6= 0 (6.18)

for any z0 ∈ ∪N1

j=1Umax
j,ǫ . This means that ∪N1

j=1Umax
j,ǫ is a finite set. Let ∪N1

j=1Umax
j,ǫ =

{ z1, z2, . . . , zN2 }. From ỹ′(z0) ∈ M−,max
θ (ω), it follows that t(s, z) ≥ t(s, z0) = s in

z ∈ ∪N1

j=1Uj,ǫ. Hence, we get ∂2
z t(s, z0) ≥ 0 since s+∂2

z t(s, z0)(z−z0)2+O(|z−z0|3) ≥ s.
From this fact and (6.18), we have

∂2
zΦ(s, zj) < 0 j = 1, 2, . . . , N2. (6.19)

We introduce a function λ+(τ) defined by

λ+(τ) =

{

e−iπ/4τ1/2 (τ > 0),

eiπ/4|τ |1/2 (τ < 0).

Theorem 6.4. Assume (1.2) and (6.17). Then, we obtain

〈S̃RR(·, θ, ω), ϕ〉 =

N2
∑

r=1

N
∑

p=1

Qp,r(ϕ) +RN (ϕ),

where RN ∈ D′((s+ω (θ)− ǫ, s+ω (θ)+ ǫ)) satisfies |RN (ϕ)| ≤ CN‖ϕ‖H1/2−N (R), and each
Qp,r(ϕ) is given by

Qp,r(ϕ) = Cp,r(Ds)λ+(Ds)
∗ϕ(s+ω (θ)).

Here, Cp,r(τ) ∈ S−p(R) is homogeneous of order −p (|τ | > 1), and C0,r is a constant
given by

C0,r(τ) = −(2π)3/2iρ0c
2
Re

−iπm̃r/2
∣

∣

( ∂

∂z
Θ(ỹ′(zr))

)∣

∣

−1/2

exp
(

i

∫ ∞

−∞

σsp

(

λ(e)
)

(r+(λ, ỹ′(zr)))dλ
)

,

where m̃r is the Morse index of the path s 7→ πΓ(r(s, ỹ′(zr))).

Thus, in the non-degenerate case (6.17), we can see SRR(·, θ, ω) /∈ H−1, and for
any ǫ0 > 0, SRR(·, θ, ω) ∈ H−1−ǫ0 at s = s+ω (θ). These results are consistent with
Theorem 6.3. Concerning weakness of the singularities of SRR(·, θ, ω) at the maximal
sojourn time s+ω (θ), we can say that the non-degenerate case is the weakest one.

Proof of Theorem 6.4. It suffices to consider the case of the one stationary point
z0 ∈ Umax

j,ǫ since the stationary points are isolated. Based on (6.18) and (6.19), the
method of stationary phase yields that

∫

R

eiτΦ(s,z)η(s, z)βj,q(s, z, τ)dz (6.20)

= e−i4πτ |τ |−1

eiτs0 |τ |−1/2
{

N−1
∑

p=0

C̃jqp(s, τ)(iτ)−p + R̃N,jq(s, τ)|τ |−N
}

,
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where C̃jqp(s, τ) and R̃N,jq(s, τ)(∈ S0(Rs × Rτ )) are homogeneous of order

0, and C̃jq0(s, τ) = (2π)1/2η(s, z0)βjq(s, z0, τ)|∂2
zΦ(s, z0)|−1/2. Since we have

exp(−iπτ |τ |−1/4) iτ |τ |−1/2 = λ+(τ), it follows from (6.20) and (6.14) that

Ijq(ϕ) =
N−1
∑

p=0

∫

R

∫

R

C̃jqp(s, τ)(iτ)−p−qλ+(τ)eis0τ ϕ̂(τ)dτds + R̃N,jq(ϕ),

where R̃N,jq are the Fourier multiplier operators homogeneous of order −N+1/2− q.
Combining this fact, (6.7), (6.8), (6.18) and (6.15), we obtain Theorem 6.4.

7. Singularities of distributions defined by oscillatory integrals. In this
section, we examine the singularities of the distributions given by (6.16). We introduce
a class of distributions on Rn containing the one defined by (6.16) in n-dimensional
space. We change the notations since the contents of this section can be treated
independently of the previous sections.

Let S(x) be a real-valued C∞ function on an open set U ⊂ Rn, and let β(x, τ) ∈
Sm

phg(U × Rτ ) (m ∈ N ∪ {0}) be a symbol of the form

β(x, τ) ∼ β0(x)(iτ)
m +

∞
∑

j=1

βj(x, τ),

where each βj(x, τ) is homogeneous of order m− j in τ . We examine the distributions
K on an open interval I ⊂ R (i.e. K ∈ D′(I)) that are defined by the oscillatory
integral

K(ϕ) = (2π)−1

∫

R

∫

U

eiτS(x)η(x)β(x, τ)ϕ̂(τ)dxdτ , ϕ ∈ C∞
0 (I),

where η is a real-valued function belonging to C∞
0 (U). As is described in section 6,

the proof of the main theorems has been reduced to examining the distributions.
We take a bounded open set V ⊂ U with supp [η] ⊂ V , and put Eλ = { x ∈

V ; S(x) ≥ λ } for λ ∈ R, λ−∞ = infx∈V S(x) and λ∞ = supx∈V S(x). Hereafter, we
assume that

λ−∞ < λ∞, and Re β0(x) > 0 on Eλ∞ , (7.1)

η(x) ≥ 0 on U and η(x0) > 0 for some point x0 ∈ Eλ∞ . (7.2)

Theorem 7.1. Assume (7.1) and (7.2) as shown above. Then there exists an

integer k0 with 0 ≤ k0 ≤ n such that we have K /∈ H−m+ n−1
2 −

k0
4 at s = λ∞.

If the assumption in Theorem 6.3 holds, then for the distribution K0 introduced
by (6.16), ω̃K0 satisfies (7.1) and (7.2) with n = 2, m = 1, λ∞ = s0(= s+ω (θ)), and
Eλ∞ = [−s0 − t1 − 2c−1

R ,−s0 − t1 − c−1
R ] × ∪N1

j=1Umax
j,ǫ . As shown in Lemma 6.2, the

phase function Φ(s, z) has stationary points along the lines s ≤ −s0 − t1, z ∈ Umax
j,ǫ .

This property is stated as follows:

There exists a non-negative integer k1 ≤ n− 1 such that for any x(1) ∈ Eλ∞

all the points x(1) + t(0, tx′′) with |x′′| < δx(1) belong to Eλ∞ for some
δx(1) > 0, where x = t(tx′, tx′′), x′ ∈ R

n−k1 and x′′ ∈ R
k1 (if k1 ≥ 1).

(7.3)
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Using this property, we can obtain more precise results.

Theorem 7.2. Assume (7.1)−(7.3) as shown above. Then, we obtain the follow-
ing (i) and (ii):

(i) K /∈ H
−m+

n−k1
2(l0+1)

− 1
2 at s = λ∞ if there exist an integer l0 (≥ 0) and a positive

constant δx0 such that we have ∂α′

x′ S(x′0, x
′′
0 +x′′) = 0 for 0 < |α′| ≤ 2l0 and |x′′| < δx0 .

(ii) In (i), also assume additionally that x′′ ∈ Rn−1 (i.e. k1 = n − 1) and

∂
2(l0+1)
x1 S(x) 6= 0 for any x ∈ Eλ∞ . Then, for any ǫ0 > 0 we get K ∈
H

−m+
n−k1

2(l0+1)
− 1

2−ǫ0 at s = λ∞.

Applying Theorem 7.2 with 2l0 = l− 2, we obtain Theorem 6.3.

To show Theorems 7.1 and 7.2, we begin by decomposing the functional K. For
any integer N > m+ n+ 2, we put

KN(ϕ) = (2π)−1

∫

R

∫

U

eiτS(x)η(x)
(

β0(x)(iτ)
m +

N
∑

j=1

βj(x, τ)
)

ϕ̂(τ)dxdτ

and RN (ϕ) = K(ϕ) − KN(ϕ). Since |RN (ϕ)| ≤ CN‖ϕ‖H−N+m+2 (ϕ ∈ C∞
0 (R)), it

suffices to consider KN .

For λ ∈ R, 0 6= τ ∈ R, we put

β̃0(λ) =

∫

Eλ

η(x)β0(x)dx and β̃j(λ, τ) =

∫

Eλ

η(x)βj(x, τ)dx.

Then using the Stieltjes integral with respect to β̃j , we have

∫

U

eiτS(x)η(x)βj(x, τ)dx =

∫ λ∞

λ−∞

eiτλdβ̃j(λ, τ)

= −eiτλ−∞ β̃j(λ−∞, τ) −
∫ λ∞

λ−∞

eiτλiτ β̃j(λ, τ)dλ. (7.4)

To show (7.4), we introduce βR,±
j (x, τ) = max{±Reβj(x, τ), 0} and βI,±

j (x, τ) =

max{±Imβj(x, τ), 0} and put β̃α,±
j (λ, τ) =

∫

Eλ
η(x)βα,±

j (x, τ)dx (α = R, I). Then

the functions β̃α,±
j (λ, τ) are non-increasing and left continuous functions with respect

to λ; and they are equal to 0 when λ > λ∞ and equal to some constant when λ ≤ λ−∞.
We take a cutoff function φ(λ) ∈ C∞

0 (R) satisfying 0 ≤ φ ≤ 1, φ(λ) = 1 for
|λ− λ∞| < δ0 and φ(λ) = 0 for |λ− λ∞| > 2δ0, and define K0

N (ϕ) and K−∞
N (ϕ) by

K0
N(ϕ) =

∫ λ∞

λ−∞

∫

R

eiτλiτφ(λ)
{

(iτ)mβ̃0(λ) +
N

∑

j=1

β̃j(λ, τ)
}

ϕ̂(τ) dτ dλ,

K−∞
N (ϕ) =

∫

R

eiτλ−∞
{

(iτ)mβ̃0(λ−∞) +

N
∑

j=1

β̃j(λ−∞, τ)
}

ϕ̂(τ) dτ

+

∫ λ∞

λ−∞

(1 − φ(λ))

∫

R

eiτλiτ
{

(iτ)mβ̃0(λ) +
N

∑

j=1

β̃j(λ, τ)
}

ϕ̂(τ) dτ dλ,
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where δ0 > 0 is a small number fixed later. Note that KN(ϕ) = −(2π)−1(K0
N (ϕ) +

K−∞
N (ϕ)). It is easily seen that K−∞

N ∈ C∞ at s = λ∞. We put

γ±j (λ) =
1

2

{

((iτ)−m+j β̃j(λ, τ)
)∣

∣

τ=1
± ((iτ)−m+j β̃j(λ, τ)

)∣

∣

τ=−1

}

.

Noting that β̃j(λ, τ) are homogeneous of orderm−j in τ , we have γ+
j (λ)+ τ

|τ |γ
−
j (λ) =

(iτ)−m+j β̃j(λ, τ). Thus, K0
N (ϕ) is of the form

K0
N (ϕ) =

∫ λ∞

λ−∞

φ(λ)
{

β̃0(λ) +
N

∑

j=1

(γ+
j (λ) + iγ−j (λ)H)(∂−j

λ )
}

∂m+1
λ ϕ(λ)dλ,

whereH is the Hilbert transform: ϕ 7→
∫

R
eiλτ −iτ

|τ | ϕ̂(τ)dτ = π−1 limǫ↓0

∫

|µ|≥ǫ µ
−1ϕ(λ−

µ)dµ. We set

a±j (λ) =

∫ λ

λ∞

(λ− µ)j−1

(j − 1)!
γ±j (µ)dµ. (7.5)

Then a±j belong to Cj−1(R) and ∂j−1
λ a±j are absolutely continuous. Furthermore

it follows that a±j (λ) = 0 for λ > λ∞, ∂l
λa

±
j (λ∞) = 0 (l = 0, 1, . . . , j − 1) and

∂j
λa

±
j (λ) = γ±j (λ) almost everywhere. Therefore, applying integration by parts and

using the skew self-adjoint property of the Hilbert transform, we obtain

K0
N(ϕ) =

∫

R

{

φ(λ)β̃0(λ)+

N
∑

j=1

(−1)j(φ(λ)a+
j (λ)−iH(φa−j )(λ)

}

∂m+1
λ ϕ(λ)dλ+K̃−∞

N (ϕ),

where K̃−∞
N (ϕ) ∈ D′(I) with C∞ at λ = λ∞. We take φ̃(λ) ∈ C∞

0 (R) such that

0 ≤ φ̃ ≤ 1, φ̃(λ) = 1 if |λ− λ∞| < 2δ0 and φ̃(λ) = 0 if |λ− λ∞| > 3δ0, and put

γ(λ) = γ0(λ) + i

N
∑

j=1

(−1)j+1φ̃(λ)H(φa−j )(λ), (7.6)

γ0(λ) = φ(λ){β̃0(λ) +

N
∑

j=1

(−1)ja+
j (λ)}.

Since supp [1 − φ̃] ∩ supp [φ] = ∅, it follows that K0
N − K̃0

N ∈ C∞ at s = λ∞, where
K̃0

N(ϕ) =
∫

R
γ(λ)∂m+1

λ ϕ(λ)dλ. Thus, we obtain the following Lemma 7.3.

Lemma 7.3. For an integer N > m+n+2, the following (a) and (b) are equivalent
to each other:

(a) K ∈ H l at s = λ∞, (b) γ ∈ H l+m+1(R).

Since supp [η] ∩Eλ∞(⊂ V ) is compact, from (7.1) we can choose an open set W ⊂
V and a constant C0 > 0 such that Re β0(x) ≥ C0 on W and supp [η] ∩Eλ∞ ⊂ W .
We also take a constant δ1 > 0 such that supp [η] ∩Eλ ⊂W for λ ≥ λ∞ − δ1.

Lemma 7.4. There exist an integer k0 with 1 ≤ k0 ≤ n, a constant C1 > 0 and
a constant δ2 > 0 with δ1 > δ2 > 0 such that

∫

Eλ

η(x)dx ≥ C1(λ∞ − λ)
n
2 −

k0
4 (λ∞ − δ2 ≤ λ ≤ λ∞).



44 M. KAWASHITA AND H. SOGA

Proof. The matrix Ax0 = (∂xi∂xjS(x0))i,j=1,...,n is non-positive since S(x) ≤ λ∞
on W and ∇xS(x0) = 0. We denote the positive eigenvalues of −Ax0 by µj (j =
1, . . . , n− k0 (≤ n− 1)) (µ1 ≥ µ2 ≥ · · · ≥ µn−k0). Note that k0 = n if Ax0 = 0. For
P ∈ O(n) we set S̃(y) = S(tPy+ x0). We can choose P so that in a neighborhood of
y = 0

S̃(y) − λ∞ = −
n−k0
∑

j=1

µjy
2
j +Q(y) +O(|y|4),

where Q(y) =
∑

|α|=3
1
α!∂

α
y S(0)yα. We write y = t(ty′, ty′′), y′ = t(y1, . . . , yn−k0)

and y′′ = t(yn−k0+1, . . . , yn). Since S̃(0, y′′) − λ∞ ≤ 0, we have Q(0, y′′) = 0, i.e.,
∑

|α′′|=3
1

α′′! (∂
α′′

y S)(0)yα′′

= 0 (y′′ ∈ Rk0). Hence, there exists a constant C > 0 such
that

Q(y) ≥ −C{|y′|3 + |y′|2|y′′| + |y′||y′′|2} ≥ −C{3δ|y′|2 +
1

2δ
|y′′|4} (|y| ≤ δ).

We can choose a small δ > 0 such that we have W0 = { x ∈ Rn ; x = P−1y + x0 ∈
Bδ(x0) } ⊂⊂W (where Bδ(x0) = { y ∈ R

n ; |y − x0| < δ }) and

S̃(y) − λ∞ ≥ −C′{|y′|2 + |y′′|4} in y ∈ Bδ(0) (7.7)

for some constant C′ > 0. We put δ2 = min{δ1, C′δ4/8, (2C′)−1} > 0, and put
W1 = { y ∈ R

n ; |y′| ≤ (2C′)−1/2|λ∞ − λ|1/2, |y′′| ≤ (2C′)−1/4|λ∞ − λ|1/4 }, where
λ∞−δ2 ≤ λ ≤ λ∞. From (7.7), it follows that |y| < δ and S̃(y) ≥ λ if y ∈W1. Taking
δ > 0 to be sufficiently small again if necessary, we can obtain η(x) ≥ 2−1η(x0) > 0
for x ∈W0. Thus, if λ∞ − δ2 ≤ λ ≤ λ∞, we get

∫

Eλ

η(x)dx ≥ 1

2
η(x0)

∫

Eλ∩W0

dx ≥ 1

2
η(x0)Vol(W1) ≥ C1(λ∞ − λ)

n
2 −

k0
4 .

This completes the proof of Lemma 7.4.

Lemma 7.5. There exist constants δ3 > 0 and C2 > 0 with 0 < δ3 ≤ δ2 such that

Re γ0(λ) ≥ C2φ(λ)(λ∞ − λ)
n
2 −

k0
4 (λ∞ − δ3 ≤ λ ≤ λ∞).

Proof. Since |γ±j (λ)| ≤ maxx∈V ,τ=±1 |βj(x, τ)|
∫

Eλ
η(x)dx, it follows from (7.5)

that |a±j (λ)| ≤ CN |λ∞ − λ|j
∫

Eλ
η(x)dx (j = 1, 2, . . . , N , λ ∈ R). Noing that

Re β0(x) ≥ C0 (x ∈ W0) and supp [η] ∩ Eλ ⊂ W0 (λ∞ − δ1 ≤ λ ≤ λ∞), we have
Re β̃0(λ) ≥ C0

∫

Eλ
η(x)dx (λ∞ − δ1 ≤ λ ≤ λ∞). Hence, we obtain Lemma 7.5 from

Lemma 7.4 and the above estimates.

Proof of Theorem 7.1. We show Theorem 7.1 by the contradiction argument. As-

sume that K ∈ H−m+ n−1
2 −

k0
4 at λ = λ∞ for k0 as stated in Lemma 7.4. From Lemma

7.3, the function γ(λ) in (7.6) belongs to H
n+1

2 −
k0
4 (R). We put s0 = n

2 − k0

4 . We then

have Hγ0 ∈ Hs0+1/2((λ∞,∞)) since Hγ0(λ) = Hγ(λ) + i
∑N

j=1(−1)jφ(λ)a−j (λ) +

i
∑N

j=1(−1)j(H(φ̃(λ) − 1)H(φa−j )(λ)). Since γ0(λ) = 0 (λ > λ∞), we obtain

Hγ0(λ) = π−1
∫ λ∞

−∞(λ − µ)−1γ0(µ)dµ ∈ C∞((λ∞,∞)). We take p ∈ N ∪ {0} and

α0 ∈ [0, 1) with s0 + 1/2 = p+ α0 and define f by f(λ) =
∫ λ∞

−∞
(λ − µ)−1−pγ0(µ)dµ.

Then, we obtain f ∈ C∞((λ∞,∞)) ∩Hα0((λ∞,∞)).
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We fix δ0 > 0 with δ0 < δ3/2 and put g(s) = f(λ∞ + s) and k(τ) = γ0(λ∞ − τ).
Then, we get g ∈ C∞(R+) ∩Hα0(R+) (R+ = (0,∞)), g(s) =

∫ ∞

0 (s + τ)−1−pk(τ)dτ

(s > 0), Re k ≥ 0 in R+, Re k(τ) ≥ C2τ
p+α0−1/2 (0 ≤ τ ≤ δ0) and k(τ) = 0 (0 > τ

or τ ≥ 2δ0). Using Lemma 7.5, we now show the contradiction in each of the cases
for α0 = 0 and 0 < α0 < 1.
The case of α0 = 0: Since s+ τ ≤ 2τ if 0 ≤ s ≤ τ , for s at 0 < s ≤ δ0 we have

Re g(s) ≥
∫ δ0

s

C2τ
p−1/2

(2τ)p+1
dτ ≥ C22

−p(s−1/2 − δ
−1/2
0 ).

This means g /∈ L2(R+), which is contradictory.
The case of 0 < α0 < 1: Since we have s+ t+ τ ≤ 3τ and s+ τ ≤ 2τ if 0 ≤ t ≤ s ≤
τ ≤ δ0, noting that (s+ t+ τ)p+1 − (s+ τ)p+1 ≥ (p+ 1)t(s+ τ)p, we have

−Re (g(t+ s) − g(s)) ≥
∫ δ0

0

C2(p+ 1)t(s+ τ)pτp+α0−1/2

(s+ t+ τ)p+1(s+ τ)p+1
dτ

≥ C2(p+ 1)

3p+12
t

∫ δ0

s

τα0−2−1/2dτ

if 0 < t ≤ s ≤ δ0. Hence, there exists a constant C3 > 0 such that

−Re (g(t+ s) − g(s)) ≥ C3t(s
α0−3/2 − δ

α0−3/2
0 ) (0 < t ≤ s ≤ δ0),

which implies that if 0 < t < δ0,

‖g(t+·)−g(·)‖2
L2(R+) ≥ C2

3 t
2

∫ δ0

t

|sα0−3/2−δα0−3/2
0 |2ds ≥ C2

3

4(1 − α0)
(t2α0−9δ2α0−2

0 t2).

This estimate implies that
∫ ∞

0
t−(2α0+1)‖g(t+ ·) − g(·)‖2

L2(R+)dt < ∞ does not hold.

Hence, we get g /∈ Hα0(R+), which is contradictory. Thus we obtain Theorem 7.1.

Proof of Theorem 7.2. We take δx0 > 0 to be sufficiently small again if necessary.
Then, noting that S(x) − λ∞ ≤ 0 (x ∈ V ), we obtain

S(x) − λ∞ =
∑

|α′|=2l0+2

1

α′!
∂α′

x′ S(x′0, x
′′)(x′ − x′0)

α +G(x), (7.8)

|G(x)| ≤ C|x′|2l0+3 (x ∈ B̃(x0, δx0) ⊂W ),

where B̃(x0, δx0) = { x ∈ Rn ; |x′ − x′0| < δx0 , |x′′ − x′′0 | < δx0 } and W is an open set
satisfying supp [η] ∩Eλ ⊂W for λ ≥ λ∞ − δ1. From this expansion, it follows that

S(x) − λ∞ ≥ −C′|x′ − x′0|2(l0+1) (x ∈ B̃(x0, δx0)).

We put δ′2 = min{δ1, C′(δx0/2)2(l0+1)} > 0. Since |x′ − x′0| < δx0 if |x′ − x′0| ≤
(C

′−1|λ∞ − λ|)
1

2(l0+1) and λ∞ − δ′2 ≤ λ ≤ λ∞, we have S(x) ≥ λ. Hence, in the same
way as in the proof of Lemma 7.4, we have

∫

Eλ

η(x)dx ≥ C′
1(λ∞ − λ)

n−k1
2(l0+1) (λ∞ − δ′2 ≤ λ ≤ λ∞).
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Therefore, using the same argument as in Lemma 7.5, we obtain

Re γ0(λ) ≥ C′
2φ(λ)(λ∞ − λ)

n−k1
2(l0+1) (λ∞ − δ′3 ≤ λ ≤ λ∞)

for some constants C′
2 > 0 and δ′3 > 0. Thus, we can obtain (i) in Theorem 7.2 by

the same arguments as in Theorem 7.1.
We now show (ii) in Theorem 7.2. Since a±j ∈ Cj−1(R) and ∂j

λa
±
j (λ) = γ±j (λ)

almost everywhere, it follows that φa±j ∈ H1(R). Hence it suffices to show that

φβ̃0 ∈ H
1

2(l0+1)
+ 1

2−ǫ0(R) for any ǫ0 > 0. In the same way as for (7.4), we obtain

−iτ
∫

R

eiτλφ(λ)β̃0(λ)dλ =

∫

U

eiτS(x)η(x)φ(S(x))β0(x)dx.

Using the same arguments as for (7.8), we can show from the assumption (7.3) that
for x(1) ∈ Eλ∞ there exist constants δx(1) > 0 and C0(x

(1)) > 0 such that

S(x) − λ∞ =
1

(2l0 + 2)!
∂2(l0+1)

x1
S(x

(1)
1 , x′′)(x1 − x

(1)
1 )2(l0+1) + G̃(x1, x

′′),

|G̃(x1, x
′′)| ≤ C0(x

(1))|x1 − x
(1)
1 |2l0+3 (x ∈ B̃(x(1), δx(1))).

Note that ∂
2(l0+1)
x1 S(x

(1)
1 , x′′) < 0 (|x′′ − (x(1))′′| < δx(1)) follows from S(x) ≤ λ∞

(x ∈ V ). Then, we obatin

S(x) = λ∞ −A(x, x(1))(x1 − x
(1)
1 )2(l0+1) (x ∈ B̃(x(1), δx(1))),

A(·, x(1)) ∈ C∞(B̃(x(1), δx(1))), A(x, x(1)) > 0 (x ∈ B̃(x(1), δx(1))).

From compactness of supp [η] ∩Eλ∞ , we can take x(1), x(2), . . . , x(Ñ) ∈ Eλ∞ such that

supp [η] ∩Eλ∞ ⊂ ∪Ñ
j=1B̃(x(j), δx(j)/3). We put W̃ = ∪Ñ

j=1B̃(x(j), 2δx(j)/3). Since

S(x) is continuous on V , there exists a constant δ4 > 0 such that supp [η] ∩Eλ ⊂ W̃
for λ with λ∞ − δ4 ≤ λ ≤ λ∞. We now choose the cutoff function φ introduced in
the proof of Lemma 7.3, and change δ0 > 0 there to δ0 = δ4/2 > 0. Furthermore,
we take a partition {ψj}j=1,2,...,Ñ of unity on W̃ such that ψj ∈ C∞(B̃(x(j), δx(j))),

0 ≤ ψj ≤ 1 (j = 1, 2, . . . , Ñ). Changing the variable ξ = A(x, x(j))
1

2(l0+1) (x1 − x
(j)
1 )

for each j, and noting that φ(S(x)) =
∑Ñ

j=1 φ(S(x))ψj(x), we can show that for each
j there exists bj ∈ C∞

0 (Rn) such that

−iτ(φβ̃0 )̂ (τ) =

Ñ
∑

j=1

eiλ∞τ

∫

Rn−1

∫

R

e−iτξ2(l0+1)

bj(ξ, x
′′)dξdx′′.

Hence, we obtain |(φβ̃0 )̂ (τ)| ≤ C(1 + |τ |)−1− 1
2(l0+1) (τ ∈ R). This means φβ̃0 ∈

H
1

2(l0+1)
+ 1

2−ǫ0(R), which completes proof of Theorem 7.2.
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