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DIFFERENCE WAVELET —

THEORY AND A COMPARISON STUDY ∗

I-LIANG CHERN† AND CHIEN-CHANG YEN‡

Abstract. Wavelet methods with polynomial filters are usually favored in applications for their
fast wavelet transforms and compact support. However, wavelet methods with rational filters have
more freedom to achieve smaller condition numbers, more regularity and better efficiency. Such meth-
ods can be attractive if they also possess fast algorithms and have fast decay (as if the corresponding
wavelets had compact support). In the first part of this paper, we propose a new wavelet method
with rational filters which do have these properties. We call it the difference wavelet method. It is a
generalization of Butterworth wavelets. The analysis part is simply averaging and finite differencing.
The wavelet coefficients measure the finite differences of the averages of an input data sequence. Its
synthesis part involves rational filters, which can be performed with linear computational complexity
by the cyclic reduction method. Their Riesz basis property, biorthogonality, decay and regularity
are investigated.

In the second part of this paper, we perform comparison studies of the difference wavelet method
(Diff) with three other popular wavelet methods: the Cohen-Daubechies-Feauveau biorthogonal
wavelets (CDF), the Daubechies orthogonal wavelets (Daub) and the Chui-Wang semi-orthogonal
wavelets (CW). Natural criteria in designing good wavelet methods for representing functions and
operators are speed, stability and efficiency. Therefore, the items of our first comparison include
(i) operation counts for performing transformations, (ii) condition numbers of the wavelet trans-
formations, (iii) compression ratios, by some numerical experiments, for representing (smooth or
non-smooth) data sequences and matrices (smooth or non-smooth kernels). The results show that
(i) Diff, Daub and CDF have about the same operation counts, and CW has more; (ii) Diff has about
the same condition numbers as those of CDF and CW; (iii) Diff has better compression ratio for
both (smooth or non-smooth) data sequences and matrices (smooth or non-smooth kernels).

The items of our second comparison include regularity, approximation power (the constant in the
approximation estimate), approximation errors for non-smooth functions (where Gibbs phenomena
appear) and the “essential supports.” The results show that Diff has better regularity and better
approximation ability with only slightly bigger essential supports. It is evident that the better
efficiency of Diff for smooth functions is due to its regularity. It is surprising that, even for non-
smooth functions, Diff is comparable to, sometimes even superior to, other methods, despite its
infinite-support property.

This paper is organized as follows. Sec. 1 is preliminary. Sec. 2 provides the theory of the
difference wavelet method. Sec. 3 contains the comparison studies. Experts are suggested to read
Sec. 3 directly.

1. Preliminary. A wavelet expansion method decomposes data (or functions)
into fluctuations at various resolutions. It depends on four sets of filter coefficients:
{hk}k∈Z, {gk}k∈Z, {h̃k}k∈Z and {g̃k}k∈Z. The first two are called the analysis filters,
and the latter two the synthesis filters. A data sequence cj = {cj,i}i∈Z at resolution
level j can be decomposed, through the analysis filters, into two sets of data sequences
at level j − 1:

{
the low-pass data: cj−1,i =

√
2
∑

k hkcj,2i−k,

the high-pass data: dj−1,i =
√

2
∑

k gkcj,2i+1−k.
(1.1)

Here,
√

2 is a normalized scale factor [12]. By applying the transform: cj 7→
(cj−1, dj−1) recursively for j = J, J − 1, · · · , 1, one can decompose a given data se-
quence cJ at the finest resolution J into (c0, d0, d1, · · · , dJ−1), the averages at coarsest
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resolution and the fluctuations at various resolutions. The mapping TJ : cJ 7→
(c0, d0, d1, · · · , dJ−1) is called a discrete wavelet transformation.

The data sequence cj can be reconstructed from (cj−1, dj−1) through the synthesis

filters {h̃k}k∈Z and {g̃k}k∈Z by:

cj,i =
√

2
∑

k

[
h̃i−2kcj−1,k + g̃i−2k−1dj−1,k

]
.(1.2)

By applying this inverse transform recursively for j = 1, · · · , J−1, cJ can be recovered
from (c0, d0, · · · , dJ−1).

Let us define the z−transform of {hk}k∈Z by h(z) =
∑

k hkz
k, and still call it a

filter. It can be a polynomial (i.e. a filter with finite length), or a rational function
(infinite length), or in general, a Laurent series.

In order to have cj be reconstructed from (1.2), the filter bank (i.e. the collection
of analysis and synthesis filters) needs to satisfy the following perfect reconstruction
condition [9, 16]:

h(z)h̃(z) + g(z)g̃(z) = 1,(1.3)

h(−z)h̃(z) − g(−z)g̃(z) = 0.(1.4)

A formal calculation gives

h(z)h̃(z) + h(−z)h̃(−z) = 1,(1.5)

g(z) = h̃(−z)P (z2),(1.6)

g̃(z) = h(−z)/P (z2),(1.7)

for some Laurent series P (z). If both analysis and synthesis filters are polynomials,
then P (z) = zm for some integer m. In this case, we can normalize to P (z) = 1 [9]. In
general, for stability consideration, we should choose P (z) to be in the Wiener class,
that is, P (z) =

∑
k pkz

k with
∑

k |pk| <∞ and P (z) 6= 0 for all |z| = 1 (see Chui [3]).

So, a general procedure to construct filter banks is to find h(z) and h̃(z) to satisfy
(1.5). We may normalize them by

h(1) = h̃(1) = 1.(1.8)

Then we define g(z) and g̃(z) by (1.6) and (1.7) with a proper function P (z) chosen
in the Wiener class.

A general principle to design filters in applications is to have the wavelet trans-
form to be fast, stable and the wavelet approximation to be efficient. The term “fast”
means that the wavelet transform TJ and its inverse are of linear computational com-
plexity. Usually, polynomial filters are favored. However, a rational filter which can be
performed with linear complexity is also acceptable in many applications. The term
“stable” means that the forward and inverse wavelet transforms are unconditionally
stable in ℓ2, independent of the resolution level J , that is, both ‖TJ‖, ‖T−1

J ‖ = O(1).
The term “efficient” means that only a small amount of wavelet coefficients dj,i plus
the averages c0,i are sufficient to approximate the original data accurately.

It is well-known that the stability condition can be characterized by the Riesz
basis property of a wavelet function ψ, see [9, 10]. More precisely, associated with the
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analysis filter bank, one can define a refinable function (or called scaling function) φ
and a wavelet function ψ as follows:

φ(x) = 2
∑

k

h−kφ(2x− k),(1.9)

ψ(x) = 2
∑

k

g1−kφ(2x− k).(1.10)

The function h(z) is called the mask of the refinable function φ. Let us define
ψj,i(·) = 2j/2ψ(2j · −i). Then the forementioned stability condition is equivalent
to that {ψj,i}i,j∈Z forms a Riesz basis in L2(R). That is, there exist constants 0 < γ,
Γ <∞ such that for any sequence {dj,i}i,j∈Z, we have

γ
∑

i,j∈Z

|dj,i|2 ≤ ‖
∑

i,j∈Z

dj,iψj,i‖2
L2 ≤ Γ

∑

i,j∈Z

|dj,i|2.

For the synthesis filter bank, one also defines

φ̃(x) = 2
∑

k

h̃kφ̃(2x− k),(1.11)

ψ̃(x) = 2
∑

k

g̃k−1φ̃(2x− k).(1.12)

Then {ψ̃j,i}i,j∈Z forms the dual Riesz basis of {ψj,i}i,j∈Z in L2(R), i.e. (ψj,i, ψ̃ℓ,k) =
δj,ℓδi,k. These two wavelets are called biorthogonal [9]. It was commented by Cohen-
Daubechies-Feauveau [9] and Dahmen [10] that biorthogonal wavelets are more flexible
to use than orthogonal wavelets in practice.

Three popular wavelets are the Daubechies’s orthogonal wavelet (Daub) [11],
Cohen-Daubechies-Feauveau’s biorthogonal wavelet (CDF) [9] and Chui-Wang’s semi-
orthogonal wavelet (CW) [4]. The filter bank of the CDF wavelet is defined as follows:

h(z) = g̃(−z) = z−[r/2]

(
1 + z

2

)r

,(1.13)

h̃(z) = g(−z) = z−[(r̃+1)/2]

(
1 + z

2

)r̃

QK(z).

(1.14)

Here, r + r̃ = 2K, K > 0 is an integer parameter, and

QK(z) =

K−1∑

n=0

(
K − 1 + n

n

)(
2 − z − z−1

4

)n

.(1.15)

We call the parameter r the averaging order and r̃ the differencing order, or the
number of vanishing moments.

The filter bank of Daubechies’ orthogonal wavelet is defined by

h(z) = h̃(z−1) = g̃(−z) = g(−z−1) =

(
1 + z

2

)K

Q(z),(1.16)



472 I-L. CHERN AND C.-C. YEN

where Q(z)Q(z−1) = QK(z). The filter bank of Chui-Wang’s semi-orthogonal wavelet
is defined by

h(z) =

(
1 + z

2

)K

GK(z)/GK(z2),

g(z) =

(
1 − z

2

)K

/GK(z2),

h̃(z) =

(
1 + z

2

)K

,

g̃(z) =

(
1 − z

2

)K

GK(−z),

where GK(z) :=
∑

k N2K(k)zk and N2K is the B-spline of order 2K − 1, that is the
2K times self convolution of the step function 1[0,1).

It is well-known that the regularity of a wavelet is related to its orders r, r̃
and the magnitude of its amplification factor (i.e. QK(eiξ) in CDF wavelet and
GK(eiξ)/GK(ei2ξ) in CW wavelet) [12]. The more regularity a wavelet has, the bet-
ter approximation ability it can have [12]. We can look for rational filters that have
smaller amplification factors. The gain is that the wavelet function is smoother. The
prices to pay are that (i) it has infinite support, and (ii) a linear system needs to
be solved to perform a wavelet transform. Problem (i) is not severe if the essential
support (e.g. the region where |φ̃| > ǫ) is still small. Problem (ii) is also solvable if
a fast algorithm for solving this linear system is available. Below, we propose the
difference wavelet method which has a relatively small amplification factor.

2. Difference Wavelets.

2.1. The filter bank of the difference wavelet method. Given a positive
integer K, let us define the filter bank of the difference wavelet method to be

h(z) = z−[ r
2
]

(
1 + z

2

)r

,(2.1)

g(z) = z−[ r̃+1
2

]

(
1 − z

2

)r̃

,(2.2)

h̃(z) = z−[ r̃+1
2

]

(
1 + z

2

)r̃

/PK(z2),(2.3)

g̃(z) = z−[ r
2
]

(
1 − z

2

)r

/PK(z2),(2.4)

PK(z2) = z−K

(
1 + z

2

)2K

+ (−z)−K

(
1 − z

2

)2K

,(2.5)

where r + r̃ = 2K. Roughly speaking, the difference of this method from the CDF
method is to replace the filter QK(z) by 1/PK(z2). We call this method the difference
wavelet method because its high-pass filter is simply a finite difference. In the case of
r = 0 and r̃ = 2K, h̃(z) is the Butterworth filter, which was well-known in the field
of signal processing [15]. To justify this method to be valuable, we shall show that

1. the operation count to perform 1/PK(z2) is almost the same as that of QK(z);
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2. it is stable in L2(R); in fact the condition numbers of the difference wavelet
transforms are comparable to those of the CDF transform;

3. the corresponding φ̃ decays exponentially at far field, in fact, the lengths of
the “essential supports” of the difference wavelets are about twice those of
the CDF wavelets;

4. it is more efficient in the sense that it has better approximation ability and
better compression ratio.

2.2. Fast algorithm for difference wavelet transform. We adopt the cyclic
reduction method [14] to perform the filter 1/PK(z2). First, we factor PK(z2) into

PK(z2) =

[K/2]∏

k=1

1

1 + 2αk

(
αkz

−2 + 1 + αkz
2
)

≡
[K/2]∏

k=1

P k(z2).(2.6)

Here,

0 < αk = 1/
(
tan2 θk + 1/ tan2 θk

)
< 1/2,(2.7)

θk =

{
(2k−1)π

4K if K is even,
kπ
2K if K is odd,

(2.8)

where k = 1, · · · , 2K for even K, and k = 1, · · · ,K − 1,K + 1, · · · , 2K − 1 for odd
K. This factorization can be derived from the fact that z = i tan θk are the roots of
PK(z2) = 0.

Secondly, for each k = 1, · · · , [K/2], we perform the filter 1/P k(z2) by solving a
tridiagonal system Av = f , where A = diag(αk, 1, αk) with |αk| < 1/2. This system
can be solved by the cyclic reduction method [14]. We briefly describe it below for
reader’s convenience.

A one-step cyclic reduction reduces this system to half size with the same struc-
ture. We apply this reduction recursively until a small system is met or until A
becomes almost diagonal. Then this reduced system can be solved directly. To de-
scribe this reduction procedure, we assume the current linear system is of the form:

aℓv
ℓ
i−1 + vℓ

i + aℓv
ℓ
i+1 = f ℓ

i .(2.9)

Here, ℓ is the index of the recursion procedure. We eliminate vℓ
2i±1 terms to obtain

−aℓ
2vℓ

2i−2 + (1 − 2aℓ
2)vℓ

2i − aℓ
2vℓ

2i+2 = f ℓ
2i − aℓ(f

ℓ
2i−1 + f ℓ

2i+1).

We rename the variables:

vℓ−1
i = vℓ

2i,

f ℓ−1
i =

1

1 − 2aℓ
2

(
f ℓ
2i − aℓ(f

ℓ
2i−1 + f ℓ

2i+1)
)
,

aℓ−1 =
−aℓ

2

1 − aℓ
2
.(2.10)
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Then vℓ−1
i satisfies

aℓ−1v
ℓ−1
i−1 + vℓ−1

i + aℓ−1v
ℓ−1
i+1 = f ℓ−1

i .

Thus, we arrive a system of half size with the same structure. Notice that, from
(2.10), aℓ−m converges to zero quadratically as m → ∞. This is because |aℓ| < 1/2
initially. Usually, m = 5 (i.e. five-level reductions) will make aℓ−m go down to 10−14.
Once {vℓ−m

i } are found, we can reconstruct {vℓ−m+1
i } from

vℓ−m+1
2i = vℓ−m

i ,

vℓ−m+1
2i+1 = f ℓ−m+1

2i+1 − aℓ−m+1

(
vℓ−m

i + vℓ−m
i+1

)
.

We can continue this reconstruction procedure recursively from ℓ − m + 1 to ℓ to
obtain vℓ

i .
By a direct calculation, the work for performing 1/PK(z2) is less than (4A +

3M)[K/2] per each datum. Here, A is the addition operation and M is the multi-
plication operator. Thus, the procedure to perform the rational filters h̃(z) and g̃(z)
is of linear complexity. In the next section, a comparison study shows that the op-
eration counts for the difference wavelet method are about the same as those of the
Daubechies’ orthogonal wavelet method and of the CDF method.

2.3. Stability of the difference wavelet method. For the difference wavelet
method, from (2.1), the corresponding scaling function φ is the B-spline:

φ(x) = 1∗r
[−1,0)(x− [r/2]).

The corresponding dual scaling function φ̃ has the following properties.

Proposition 1.

1. φ̃ is symmetric.

2. The Fourier transform of φ̃ satisfies

|̂̃φ(ξ)| = O
(
|ξ|−(r̃−r)/2−1

)
.(2.11)

3. φ̃ decays at ±∞ exponentially for r̃ ≥ r:

∫ ∣∣∣eσ′|x|φ̃(x)
∣∣∣
2

dx <∞, ∀σ′ < σ,(2.12)

where

σ = 2

∣∣∣∣ln tan

(
K + 1

4K
π

)∣∣∣∣ .

Proof.
1. The symmetry of φ̃ follows from h̃(z) = h̃(−z).
2. Using Fourier transform and (1.11), we have

̂̃
φ(ξ) =

∞∏

ℓ=1

h̃(e−iξ/2ℓ

)

= e−iξ/2

(
sin ξ/2

ξ/2

)r̃ ∞∏

ℓ=1

1

PK(e−i2ξ/2ℓ)
.(2.13)
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Therefore, to prove (2.11) we should show that the infinite product∏∞
ℓ=1 1/PK(e−2iξ/2ℓ

) converges uniformly and absolutely on every compact subsets
in the complex plane and has the following asymptotic estimate:

∞∏

ℓ=1

1

PK(e−i2ξ/2ℓ)
= O(|ξ|K−1) for |ξ| ≫ 1.(2.14)

To see this, first, from the continuity of PK and PK(1) = 1, there exist constants
ξ0, C > 0 such that

∣∣∣∣
1

PK(e−2iξ)
− 1

∣∣∣∣ < C|ξ|(2.15)

for all |ξ| ≤ ξ0.

Given any compact subset B ⊂ C, there exists an integer L0 such that B ⊂
{ξ ∈ C | |ξ| ≤ 2L0ξ0}. For any ξ ∈ B, there exists a positive integer L such that

2L−1ξ0 < |ξ| < 2Lξ0. We split the above infinite product
∏∞

ℓ=1 into
∏L

ℓ=1 ·
∏∞

ℓ=L+1.
¿From (2.15), the second term has the estimate:

∞∏

ℓ=L+1

∣∣∣∣
1

PK(e−i2ξ/2ℓ)

∣∣∣∣ ≤
∞∏

ℓ=L+1

(
1 + C

|ξ|
2ℓ

)

≤ exp(Cξ0) ≡ C1.

By the dominant convergence theorem, this infinite product converges absolutely and
uniformly for |ξ| ≤ 2L0ξ0.

Next, from (2.5),

PK(e−i2ξ) = cos2K ξ + sin2K ξ.(2.16)

It is easy to see that its minimum is at ξ = π/4 with minimal value 2−(K−1). This
yields maxξ∈R |1/PK(e−i2ξ)| = 2K−1. Hence,

L∏

ℓ=1

∣∣∣∣
1

PK(e−i2ξ/2ℓ)

∣∣∣∣ ≤ 2(K−1)L ≤
(

2|ξ|
ξ0

)K−1

.

Therefore, we obtain
∏∞

ℓ=1 1/PK(e−i2ξ/2ℓ

) = O(|ξ|K−1).

3. First, we show that
̂̃
φ(ξ1+iξ2) is analytic for |ξ2| < σ. We claim that φ̃(ξ1+iξ2)

is a meromorphic function with poles at:

2ℓ (±π/2 + i ln | tan θk|) ,

for ℓ = 1, 2, · · ·, k = 1, · · · ,K for even K and for k = 1, · · · ,K − 1 for odd K. To

see this, from (2.13), the poles of φ̃ are the roots of
∏∞

ℓ=1 PK(e−i2ξ/2ℓ

). ¿From (2.6),
(2.7), the roots of PK(z2) = 0 are z = e−iξ = ±i tan θk (k = 1, · · · ,K for even K
and k = 1, · · · ,K − 1 for odd K). That is, ξ = ±π/2 + i ln | tan θk|. The claim

follows immediately. With this, the poles of
̂̃
φ(ξ) with the smallest imaginary part

are 2
(
±π/2 ± i ln tan

(
K+1
4K

))
. Therefore,

̂̃
φ(ξ1 + iξ2) is analytic for |ξ2| < σ.
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Next, we show eσ′|x|φ̃ ∈ L2(R) for any σ′ < σ. When x ≥ 0, we move the
integration line in the Fourier inversion formula from the real line to {ξ1 + iσ′ | ξ1 ∈
R}:

φ̃(x) =
1√
2π

∫
eix(ξ1+iσ′)φ̃(ξ1 + iσ′) dξ1.

Here, we have used r̃ ≥ r, (2.11) and the fact that φ̃ is analytic for |ξ| < σ. ¿From
φ̃(· ± iσ′) ∈ L2(R) for r̃ ≥ r and the Planchel equality, we obtain eσ′|x|φ̃ ∈ L2(R).
When x < 0, we can move the integration line to {ξ1 − iσ′ | ξ1 ∈ R} and prove
similarly.

Definition 2.1. 1. A function φ is said to satisfy the Riesz basis property if

φ ∈ L2(R) and there exist constants 0 < A,B < ∞ such that for any finite sequence

{ck} we have

A
∑

k

|ck|2 ≤ ‖
∑

k

ckφ(· − k)‖2
L2 ≤ B

∑

k

|ck|2.

2. Two refinable functions φ and φ̃ are said to be biorthogonal if both of them satisfy

the Riesz basis property and they are dual to each other, namely,
∫
φ(x − i) φ̃(x −

k) dx = δi,k.

It is known [20, 9, 6] that a refinable function φ with mask h(z) satisfies the Riesz
basis property if and only if φ ∈ L2 and h(z) satisfies the Cohen criterion [6]. That is,
there exist a compact set K and finite many disjoint closed intervals Ki, associated
with an integer ni such that

(1) K contains 0 as an interior point,
(2) K = ∪iKi and [−π, π] = ∪(2niπ + Ki), and 2niπ + Ki can intersect each

other at most at their boundaries,
(3) h(eiξ/2j

) 6= 0 for all j > 0 and for all ξ ∈ K.

Proposition 2. The refinable functions φ and φ̃ constructed from the difference

wavelet method are biorthogonal for r̃ ≥ r ≥ 1.

Proof. Since φ is a spline for r ≥ 1, it is in L2(R). It also satisfies Cohen’s
criterion trivially with K = [−π, π]. For φ̃, we notice from (2.16) that 1/P (ei2ξ) > 0
for ξ ∈ [−π, π]. Hence, φ̃ also satisfies Cohen’s criterion trivially with K = [−π, π].
¿From (2.11), we see that φ̃ ∈ L2(R) as r̃ ≥ r. The duality of φ and φ̃ follows from
(1.5) [9].

Theorem 2.1. The difference wavelets ψ and ψ̃ with r̃ ≥ r ≥ 1 are biorthogonal

in L2(R).

Proof. Our theorem follows from a theorem of Chui [5] which says that ψ and
ψ̃ are biorthogonal if and only if φ and φ̃ are biorthogonal and g(z) = h̃(−z)P (z2)
and g̃(z) = h(−z)/P (z2) with P being in the Wiener class. We choose P = PK here.
PK(z) is a Laurent polynomial and, from (2.16), PK(z) 6= 0 for all |z| = 1. Hence PK

is in the Wiener class.

3. A Comparison Study. In this section, we compare four wavelet methods:
Cohen-Daubechies-Feauveau wavelet (CDF), Daubechies orthogonal wavelet (Daub),
Chui-Wang’s semi-orthogonal wavelet (CW), and the difference wavelet (Diff). Nat-
ural criteria of a good wavelet method are fast, stable and efficient. Therefore our
comparisons include
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(1) operation counts,
(2) condition numbers,
(3) compression ratio for data sequence and matrices.

Roughly speaking, the results below show that the difference wavelet method is more
efficient than other methods. In addition, we also compare

(4) regularity,
(5) approximation power,
(6) approximation error for functions with jumps,
(7) length of “essential support,”

to demonstrate that this better efficiency is probably due to its better regularity with
slightly bigger “essential support.” It is surprising that even for non-smooth functions,
Diff has better representation in the sense that it is smoother and less overshoots and
undershoots.

3.1. Operation Counts. In this comparison, we shall show that the operation
cost of Diff is about the same as those of CDF or Daub, even though it is a ra-
tional filter. We compute the number of operations per each datum in a one-level
wavelet transform. The operation counts include both forward and inverse trans-

forms (i.e. (1.1) and (1.2)). The common part of the four methods is
(

1+z
2

)2K
. A

factorization of Laurant polynomials does not change its operation counts. Thus, the
differences among these four methods are the operations for QK(z), GK(z)/GK(z2)
and 1/PK(z). The inversion of 1/PK(z2) and 1/GK(z2) are performed by the cyclic
reduction method. Table 1 shows that Diff has about the same number of operations
as those of CDF or Daub, while CW has more.

Diff CDF, Daub CW

1/PK(z) QK(z) GK(z)/GK(z2)

< (4A+ 3M)[K/2] (2A+ 1M)K (6A+ 5M)K

Table 1

Comparison of operation counts for performing filters 1/PK(z) (Diff), QK(z) (CDF and Daub)
and GK(z)/GK(z2) (CW) per each datum. Here, A is the addition operation and M is the multi-
plication.

3.2. Condition numbers. We compute the condition number of TJ : cJ 7→
(c0, d0, · · · , dJ−1) by Matlab to study the sensitivity of various wavelet transforms.
The matrix size is 1024 × 1024. Table 2 shows the following:

1. It is clear that orthogonal wavelet transform has the smallest condition num-
ber, which is 1.

2. Among the biorthogonal wavelet methods considered here, the difference
wavelet method has the smallest condition numbers for the cases r = r̃.
In general, the condition numbers of difference wavelet transforms are rea-
sonably small for application.

3. Notice that the condition numbers of CDF are big for the cases r = r̃ ≥ 4.
This is because the corresponding φ̃’s are not in L2(R), and the corresponding
wavelets do not form a Riesz basis in L2(R).

3.3. Compression ratio for data sequences. We demonstrate by numerical
tests to show that Diff method does have better compression ratio for data sequences
(both smooth and nonsmooth) and matrices (smooth kernel and singular kernel).
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r r̃ Diff CDF CW Daub

1 5 5.2 2.1 − −
2 4 3.5 2.5 − −
3 3 3.1 9.1 5.1 1.0
1 7 10.1 2.4 − −
2 6 7.0 2.5 − −
3 5 5.5 5.9 − −
4 4 4.5 35.4 10.0 1.0
1 9 19.5 2.5 − −
2 8 14.0 2.5 − −
3 7 11.0 5.5 − −
4 6 8.6 14.7 − −
5 5 7.0 154.9 19.3 1.0

Table 2

Comparison of the condition numbers of various wavelet transforms TJ : cJ →
(c4, d4, . . . , dJ−1). Here, r is the average order, r̃ is the difference order and J = 10. The ma-
trix size is 1024 × 1024. The results are computed by Matlab.

We measure the efficiency of a wavelet representation for a data sequence cJ by
a quantity C2 defined by

C2(ǫ, J, r, r̃) = N2(ǫ, J, r, r̃)/N,(3.1)

where N = 2J is the total number of data. The number N2 is defined as follows.
Firstly, we transform the discrete data cJ to (c0, d0, · · · , dJ−1). Next, we truncate
(c0, d0, · · · , dJ−1) by a threshold δ to yield (c̄0, d̄0, · · · , d̄J−1). The threshold δ is
chosen so that the inverse transform of (c̄0, d̄0, · · · , d̄J−1) (denoted by c̄J) is within
ǫ neighborhood of cJ in ℓ2, i.e.

(
∑

i

(cJ,i − c̄J,i)
22−J

)1/2

≤ ǫ.

Then we defineN2(ǫ, J, r, r̃) to be the number of nonzero elements in (c̄0, d̄0, · · · , d̄J−1).
We perform two tests: one is a smooth data, the other is a nonsmooth data.

Namely, we choose cJ,i = u(2−J i), i = 1, · · · , 2J , where u(x) = sin 4πx + sin 6πx for
the first test, and u(x) = χ[0,1/2](x) for the second test.

Table 3 and 4 show the value of C2 corresponding to the above two tests, where
N = 210 and δ = 10−6. We should compare various methods with fixed K, because
they have about the same amount of operation cost. We observe that the Diff with
r = 1 is the best in both tests.

3.4. Compression ratio for matrices. Fast matrix-vector multiplication is
important in many applications. Following Beylkin-Coifman-Rokhlin [2], we use
“standard method” for matrix compression. That is, given a 2J × 2J matrix G,
we transform it to TJGT

t
J . A truncation is applied to every entries of TJGT

t
J with

threshold δ. The number N2 is the total number of nonzero entries. The error of
Ḡ (i.e. the inverse transform of the truncated TJGT

t
J) is measured by a matrix ℓ2

norm. The quantity C2 is defined by N2/N . Roughly speaking, C2 is the number
of operation needed per each datum for a matrix-vector multiplication. Notice that
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r r̃ Diff CDF CW Daub

1 5 0.105 0.119 − −
2 4 0.203 0.330 − −
3 3 0.423 0.916 0.423 0.746
1 7 0.057 0.063 − −
2 6 0.061 0.111 − −
3 5 0.113 0.213 − −
4 4 0.223 0.455 0.111 0.234
1 9 0.031 0.053 − −
2 8 0.031 0.061 − −
3 7 0.057 0.100 − −
4 6 0.061 0.143 − −
5 5 0.117 0.262 0.057 0.119

Table 3

Comparison of C2, where C2 = N2/N , N2 is the number of nonzero truncated wavelet co-
efficients, N is the total number of data. The test data is cJ,k = u(2−Jk), where u(x) =
sin 4πx + sin 6πx. Here, N = 210, the threshold δ = 10−6, r, the averaging order and r̃, the
differencing order.

r r̃ Diff CDF CW Daub

1 5 0.031 0.059
2 4 0.031 0.061
3 3 0.033 0.061 0.266 0.059
1 7 0.059 0.082
2 6 0.059 0.084
3 5 0.057 0.084
4 4 0.057 0.084 0.334 0.082
1 9 0.059 0.102
2 8 0.059 0.104
3 7 0.057 0.107
4 6 0.061 0.107
5 5 0.059 0.105 0.387 0.094

Table 4

Comparison of the C2 for non-smooth data: cJ,k = u(2−Jk) and u(x) = χ[0,1/2), N = 210,

δ = 10−6.

the compression ratio mentioned in other literatures is N2/N2, which is N/C2 in our
language.

We perform three tests. The first one is the heat kernel on periodic domain. The
second one is a singular kernel which is basically the Green’s function of the Laplacian
in 2-d. The third one is the matrix which converts the coefficients of finite Chebyshev
expansion into the coefficients of a finite Legendre expansion.

3.4.1. Heat kernel. We evaluate the integral:

u(x, t) =

∫ 1

−1

G(x, y, t)f(y)dy
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where

G(x, y, t) =

∞∑

ℓ=−∞

1√
4πt

exp

(
− [2π(x− y − ℓ)]2

4t

)
,

that is, the fundamental solution of the heat equation on the periodic domain [0, 1].
This integral appears commonly for solving convection-diffusion equations [8]. In our
test, we choose t = 0.1, and the kernel is obtained by summing the heat kernel over
20 periods. We discretize the above integral by trapezoidal rule on a uniform grid.
Table 5 shows the quantity C2 and Table 6 gives the corresponding L2-errors and the
thresholds. In the comparison, we fix the threshold δ used for the Diff. The thresholds
used for other methods are chosen so that the corresponding errors are no less than
the errors of the Diff produced by using the fixed threshold δ. This is to guarantee
that the Diff produces the least error in our test.

The result shows that the difference wavelet method with r = 1 is the most
efficient method.

r r̃ Diff CDF CW Daub

1 5 1.86 4.59
2 4 4.41 12.22
3 3 14.23 50.88 15.19 30.31
1 7 0.72 1.95
2 6 1.50 2.00
3 5 1.86 6.38
4 4 4.31 19.22 2.48 4.98
1 9 0.70 1.09
2 8 0.75 2.13
3 7 0.72 2.16
4 6 1.59 5.38
5 5 1.86 14.59 2.5 2.09

Table 5

This table shows the values of C2, the number of operations per each datum in matrix-vector
multiplication. The matrix G is a finite approximation of the fundamental solution of heat equation
over period domain (0, 1). The matrix size is 1024× 1024. The corresponding errors and thresholds
are tabulated in Table 6. The result demonstrates that the Diff method with r = 1 is the most
efficient method.

3.4.2. Singular kernel. Singular kernels often appear in boundary integral
methods. Here, we consider the kernel corresponding to the Laplacian in 2-
dimension [2]. Namely,

Λij =

{
ln(i− j)2 if i 6= j,
0 if i = j.

(3.2)

Table 7 shows the value of C2 and Table 8 gives the corresponding errors ǫ and
thresholds δ. The result demonstrates that the difference wavelet method is the most
efficient method.

3.4.3. Fast Legendre transform. It is well-known that a fast Legendre trans-
form can be achieved through a fast Chebyshev transform followed by a compressed
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r r̃ Diff CDF CW Daub

1 5 1.4e-07 4.2e-07
2 4 5.2e-07 2.0e-06
3 3 2.3e-06 4.0e-06 2.9e-06 2.6e-06
1 7 1.1e-08 1.2e-07
2 6 6.4e-07 2.9e-06
3 5 3.3e-07 5.3e-07
4 4 1.2e-06 2.0e-06 1.5e-06 2.0e-06
1 9 1.1e-08 1.9e-07
2 8 9.1e-10 6.7e-08
3 7 2.6e-08 8.9e-07
4 6 1.5e-06 2.0e-06
5 5 1.1e-06 5.3e-06 1.5e-06 1.4e-06

1 5 1e-06 2e-06
2 4 1e-06 1e-06
3 3 1e-06 1e-06 5e-06 1e-06
1 7 1e-06 1e-06
2 6 1e-06 1.7e-05
3 5 1e-06 1e-06
4 4 1e-06 1e-06 3.9e-05 1e-05
1 9 1e-06 1e-06
2 8 1e-06 1e-06
3 7 1e-06 2e-06
4 6 1e-06 1e-06
5 5 1e-06 1e-06 3e-05 1e-05

Table 6

The top subtable shows the L2-error ǫ of the truncated matrix Ḡ in Table 5. The bottom one
gives the corresponding threshold δ used for truncation.

matrix which converts the coefficients of a finite Chebyshev expansion into the coef-
ficients of a finite Legendre expansion of the same polynomial [1, 2]. The matrix is
given by

Λij =






1
π Λ2(j) if 0 = i ≤ j < N,
2
π Λ(j − i)Λ(j + i) if 0 < i ≤ j < N,
0 otherwise,

where, Λ(z) = Γ(z + 1/2)/Γ(z + 1) and Γ(z) is the gamma function. Table 9 is the
value of C2 and Table 10 is the corresponding errors and thresholds. The result shows
that the difference wavelet method is again the most efficient method.

3.5. Regularity. In this subsection, we compare the smoothness of φ̃ for various
methods. We shall find s̃ such that φ̃ ∈ Hs(R) for all s < s̃. Here, Hs(R) denotes the
Sobolev space of regularity order s.

Firstly, for semi-orthogonal wavelet, r̃ = K and φ̃ is the spline 1∗K
[0,1). Hence,

s̃ = r̃ − 1/2. For other methods, basically we compute the spectral radius of the
transition matrix to determine its regularity. First, we use the following lemma [9, 20]
to normalize our comparison.
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r r̃ Diff CDF CW Daub

1 5 48.7 64.6
2 4 55.0 85.1
3 3 75.9 149.4 141.7 86.5
1 7 50.3 68.2
2 6 49.0 71.1
3 5 48.5 81.4
4 4 55.8 128.1 136.8 75.5
1 9 57.0 63.5
2 8 54.5 70.6
3 7 47.6 75.4
4 6 46.9 89.4
5 5 49.0 121.4 134.2 68.9

Table 7

Compression ratio C2 for the matrix (defined in equation 3.2) , the matrix size is N = 1024.
The result shows that the Diff is the most efficient one.

Lemma 3.1. Suppose h̃(z) =
(

1+z
2

)r̃
H̃(z) with H̃(−1) 6= 0 and H̃(1) = 1. Let φ̃

and Φ̃ be the scaling functions associated with h̃(z) and H̃(z). Then φ̃ ∈ Hs+r̃(R) if

and only if Φ̃ ∈ Hs(R).

The proof of this lemma follows easily from

̂̃
φ(ξ) = e−ir̃ξ/2

(
sin ξ

2
ξ
2

)r̃

̂̃Φ(ξ),

see [20]. Now, we apply this lemma to our cases:

h̃CDF(z) =

(
1 + z

2

)r̃

H̃CDF(z),

h̃Diff(z) =

(
1 + z

2

)r̃

H̃Diff(z).

Thus, we only need to compare the regularity of the scaling functions Φ̃CDF and

Φ̃Diff associated with H̃CDF and H̃Diff, respectively. Table 11 gives the regularity
for these functions. It is basically quoted from Cohen-Daubechies [7]. They gave a
sharp estimates on s0 by using transition matrix method, where s0 is the best Sobolev
exponent of the Sobolev space in which these functions can live. The case of Diff in
the first row is the Butterworth case in their paper. See also Fan and Sun [13].

We can transfer this table to a regularity table for φ̃, see Table 12. We observe
that

1. Diff is more regular than CDF and Daub.
2. With r̃ fixed, φ̃CW is the B-spline, which is the most regular function with

given r̃. However, with K fixed, which means it takes about same amount
of time to take wavelet transformation, Diff with r = 1 is even more regular
than CW.
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r r̃ Diff CDF CW Daub

1 5 1.1e-06 1.3e-06
2 4 1.0e-06 1.2e-06
3 3 2.1e-06 2.5e-06 2.2e-06 2.3e-06
1 7 3.4e-06 3.6e-06
2 6 2.9e-06 2.9e-06
3 5 3.7e-06 3.9e-06
4 4 3.6e-06 5.8e-06 4.2e-06 3.8e-06
1 9 1.5e-05 1.9e-05
2 8 5.1e-06 5.2e-06
3 7 5.8e-06 6.0e-06
4 6 5.1e-06 5.7e-06
5 5 9.3e-06 2.6e-05 1.6e-05 9.7e-06

1 5 1e-06 5e-06
2 4 1e-06 2e-06
3 3 1e-06 1e-06 6.4e-05 7e-06
1 7 1e-06 1.9e-05
2 6 1e-06 7e-06
3 5 1e-06 4e-06
4 4 1e-06 1e-06 0.000256 1.9e-05
1 9 1e-06 7.5e-05
2 8 1e-06 2.1e-05
3 7 1e-06 6e-06
4 6 1e-06 3e-06
5 5 1e-06 1e-06 0.001024 4.5e-05

Table 8

The matrix error ǫ and the thresholds for the matrix (defined in equation 3.2) in Table 7

3.6. Approximation power. Given any function u ∈ L2(R), it can be approx-
imated by the projection

PJu :=
∑

k

(u, φJ,k)φ̃J,k

as J → ∞ [9]. When u ∈ L2(R) ∩ C r̃+1(R), this approximation has the following
sharp estimate [17, 18, 19]:

‖PJu− u‖L2 = Cφ̃2−r̃J‖u(r̃)‖L2 +O(2−(r̃+1)J) as J → ∞,

where

Cφ̃ =
1

r̃!




∑

k 6=0

|̂̃φ
(r̃)

(2kπ)|2



1/2

.
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r r̃ Diff CDF CW Daub

1 5 29.3 39.6
2 4 28.1 42.3
3 3 29.1 55.3 69.4 40.1
1 7 39.1 37.3
2 6 33.3 32.1
3 5 29.6 46.6
4 4 28.2 62.1 73.3 41.4
1 9 44.0 31.4
2 8 35.7 28.3
3 7 31.3 43.8
4 6 29.4 49.2
5 5 28.5 67.4 82.3 39.5

Table 9

Compression ratio C2 for matrix which converts the finite Chebyshev expansion to finite Leg-
endre expansion. The matrix size is 1024×1024. The result shows that the different wavelet method
has the best compression ratio (see the cases (r, r̃) = (2, 4), (4, 4) and (5, 5).

The smaller Cφ̃ is, the better the approximation power is. Following Unser [19], the
constant Cφ̃ has the following expression:

Cφ̃ =






QK(−1)√
(4r̃−1)2r̃

D for CDF

1/PK(1)√
(4r̃−1)2r̃

D for Diff

1√
(4K−1)2K

D for CW

Q(−1)√
(4K−1)2K

D for Daub

D =

(
∑

k∈Z

|̂̃φ((2k + 1)π)|2
)1/2

.

In Table 13, we compute Cφ̃ for various methods. We observe the following things.

1. When r = r̃ = K fixed, CW has the best approximation power and Diff is
the second. This is due to that the approximate space Ṽ J of CW is spanned
by splines which are the most regular scaling function with given K.

2. However, if we fix K (this means the amount of works for wavelet transform
is of the same order), then we see Diff has the best approximation power.
This table is consistent to the previous regularity table.

3.7. Approximation error for non-smooth functions. When u is not
smooth, the representation PJu =

∑
(u, φJ,k)φ̃J,k exhibits the Gibbs phenomenon.

We choose the test function to be χ[1/4,3/4] on the periodic domain [0, 1]. We com-
pare the L1 and L2 errors and the heights of overshoots and undershoots. In this
comparison, the coefficients (u, φJ,k) are computed as follows. For Diff and CDF, φ is
the splines, we compute (u, φ) exactly by using Maple. For CW, PJu is the orthogonal
projection of u onto the space spanned by splines, therefore we find the coefficients
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r r̃ Diff CDF CW Daub

1 5 8.8e-07 1.0e-06
2 4 1.0e-06 1.6e-06
3 3 1.6e-06 2.2e-06 1.8e-06 1.9e-06
1 7 5.4e-06 5.7e-06
2 6 5.5e-06 5.9e-06
3 5 3.0e-06 4.0e-06
4 4 3.5e-06 7.8e-06 4.9e-06 3.7e-06
1 9 1.8e-05 1.8e-05
2 8 1.5e-05 1.5e-05
3 7 7.6e-06 8.0e-06
4 6 6.5e-06 6.6e-06
5 5 7.7e-06 6.0e-05 1.41e-05 7.8e-06

1 5 1e-06 4e-06
2 4 1e-06 3e-06
3 3 1e-06 1e-06 3.2e-05 6e-06
1 7 1e-06 1.6e-05
2 6 1e-06 1.3e-05
3 5 1e-06 3e-06
4 4 1e-06 1e-06 0.000128 1.2e-05
1 9 1e-06 6.1e-05
2 8 1e-06 3.9e-05
3 7 1e-06 8e-06
4 6 1e-06 3e-06
5 5 1e-06 1e-06 0.000512 2.5e-05

Table 10

The top subtable shows the errors ǫ and the bottom shows the thresholds δ corresponding to
Table 9.

K 2 3 4 5 6 7
s0(Diff) -1.5 -1.9 -2.3 -2.7 -3.1 -3.5
s0(CDF) -2.0 -3.2 -4.4 -5.8 -7.2 -8.6
s0(Daub) -1.0 -1.6 -2.2 -2.9 -3.6 -4.3

Table 11

Regularity table. K = (r + r̃)/2,
∏
QK(e−iξ/2ℓ

) ∈ Hs(R) for all s < s0(CDF), and
∏

1/PK(e−2iξ/2ℓ
) ∈ Hs(R) for all s < s0(Diff), quoted from [7]. Those with less negative val-

ues are of better regularity.

cJ,k = (u, φJ,k) by solving the linear system

∑

k

(φ̃J,iφ̃J,k)cJ,k = (u, φ̃J,i),

where φ̃J,k is the splines. For Daub, we do not have an analytic formula for φJ,k.
Therefore we compute (u, φJ,k) by direct numerical integration. We first transform the
integral (u, φJ,k) to 2−J/2

∫
u(2−J (k+ y))φ(y) dy. Since u is a characteristic function,

the integral only involves integration of φ. A trapezoidal rule is then applied for this
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r r̃ Diff CDF CW Daub

1 5 3.1 1.8 − −
2 4 2.1 0.8 − −
3 3 1.1 -0.2 2.5 1.4
1 7 4.7 2.6 − −
2 6 3.7 1.6 − −
3 5 2.7 0.6 − −
4 4 1.7 -0.4 3.5 1.8
1 9 6.3 3.2 − −
2 8 5.3 2.2 − −
3 7 4.3 1.2 − −
4 6 3.3 0.2 − −
5 5 2.3 -0.8 4.5 2.1

Table 12

Comparison of regularity of φ̃. The table shows the value of s̃, where φ̃ ∈ Hs(R) for all s < s̃.

r r̃ Diff CDF CW Daub

1 5 1.1e-03 1.1e-02 − −
2 4 6.8e-03 6.8e-02 − −
3 3 4.3e-02 6.2e-01 5.8e-03 3.0e-01
1 7 6.8e-05 2.4e-03 − −
2 6 4.3e-04 1.5e-02 − −
3 5 2.7e-03 9.8e-02 − −
4 4 1.7e-02 1.8e+00 9.1e-04 5.6e-01
1 9 4.2e-06 5.3e-04 − −
2 8 2.7e-05 3.3e-03 − −
3 7 1.7e-04 2.1e-02 − −
4 6 1.1e-03 1.6e-01 − −
5 5 6.6e-03 1.1e+01 1.4e-04 1.3e+00

Table 13

Comparison of the constant Cφ̃ in the estimate of the approximation power. The result shows

that with K fixed, the difference wavelet method has smallest constant Cφ̃, i.e. the best approximation
power.

integration using N = 213 grid points. Thus, the numerical error for this integration
is of order O(2−J/2−13), which is relatively small compared with the approximation
errors.

Table 14–15 show the L1 and L2 norms of the error PJu − u. Here, u =
χ[1/4,3/4], J = 10 and the numerical errors are computed using 213 grid points.
Table 16 shows the heights of the corresponding overshoots or undershoots (i.e.
maxx∈(1/4,3/4) PJu(x) − 1, or −minx6∈[1/4,3/4] PJu). We do not show the results of
CDF for the case (3, 3), (4, 4) and (5, 5), because the corresponding errors are too
large. In the comparison, for each K = 3, 4, 5, we choose the best case for each
method. For instance, for Diff, we choose (r, r̃) = (3, 3), (2, 6), (2, 8). For CDF,
we select (r, r̃) = (1, 5), (2, 6), (2, 8). For CW and Daub, we have no other choices
but (r, r̃) = (3, 3), (4, 4), (5, 5). It is surprising that the two non-compact supported
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wavelet methods, Diff and CW, have the least errors of overshoots and undershoots.
Indeed, Diff is slightly better than CW. It only has 9% overshoots or undershoots,
which is about the same as those using finite Fourier method. Figure 1 are the cor-
responding graphs of PJu in the interval [0.24, 0.26]. We observe that Diff does have
better representation in the sense of smoothness and smaller overshoots/undershoots.

r r̃ Diff CDF CW Daub
1 5 0.0045 0.0034 − −
2 4 0.0046 0.0050 − −
3 3 0.0027 − 0.0034 0.0046
1 7 0.0053 0.0038 − −
2 6 0.0045 0.0047 − −
3 5 0.0036 0.0031 − −
4 4 0.0052 − 0.0050 0.0034
1 9 0.0057 0.0041 − −
2 8 0.0045 0.0046 − −
3 7 0.0042 0.0031 − −
4 6 0.0052 0.0153 − −
5 5 0.0044 − 0.0041 0.0033

Table 14

The L1 error of u− PJu, where u = χ[1/4,3/4] on the periodic domain [0, 1] and J = 10.

r r̃ Diff CDF CW Daub
1 5 0.00074 0.00072 − −
2 4 0.00077 0.00083 − −
3 3 0.00067 − 0.00068 0.00077
1 7 0.00077 0.00073 − −
2 6 0.00074 0.00080 − −
3 5 0.00068 0.00072 − −
4 4 0.00078 − 0.00075 0.00060
1 9 0.00078 0.00074 − −
2 8 0.00073 0.00078 − −
3 7 0.00070 0.00068 − −
4 6 0.00073 0.00190 − −
5 5 0.00071 − 0.00069 0.00069

Table 15

The L2 error of u− PJu, where u = χ[1/4,3/4] on the periodic domain [0, 1] and J = 10.

3.8. Support. We have shown that φ̃Diff decays exponentially in the previous

section. Below, the length of the region where |φ̃(x)| ≥ 10−3. Table 17 shows a
comparison of this “essential support.” We observe that the essential support of
φ̃Diff is about twice of the support of φ̃CDF . Figures 2, 3 give the profiles of φ̃, ψ

and ψ̃ of the difference wavelet method for K = 3 and 4, respectively, with various r.
One observes that their “essential supports” are indeed quite compact.



488 I-L. CHERN AND C.-C. YEN

r r̃ Diff CDF CW Daub
1 5 0.19 0.17 − −
2 4 0.10 0.19 − −
3 3 0.09 − 0.10 0.13
1 7 0.20 0.18 − −
2 6 0.09 0.11 − −
3 5 0.10 0.13 − −
4 4 0.14 − 0.10 0.16
1 9 0.20 0.19 − −
2 8 0.09 0.10 − −
3 7 0.12 0.11 − −
4 6 0.13 1.00 − −
5 5 0.12 − 0.09 0.11

Table 16

This table shows the magnitudes of overshoot or undershoot of PJu, where u = χ1/4,3/4] and
J = 10.

r r̃ Diff CDF Daub

1 5 12.8 6.2 −
2 4 13.0 6.6 −
3 3 13.0 6.7 4.3
1 7 15.4 7.9 −
2 6 17.0 8.2 −
3 5 18.6 8.5 −
4 4 18.8 9.6 5.2
1 9 19.3 8.5 −
2 8 21.1 8.7 −
3 7 22.8 9.5 −
4 6 23.0 11.0 −
5 5 24.8 12.7 6.2

Table 17

Comparison of the length of the “essential support”(where |φ̃(x)| ≥ 10−3)
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Fig. 1. The graphs of PJu on the interval [0.24, 0.25], where u = χ[1/4,3/4] and J = 10. The
graphs from left to right are the representations by Diff, CDF, CW and Daub, respectively. For each
method, the graphs from top to bottom corresponding to the best case for each K = 3, 4, 5. More
precisely, from top to bottom, (r, r̃) = (3, 3), (2, 6), (2, 8) for the Diff, (r, r̃) = (1, 5), (2, 6), (2, 8) for
CDF, and r = r̃ = K for both CW and Daub.
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Fig. 2. The profiles of φ̃, ψ and ψ̃ (left to right) of the difference wavelet for K = 3 and
r = 1, 2, 3 (top to bottom).
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Fig. 3. The profiles of φ̃, ψ and ψ̃ (left to right) of the difference wavelet for K = 4 and
r = 1, 2, 3, 4 (top to bottom).


