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PERTURBATIONS OF

NON SELF-ADJOINT STURM-LIOUVILLE PROBLEMS, WITH

APPLICATIONS TO HARMONIC OSCILLATORS∗

LAURENCE NEDELEC†

Abstract. We study the behavior of the limit of the spectrum of a non self-adjoint Sturm-
Liouville operator with analytic potential as the semi-classical parameter h → 0. We get a good
description of the spectrum and limit spectrum near ∞. We also study the action of one special
perturbation of the operator (adding a Heaviside function), and prove that the limit spectrum is very
unstable. As an illustration we describe the limit spectrum as h → 0 for P h = −h2∆ + ix2 and the
effect of this perturbation.
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1. Introduction. This paper is devoted to non self-adjoint Sturm-Liouville
problems. We study the spectrum of the 1-dimensional, semiclassical Schrödinger
operator on L2([−1, 1]) with Dirichlet boundary condition, given by

(1) Hh = −h2 d

dx2
+ V (x).

The potential V is a complex valued function on [−1, 1], which extends holomorphi-
cally to some domain in C. The boundary value at ±1 play no special rule but are
fixed to avoid more notation.

The study of such operators is motivated by the Orr-Sommerfeld equation with
linear profile [6] or by the non linear Zakharov-Shabat eigenvalue problem, cf. work
of Miller [13].

As an application we will focus on the case where

(2) V (x) = ix2,

and shall write P h for the corresponding operator. From this one could also study
the slightly more general case −h2 d

dx2 + edx2, d ∈ C using a change of variable. The
spectrum of this operator on R (without Dirichlet condition) was analyzed by Davies
[2], cf. also the recent work of Hitrik [9].

It is well known that the spectrum of a non self-adjoint operator is unstable under
perturbation of the operator. This motivates the introduction of the pseudo-spectrum,
which has now been studied by many people, particularly Trefethen (who maintains
the web archive

http:web.comlab.ox.ac.uk/projects/pseudospectra) and Davies [3],[4]; we note
also the recent paper of Denker, Sjöstrand and Zworski [5].

We also consider the following perturbation of H , non smooth:
For β ∈ (−1, 1) and δ ≥ 0, let Hδ,β

(3) Hh
δ,β = −h2 d

dx2
+ Vδ,β(x), Vδ,β(x) =

{
V (x) + iδ, x > β
V (x) − iδ, x < β

,
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with domain

(4) Dδ,β = {u ∈ L2([−1, 1]), u′′ ∈ L2([−1, 1]), u(−1) = u(1) = 0, }.

Notice that Hh
0,β = Hh.

Redparth [14] has obtained similar results as here for one special class of poten-
tial i.e. arbitrary piecewise linear complex-valued potentials, a class which includes
perturbations as above of the operator −h2∆ + ix using the Airy function.

We focus on the semi classical limit, and denote by limh Sp(Hh
δ ) the set of all

values of E which arise as limits as h → 0 of some sequence of eigenvalues of Hh
δ . Our

goal is to :

• Described the set limh Sp(Hh
δ ) for δ = 0 and δ 6= 0.

• Find a ”Bohr-Sommerfield” condition that describe Sp(Hh
δ ) as h → 0,

as formulated by Shkalikov [15] for δ = 0. We give a geometric criterion for E not
to belong to limh Sp(Hh

δ ): namely limh Sp(Hh
δ ) ⊂ T c

δ , T c
δ = C \ Tδ where Tδ is the

set of E ∈ C such that there exists a progressive path from −1 to 1 with respect to
Vδ,β . ( We define this concept later). This is done in section 3, see Theorem 2. This
criterion is not sharp, and also not so easy to use. It is proved using either ellipticity
or exact WKB .

As a second step we give an alternate criterion for E to belong to

limh Sp(Hh
δ ), when E is large enough, which is sharp and computable, see Theorem

3 .

As an application we prove that the perturbation δ changes the spectrum near ∞
quite drastically, see Theorem 7. The pseudo spectrum is defined to be the limit as
δ → 0 of the union of spectra over all perturbations of Hh of size δ, and we show that
this perturbation is sufficient to reach the entire pseudo spectrum of Hh, see section
7. We note also the work in progress of M. Hager that studies the effect of different
perturbations on the spectrum.

We use the geometric criterion for P h to characterize the full set T c
0 , see Theorem

10, using special properties of the potential, and see that T c
0 forms a Y shape. Shka-

likov [16] find the same limh Sp(Hh
δ ) for two situations, one when V is an one-to-one

function on R, the other when V = ix2 using a asymptotic similar to exact WKB
solution but valid only for this potential, see also [6], [15]. The algorithm proposed
by Miller in [13] to study the spectrum is the same as the one we use here, though he
applies it to a different operator.

We also obtain a description of the spectrum of Hh which is near to

limh Sp(P h) and outside form a compact see Theorem 5. In the self-adjoint case; this
can be found in the book of Marchenko [11] or the paper of Kappeler and Möhr [10],
and in some special non self-adjoint cases in work of Carlson, Threadgill and Shubin
[1]. However, these results apply for potentials V with V ′ ∈ L1

loc, hence do not pertain
to Vδ,β .

Even though it is not self-adjoint, the operator Hh
δ,β has discrete spectrum. In-

deed, Vδ,β is compact relative to ∆, and from Weyl’s theorem it follows that its
essential spectrum is empty. In particular Hh

δ,β has no residual spectrum.

2. Generals tools. In this section we are interested in the Dirichlet eigenvalues
of the operator Hh on L2([−1, 1]) defined by

(5)

{
Hhu = Eu,
u(−1) = u(1) = 0.
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Definition 1. A point x0 in the complex plane is a turning point of order k for
the operator Hh − E if V (x) − E vanishes to order k at x = x0.

Definition 2. Let x be a point in the complex plane. The Stokes line starting
from x is the set

L(x) = {y ∈ C, Re

∫ y

x

(V (t) − E)1/2 dt = 0}.

This is independent of the branch of the square root. Denote by Sx,y(E) =∫ y

x
(V (t) − E)1/2 dt for some choice of branch.
Notice that the Stokes lines are integral curves of the Stokes vector field

(6) s(x) = i (V (x) − E)1/2.

The local structure of Stokes lines can be easily investigated (see e.g. [12], [7]).
Away from turning points or singularities of V , the Stokes lines form a non singular
analytic foliation. Indeed, if Ω ⊂ C does not contain any singularities of (V − E)1/2,
then x 7→ z(x, E) =

∫ x

x0
(V (t) − E)1/2 dt is an analytic diffeomorphism. Notice also

that from a simple turning point x0 emanates three Stokes lines, each making an angle
of 2π/3 with any other at x0.

Using ideas from quantum resonance theory, we shall consider as in [7] some
distorted operators associated to H . Let γ : [−1, 1] ∋ t → C be a smooth simple path
in the complex plane γ(−1) = −1 and γ(1) = 1. Since V is analytic, we can define
an operator Hγ,h on L2([−1, 1]) as the restriction of Hh to γ([−1, 1]). One computes
that

Hγ,h = −h2(
1

γ′(x)

d

dx
)(

1

γ′(x)

d

dx
) + V (γ(x)).

The correspondence between the Stokes geometry and spectral properties of Hh

is given in the following result from [7].

Proposition 1. The operator Hγ,h − E is elliptic if and only if γ is transverse
to the Stokes lines.

Proof. The semi-classical principal symbol of Hγ,h − E is

hγ(t, τ) =
1

(γ′(t))2
(τ2 + (γ′(t))2(V (γ(t)) − E)).

We set (V (γ(t))−E)
1
2 = reiθ and γ′(t) = eiθ′

(one can always suppose that |γ′(t)| =
1). Then the path γ is transversal to the Stokes lines if and only if

det(γ′(t), s(γ(t))) 6= 0,

where s(x) is the Stokes field defined in (6). This condition is the same as

Re γ′(t)(V (γ(t) − E)1/2 6= 0,

or finally θ + θ′ 6≡ π/2 mod [π]. Since Im (γ′(t)
2
hγ) = r2 sin 2(θ + θ′) and

Re (γ′(t)
2
hγ) = τ2 + r2 cos 2(θ + θ′), the transversality condition is equivalent to

the invertibility of hγ , as stated in the proposition.
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We deduce the following proposition, but this will be improved in Theorem 1
below, where we control the dependence on E and introduce the perturbation.

Proposition 2. For h small enough, E /∈ Sp(Hh) if there exists a path γ form
−1 to 1 which is transverse to the Stokes lines.

Proof. General properties of distorted analytic operators imply that E ∈ Sp(Hh)
is equivalent to E ∈ Sp(Hγ,h). Let γ be a path transverse to the Stokes lines. Then
by Proposition 1, Hγ,h−E is elliptic and invertible for sufficiently small h (depending
on E).

3. The semi-classical limit of the spectrum. The section is devoted to the
proof of the Theorem 1 and a direct application Theorem 2. The next sections 4 and
5 are devoted to the proof of a converse of Theorem 2.

We now introduce some notation. Denote by limh Sp(Hh) the set of all E0 such
that there exists a sequence hj → 0 with Ehj

∈ Sp(Hhj ) and Ehj
→ E0. For a ∈ C,

we denote by z0(x) and zl,r(x) the action integrals

(7)

z0(x) =

∫

γ(−1,x)

(V (t) − E)1/2 dt, zl(x) =

∫

γl(β,x)

(V (t) − iδ − E)1/2 dt,

zr(x) =

∫

γr(β,x)

(V (t) + iδ − E)1/2 dt,

where γ(−1, x) and γl,r(β, x) are paths from −1 or β to x on the Riemann surface
associated to a choice of Σ0 of t 7→ (V (t) − E)1/2 and Σl,r associated to a choice of
t 7→ (V (t) ± iδ − E)1/2, E ∈ C respectively.

We denote by Tδ the set of E ∈ C such that there exists γl(−1, β) on which
the function t 7→ Re (zl(γl(t))) is strictly monotone, and a path γr(β, 1) on which the
function t 7→ Re (zr(γr(t))) is strictly monotone. We will call such a path ’progressive’
. For δ = 0 we take a different definition: E ∈ T0 if and only if there exists a path γ
from −1 to 1 on which the function t 7→ Re (z0(γ(t)))) is strictly monotone.

Finally, for E ∈ Tδ, we denote by

(8) d(E, T c
δ , γ) = inf

l,r
inf

x∈γl,r
|Re ∂xzl,r(x)| if δ 6= 0

(9) d(E, T c
0 , γ) = inf

x∈γ
|Re ∂xz0(x)|

where γ is a progressive path associated to E (γ = ∪l,rγ
l,r if δ 6= 0).

Remark 1. Notice that Tδ is open. More precisely, if c is small enough there ex-
ists C > 0, such that if E0 belongs to Tδ then, for E such that |E−E0| ≤ cd(E0, T c

δ , γ),
we get E ∈ Tδ and d(E, T c

δ , γ) ≥ Cd(E0, T c
δ , γ). This follows from the relation

√
Vδ,β − E =

√
Vδ,β − E0 + O(

E − E0√
Vδ,β − E0

),

which shows that a progressive path for E0 is also a progressive path for E.

Theorem 1. Let δ ≥ 0 be small enough and E ∈ Tδ. Then E /∈ Sp(Hh
δ ) as soon

as h ≤ d(E, T c
δ , γ)7. (The reason for the exponent 7 will emerge at the end of the

proof.)
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From Remark 1 and Theorem 1 we obtain the

Theorem 2. If E0 ∈ limh Sp(Hh
δ ), then E0 ∈ T c

δ .

Proof. Suppose that E0 ∈ Tδ and γ is a progressive path associated to E0. Let
Eh be a sequence in the spectrum of Hh

δ tending to E0. By the remark above, Eh

belongs to Tδ as soon as h is small enough, and we get d(Eh, T c
δ , γ) ≥ C̃0. Theorem

1 shows that Eh is not in the spectrum of Hh
δ as soon as h is small. This contradicts

the hypothesis, so E0 ∈ T c
δ .

Proof of Theorem 1. We denote by (ul
+, ul

−) a basis of the space of solutions of
the equation

(10) (Hh
δ − E)u = 0,

in L2([−1, β]), and by (ur
+, ur

−) a basis of the space of solutions of (10) in L2([β, 1]).
A function f ∈ L2([−1, 1]) is an eigenfunction of Hδ with eigenvalue E ∈ C, if and
only if f solves the equation in each subinterval, f(1) = f(−1) = 0, and both f and
∂xf are continuous at x = β. Writing

(11) f = αl
+ul

+ + αl
−ul

− on [−1, β] f = αr
+ur

+ + αr
−ur

− on [β, 1],

Then f is an eigenfunction of Hh
δ with eigenvalue E ∈ C if and only if




ul
−(−1) ul

+(−1) 0 0
ul
−(β) ul

+(β) −ur
−(β) −ur

+(β)
∂xul

−(β) ∂xul
+(β) −∂xur

−(β) −∂xur
+(β)

0 0 ur
−(1) ur

+(1)







αl
+

αl
−

αr
+

αr
−


 = 0.(12)

Therefore E belongs to Sp(Hh
δ ), the spectrum of Hh

δ , if and only if

(13) det I(β, E) = 0,

where I(β, E) is the matrix appearing in (12).

Remark 2. For δ = 0, the proof is slightly different, the corresponding matrix is

I(β, E) =

(
u−(−1) u+(−1)
u−(1) u+(1)

)
,(14)

We leave details to the reader and in the following, treat only the case δ 6= 0.

In the sequel, we shall compute this determinant for the two particular bases
(ul

+, ul
−) and (ur

+, ur
−), namely for complex WKB solutions as in [8], or [7]. Suppose

E ∈ Tδ. Then there is a path γl = γl(−1, β) transversal to the Stokes lines L(y), and
we can suppose that γl(−1, β) is of type +, that is t 7→ zl(γl(t)) is strictly increasing.
Indeed if it is not the case, the path on the other sheet of the Riemann surface Σl asso-
ciated to the definition of the square root with the same projection on C as γl(−1, β)
is then of type +. (We have zl(−1) < 0.) We define two independent complex WKB
solutions w± of the equation (Hh

δ − E)u = 0 on the interval [−1, β].These have the
form

wl
± : x 7→ (V (x) − iδ − E)−

1
4 e±zl(x)/hW l

±(zl(x))

= (∂xzl(x))−
1
2 (x)e±zl(x)/hW l

±(zl(x)).
(15)
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Similarly, there exists a path γr = γr(β, 1) transverse to the Stokes lines of type
+ , (We have zr(1) > 0 and we have again two independent complex WKB solutions
of the equation Hδw± = 0 on the interval [β, 1] :

wr
± : x 7→ (V (x) + iδ − E)−

1
4 e±zr(x)/hW l

±(zr(x))

= (∂xzr(x))−
1
2 e±zr(x)/hW r

±(zr(x)).
(16)

The functions W l,r
± are convergent series of the form

(17) W l,r
± =

∞∑

n=0

W l,r
n,±,

where the W l,r
n,± are determined by the recurrence relations:

(18)





(∂z ± 2
h )W l,r

2n+1,± = −H l,rW l,r
2n,±

∂zW
l,r
2n,± = −H l,rW l,r

2n−1,±

with initial data

(19)





W l,r
0,± = 1,

W l
n,+(zl(−1)) = 0, W r

n,−(zr(1)) = 0, n ≥ 1,

W l
n,−(zl(β)) = 0, W r

n,+(zr(β)) = 0, n ≥ 1,

We have set here

(20) H l,r(zl,r(x)) = −1

4

∂xV (x)

(∂xzl,r(x))3
·

These equations can be written in integral form as

(21)





W r,l
2n+1,± = I l,r

± (W r,l
2n,±),

W r,l
2n+2,± = J l,r(W r,l

2n+1,±)

where

(22)





I l,r
± (v)(z) = −

∫

γ̃l,r(z)

e±2(u−z)/hH l,r(u)v(u) du

J l,r(v)(z) = −
∫

γ̃l,r(z)

H l,r(u)v(u) du

and γ̃l,r(z) is the image by x 7→ zl,r(x) of γl,r from the initial point −1 to z for l and
from β to z for r.

Now we have the following estimates

sup
z∈γ̃l,r

|I l,r
+ (v)(z)| ≤ sup

z∈γ̃l,r

|v(z)| sup
z∈γ̃l,r,z=zl,r(x)

{
|H l,r(z)| |∂xzl,r(x)|

|Re ∂xzl,r(x)|
}
×

|
∫

γ̃l,r

eRe (
2(u−z)

h
)Re ( dz)|

≤ h sup
z∈γ̃l,r

|v(z)| sup
z∈γ̃l,r,z=zl,r(x)

|H l,r(z)||∂xzl,r(x)| 1

d(E, T c
δ , γ)

≤ C(V )h sup
z∈γ̃l,r

|v(z)| 1

d(E, T c
δ , γ)3

(23)
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sup
z∈γ̃l,r

|J l,r(v)(z)| ≤ sup
z∈γ̃l,r

|v(z)| sup
z∈γ̃l,r,z=zl,r(x)

|H l,r(z)|∂xzl,r(x)|

≤ sup
z∈γ̃l,r

|v(z)| sup
z∈γ̃l,r,z=zl,r(x)

|H l,r(z)||∂xzl,r(x)|

≤ C(V ) sup
z∈γ̃l,r

|v(z)| 1

d(E, T c
δ , γ)2

.

(24)

Similarly we obtain

sup
z∈γ̃l,r

|I l,r
− (v)(z)| ≤ h sup

z∈γ̃l,r

|v(z)| sup
z∈γ̃l,r,z=zl,r(x)

|H l,r(z)||∂xzl,r(x)| 1

d(E, T c
δ , γ)

≤ C(V )h sup
z∈γ̃l,r

|v(z)| 1

d(E, T c
δ , γ)3

(25)

We denote by ⌊x⌋ the integer part of x. Hence on a progressive path γ we have

|W l,r
n,±|∞ ≤ h⌊n+1

2 ⌋

d(E, T c
δ , γ)3n

,

which means that

(26)

W l
+(−1) = 1, W l

+(β) = 1 + O( h
d(E,T c

δ
,γ)6 ),

W l
−(β) = 1, W l

−(−1) = 1 + O( h
d(E,T c

δ
,γ)6 ),

W r
+(β) = 1, W r

+(1) = 1 + O( h
d(E,T c

δ
,γ)6 ),

W r
−(1) = 1, W r

−(β) = 1 + O( h
d(E,T c

δ
,γ)6 ).

The function wl
± form a basis of solutions of the equation Hδw = 0, and similarly wr

±

is a basis of solutions of the equation Hδw = 0. A computation gives

dwl,r
±

dx
(x) = ±∂xzl,r(x)

1
2 e±

zl,r(x)

h
1

h

∞∑

n=0

(−1)nW l,r
n (zl,r(x)),

and so

dwl,r
±

dx
(x) = ±∂xzl,r(x)

1
2 e±

zl,r(x)

h
1

h
(1 + O(

h

d(E, T c
δ , γ)6

)).

Now compute the determinant; we shall write O = O( h
d(E,T c

δ
,γ)6 ) for simplicity.

det




wl
−(−1) wl

+(−1) 0 0
wl

−(β) wl
+(β) −wr

−(β) −wr
+(β))

wl ′
−(β) wl′

+(β) −wr ′
−(β) −wr ′

+(β)
0 0 wr

−(1) wr
+(1)


 =

1

h
∂xz

− 1
2

r (1)∂xz
− 1

2
r (β)∂xz

− 1
2

l (β)∂xz
− 1

2

l (−1)e−
zl(−1)

h e
zr(1)

h ×
∣∣∣∣∣∣∣∣∣

1 + O e2
zl(−1)

h 0 0
1 1 + O −1 + O −1
−∂xzl(β)(1 + O) ∂xzl(β)(1 + O) ∂xzr(β)(1 + O) −∂xzr(β)(1 + O)

0 0 e−2 zr(1)
h 1 + O

∣∣∣∣∣∣∣∣∣

(27)
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So the sign of the determinant is given by the sign of

∂xz
− 1

2

l (−1)∂xz
− 1

2
r (β)∂xz

− 1
2

l (β)∂xz
− 1

2
r (1)×

(det




1 0 0 0
0 1 −1 0
0 ∂xzl(β) ∂xzr(β) 0
0 0 0 1


 + O(

h

d(E, T c
δ , γ)6

))

= ∂xz
− 1

2

l (−1)∂xz
− 1

2
r (β)∂xz

− 1
2

l (β)∂xz
− 1

2
r (1)×

(∂xzr(β) + ∂xzl(β) + O(
h

d(E, T c
δ , γ)6

))

= (V (−1) − iδ − E)
− 1

4 (V (β) − iδ − E)
− 1

4

× (V (β) + iδ − E)
− 1

4 (V (1) + iδ − E)
− 1

4

× (
√

V (β) + iδ − E +
√

V (β) − iδ − E + O(
h

d(E, T c
δ , γ)6

))

(28)

( we have Re (
√

V (β) + iδ − E +
√

V (β) − iδ − E) ≥ 2d(E, T c
δ , γ).)

The determinant is non zero as soon as h is small compared to d(E, T c
δ , γ)7.

4. spectrum for large E and δ = 0. In this section we prove three results: the
first, Theorem 3, gives the condition for E0 to belong to limh Sp(Hh). The second,
Theorem 4, describes limh Sp(Hh) as a curve and gives its asymptotics near ∞. The
last, Theorem 5, describes the eigenvalues of Hh which are near to limh Sp(Hh). In
the following we let denote by Y a primitive of the potential V . In this section, we
assume that V verifies the following hypothesis: (H1) For any Ω ⊂ C, if V −1(Ω)
bounded then Ω is relatively compact.

(H2) If E is large enough,but with small imaginary part, then 1 and −1 belong to
the same Stokes region. We recall that this means that one can find a path going from
−1 to 1 that does not intersect the Stokes lines issuing from the turning points. Notice

that, under the assumption (H2), E ∈ T c
0 is equivalent to Re (

∫ 1

−1

√
V − E dx) = 0.

Theorem 3. For E0 large with small enough imaginary part, then

Re (
∫ 1

−1

√
V − E0 dx) = 0 if and only if E0 ∈ limh Sp(Hh

0 ).

Moreover there exists C small enough and Eh in the spectrum of Hh
0 which satisfies

|
√

Eh −
√

E0| ≤ Ch.

Proof of Theorem 3. The reverse implication follows directly from Theorem 2, so
we prove the direct implication.

There exists two WKB solutions w± of (Hh
0 − E)w = 0 of the form

(29) w±(x) = ∂xz0(x)
− 1

2 e±z0(x)/hW±(z0(x)),

W± =
∑

j=0

Wn,± W0,±(−1) = 1, Wn,±(−1) = 0 for n > 0.

The complex number E belongs to the spectrum of Hh
0 if and only if

e
2
h

z0(1) = W+(1)
W

−
(1) , which is equivalent to the existence of k ∈ Z such that

∫ 1

−1

√
V (x) − E dx − h

2
ln(W+(1)) +

h

2
ln(W−(1)) − ihkπ = 0.
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Let us denote

f(E) =

∫ 1

−1

√
V (x) − E dx − Im

∫ 1

−1

√
V (x) − E0 dx,

and

k0 = ⌊
Im

∫ 1

−1

√
V (x) − E0 dx

h
⌋

and also

g(E) =

∫ 1

−1

√
V (x) − E dx − h

2
ln(W+(1)) +

h

2
ln(W−(1)) − ihk0π.

We have f(E0) = 0. We want to apply Rouché’s theorem, but to do so we must give

upper and lower bounds for W±(1) and an estimate on f ′(E0) = − 1
2

∫ 1

−1
1√

V (x)−E0

dx.

By the hypothesis on the geometry of the Stokes lines near −1 and 1 there exists
a path γ which links −1 to 1 on which Re

∫ t

−1

√
V (x) − E0 dx = 0 for all t ∈ γ.

Moreover V (γ) is bounded uniformly with respect to E0, and by assumption (H1), γ
is also bounded uniformly with respect to E0.

We have

1√
V (x) − E0

=
1

i
√

E0

(1 + O(
supγV

E0
)),

therefore

|f(E) − f(E0)| ≥
1

2
√
|E0|

|(E − E0)|,

sup
γ

|H(z(x))| ≤ C1

sup
γ

|V ′(x)|

|E0|
3
2

,

and

sup
b,b′∈γ

|Re

∫ b′

b

√
V (t) − E dt| ≤ C2

E − E0√
|E0|

,

for any E and α0 such that |E − E0| ≤ o(E0) and |E0| > C0 . Using the expression
of Wn,+(z) as a Volterra integral, we obtain the estimates

|Wn,±(z)| ≤ exp
{ 2

h
sup

b,b′∈γ
|Re

∫ b′

b

√
V (t) − E dt|(n + 2)

}
sup

γ
|H |n 1

n!
.

This gives

|Wn,±(z)| ≤ exp
{C2

h

|E − E0|√
|E0|

n + 2
} Ĉn

1

|E0|
3n
2 n!

for |E − E0| ≤ h0(E0) and |E0| > C0 . So we obtain

W±(1) = 1 +
Ĉ1

|E0|
3
2

exp
{2C2

h

|E − E0|√
|E0|

}
exp

{ Ĉ1

|E0|
3
2

e
2C2

h
|E − E0|√

|E0|
}
.
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This gives the estimate

|W±(1) − 1| ≤ C̃1

|E0|
3
2

eC2C3eĈ1|E0|
−

3
2 eC2C3

for E0 > C0 and |E − E0| ≤ C3h
√
|E0| with h small enough. We also have

(30) |lnW+(1)| + |lnW−(1)| ≤ Č1

|E0|
3
2

for E0 > C(C3), and |E−E0| ≤ C3h
√
|E0| with h enough small, and for the functions

f and g we get

|f(E) − g(E)| ≤ h +
h

2
(|lnW+(1)| + |lnW−(1)|).

Thus if |E − E0| = C3h
√
|E0|, for some large constant C3, we have

(31) |f(E) − g(E)| ≤ (1 + C4|E0|−
3
2 )h, |f(E)| ≥ C3

2
h.

Finally, if E0 is large enough, all the assumptions of Rouché’s theorem are fulfilled,
and we get the result.

Theorem 4. For any fixed a large enough, the equation

Re S−1,1(E)|E=a+ib
= Re

∫ 1

−1

√
V (x) − (a + ib)dx = 0

has a unique solution b(a). Moreover b(a) = 1
2 Im (Y (1) − Y (−1)) + O( 1

a ).

Proof. First we prove that if b is such that Re
∫ 1

−1

√
V (x) − a − ib dx = 0, and

b = o(a) then

(32) b = i
1

2
Im (Y (1) − Y (−1)) + O(a−1).

Indeed if we denote by E = a + ib

ϕ(E, α, y) =

∫ y

α

√
V (x) − E dx,

then, uniformly for y in a compact set,

ϕ(E, α, y) = i
√

E(y − α) − i
1

2
√

E
(W (y) − W (α)) + O(E− 3

2 ).

Since Re S−1,1(E) = 0, we have

Re
(
i2
√

E − i
1

2
√

E
(Y (1) − Y (−1))

)
= O(E− 3

2 ).

Writing
√

E = c + ib̃, then b̃ = o(c) and

−2b̃ +
1

2c
Im (Y (1) − Y (−1)) + O(

b̃

c2
) = O(c−3),
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or equivalently

b̃ =
1

4c
Im (Y (1) − Y (−1)) + o(

1

c
).

This gives b = 1
2 Im (Y (1) − Y (−1)) + o(1), and b = O(1). Therefore b̃ = O(1

c ) and
recycling through this argument,

b̃ =
1

4c
Im (Y (1) − Y (−1)) + O(

1

c3
),

which gives (32).

The existence part of the theorem is straightforward: set

ϕ(c, b̂) := Re

∫ 1

−1

√
cV (x) − 1 − ib̂ dx = cRe

∫ 1

−1

√
V (x) − E dx

where E = 1
c (1 + ib̂). Since ∂bϕ(0, 0) = −2 and ϕ(0, 0) = 0, the implicit function

theorem applies.

Finally, the uniqueness follows from the fact that the map φ : b 7→
Re

∫ 1

−1

√
V (x) − a − ib dx is injective for a large enough. Indeed

|
√

V (x) − a − ib −
√

V (x) − a − ib′| ≤ C
√
|b − b′|,

for a suitable branch of the square root.

Remark 3. We can compute more terms of the asymptotic expansion than in
(32). Indeed, from

ϕ(E,−1, 1) = i2
√

E − i
1

2
√

E
(Y (1) − Y (−1)) + iE− 3

2

∫ 1

−1

V 2(x) dx

−iE− 5
2

∫ 1

−1

V 3(x) dx + O(E− 7
2 ).

(33)

we get

b(a) =
1

2
Im (Y (1) − Y (−1)) +

3

8a2
Im (

∫ 1

−1

V 3) + O(
1

a3
).

Looking more carefully at the quantization rules, we obtain the asymptotics of
the eigenvalues.

Theorem 5. Let E0 be a solution of Re (
∫ 1

−1

√
V − E0 dx) = 0 with |E0| large

and Im (E0) small. There exist C > 0 such that if Eh is in the spectrum of Hh
0 and

satisfies |
√

Eh −
√

E0| ≤ Ch then Eh satisfies:

Eh = (
πhk

2
)2 +

(Y (1) − Y (−1))

2
+

(Y (1) − Y (−1))2

(2hkπ)
2 + O(

1

(hk)3
).

for some k ∈ N.
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Remark 4. For a real potential V bounded on [−1, 1] and for any E0 ∈ R large

we get Re (
∫ 1

−1

√
V − E0 dx) = 0. So Theorem 5 can be read as: If Eh is large and

satisfies Eh ∈ Sp(Hh
0 ) then Eh satisfies:

Eh = (
πhk

2
)2 +

(Y (1) − Y (−1))

2
+

(Y (1) − Y (−1))2

(2hkπ)
2 + O(

1

(hk)3
).

for some k ∈ N.

Proof.

∫ 1

−1

√
V − E dx = i2

√
E − i

1

2
√

E
(Y (1) − Y (−1)) + O(E− 3

2 ).

Then E ∈ Sp(Hh
δ ) if and only if there exists k ∈ Z such that

∫ 1

−1

√
V (x) − E dx − h

2
ln(W+(1)) +

h

2
ln(W−(1)) − ihkπ = 0

For E0 big enough, |E − E0| ≤ C3h
√

E0, C3 is as in (31) and h small, there exist Č
such that

|lnW+(1)| + |lnW−(1)| ≤ Č|E0|−
3
2

So E ∈ Sp(Hh
δ ) if and only if there exist k ∈ Z such that

i2
√

E − i
1

2
√

E
(Y (1) − Y (−1)) − ihkπ = O(E− 3

2 )

In particular taking
√

E = c + ib̃ the real and imaginary parts give

2c − hkπ = O(c−1) c =
1

2
hkπ + O((kh)−1)

2b̃ =
1

2c
Im (Y (1) − Y (−1)) + O(c−3)

Using this again gives

c =
1

2
hkπ +

1

2hkπ
Re (Y (1) − Y (−1)) + O((kh)−3)

Remark 5. One can also treat the case P h on all of R. Then a condition for
E to belong to limh Sp(Hh) is that there exists a progressive path joining two turning
points.
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5. Large spectrum of a perturbation of H. In this section, we prove two
theorems: Theorem 6 gives the condition for E0 to belong to limh Sp(Hh

δ ) and Theo-
rem 7 gives a description of limh Sp(Hh

δ ) as the union of two curves, the asymptotics
near ∞ of which are made explicit.

We assume that V verifies the hypothesis (H1) and in addition :

(H3) If E is large enough, with small imaginary part then 1, −1 and β belong
to the same Stokes region.

We assume β 6= ±1. Recall that (H3) means that one can find paths going from
−1 to β and from 1 to β which do not intersect the Stokes lines issuing from the
turning points. With the hypothesis (H3), the condition E ∈ T c

δ is then equivalent

to

either Re (
∫ β

−1

√
V − iδ − E dx) = 0 or Re (

∫ 1

β

√
V + iδ − E dx) = 0.

Theorem 6. For E0 large enough, with small enough imaginary part, then E0

satisfies Re (
∫ β

−1

√
V − E0 dx) = 0 or Re (

∫ 1

β

√
V − E0 dx) = 0 if and only if E0 ∈

limh Sp(Hh
δ )

Theorem 7. For any fixed a large enough, the equation

Re (Sδ
±1,β(E))|E=a+ib := Re

∫ β

±1

√
V (x) ± iδ − a − ib dx = 0

has a unique solution b(a), and this solution satisfies

b(a) = i
1

β −±1
Im (Y (β) − Y (±1)) ± iδ + O(

1

a
).

Proof. The proof is the same as in Theorem 4 where the potential is V ± iδ in
each side; we just need to change the interval for the integral.

Proof of Theorem 6. The reverse implication is already proved in Theorem 2. Let
us prove the direct implication as in the proof of Theorem 3. There exist four WKB
solutions wl,r

± of Hh
δ − E = 0 on the interval [−1, β] or [β, 1]

(34)
wl

± = (∂xzl(x))−
1
2 e±zl(x)/hW l

±(zl(x)),

wr
± = (∂xzr(x))−

1
2 e±zr(x)/hW r

±(zr(x)),

with initial data

(35)





W l,r
0,± = 1,

W l
n,+(zl(β)) = 0, W r

n,−(zr(β)) = 0, n ≥ 1,

W l
n,−(zl(β)) = 0, W r

n,+(zr(β)) = 0, n ≥ 1.
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Recall that E ∈ Sp(Hh
δ ) if and only if

0 = det




wl
−(−1) wl

+(−1) 0 0
wl

−(β) wl
+(β) −wr

−(β) −wr
+(β)

wl′
−(β) wl′

+(β) −wr ′
−(β) −wr ′

+(β)
0 0 wr

−(1) wr
+(1)


 =

1

h
∂xz

− 1
2

r (1)∂xz
− 1

2

l (−1)×

det




e
−

zl(−1)
h Wl

−

(zl(−1)) e

zl(−1)
h Wl

+(zl(−1)) 0 0

1 1 −∂xz
1
2
l

(β)

∂xz
1
2
r (β)

−∂xz
1
2
l

(β)

∂xz
1
2
r (β)

−1 1 ∂xz
1
2
r (β)

∂xz
1
2
l

(β)
−∂xz

1
2
r (β)

∂xz
1
2
l

(β)

0 0 e
−

zr(1)
h Wr

−

(zr(1)) e

zr(1)
h Wr

+(zr(1))




(36)

To make the computation, simplify the notation by setting

t =
∂xz

1
2

l (β)

∂xz
1
2
r (β)

, y = e
zr(1)

h x = e
zl(−1)

h

then (36) becomes

det




x−1W l
−(zl(−1)) xW l

+(zl(−1)) 0 0
1 1 −t −t
−1 1 t−1 −t−1

0 0 yW r
−(zr(1)) y−1W r

+(zr(1))


 = 0,(37)

which gives

x2 W l
+(zl(−1))

W l
−(zl(−1))

=
(
1 + y2 W r

−(zr(1))

W r
+(zr(1))

1 − t2

1 + t2
)(1 − t2

1 + t2
+ y2 W r

−(zr(1))

W r
+(zr(1))

−1)
.

We remark that

|
(
1 − ∂xzl(β)

∂xzr(β)

)(
1 +

∂xzl(β)

∂xzr(β)

−1)
| ≤ C8

√
δ.

So the condition for E to be in the spectrum of Hh
δ is

(
e2

zl(−1)

h
W l

+(zl(−1))

W l
−(zl(−1))

− (∂xzr(β) − ∂xzl(β))

(∂xzr(β) + ∂xzl(β))

)
×

(
e−2

zr(1)
h

W r
−(zr(1))

W r
+(zr(1))

+
(∂xzr(β) − ∂xzl(β))

(∂xzr(β) + ∂xzl(β))

)

=
(
1 − (∂xzr(β) − ∂xzl(β))2

(∂xzr(β) + ∂xzl(β))2
)
.

(38)
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We write this condition by taking logs as

ln
(
e2

zl(−1)

h
W l

+(zl(−1))

W l
−(zl(−1))

− (∂xzr(β) − ∂xzl(β))

(∂xzr(β) + ∂xzl(β))

)

+ ln
(
e−2

zr(1)
h

W r
−(zr(1))

W r
+(zr(1))

+
(∂xzr(β) − ∂xzl(β))

(∂xzr(β) + ∂xzl(β))

)

− ln
(
1 − (∂xzr(β) − ∂xzl(β))2

(∂xzr(β) + ∂xzl(β))2
)

= 2ikπ, k ∈ Z.

(39)

Step1 First assume that

Re (

∫ β

−1

√
V − iδ − E0 dx) = 0 and Re (

∫ 1

β

√
V + iδ − E0 dx) 6= 0.

(The case Re (
∫ β

−1

√
V − iδ − E0 dx) 6= 0 and Re (

∫ 1

β

√
V + iδ − E0 dx) = 0 is treated

the same way. )
As (30), we get

(40) |lnW l
+(zl(−1))| + |lnW l

−(zl(−1))| ≤ C1|E0|−
3
2

for |E − E0| ≤ C3h
√
|E0| and E0 > C big, h small. As in (26), we get

(41) |lnW r
+(zr(1))| + |lnW r

−(zr(1))| ≤ Ch

with C uniform in E0, for |E − E0| ≤ C3h
√
|E0| and

(42) |e−2 zr(1)
h | ≤ e−

C
h .

Rewrite the previous condition as

g1,k(E) = 2zl(−1) + h ln(
W l

+(zl(−1))

W l
−(zl(−1))

)

+ h ln(1 − e−2
zl(−1)

h
W l

−(zl(−1))

W l
+(zl(−1))

(∂xzr(β) − ∂xzl(β))

(∂xzr(β) + ∂xzl(β))
)

+ h ln(
(∂xzr(β) − ∂xzl(β))

(∂xzr(β) + ∂xzl(β))
)

+ h ln(1 + e−2 zr(1)
h

W r
−(zr(1))

W r
+(zr(1))

(∂xzr(β) + ∂xzl(β))

(∂xzr(β) − ∂xzl(β))
)

− h ln(1 − (∂xzr(β) − ∂xzl(β))2

(∂xzr(β) + ∂xzl(β))2
) − 2ikhπ = 0.

(43)

Setting

f1(E) = 2zl(−1) + 2Im(

∫ β

−1

√
V (x) − iδ − E0 dx)

and

k0 = ⌊Im(

∫ β

−1

√
V (x) − iδ − E0 dx)h−1⌋,
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we have f1(E0) = 0. Using (40), (41) and (42) gives

|g1,k0(E) − f1(E)| ≤ h(1 + C
√

δ + Ch
√

δ
−1

+ C1|E0|−
3
2 ).

Now recall that

|f1(E) − f1(E0)| ≥
1√
|E0|

|(E − E0)|.

We can apply the Rouché’s Theorem to prove the existence of an eigenvalue of Hh
δ

for each h at a distance C3(δ)
√

|E0|h of E0 for E0 large.

Step2 Assume now that

Re (

∫ β

−1

√
V − iδ − E0 dx) = Re (

∫ 1

β

√
V + iδ − E0 dx) = 0.

As in (30),

|lnW l
+(zl(−1))| + |lnW l

−(zl(−1))| + |lnW r
+(zr(1))|+

|lnW r
−(zr(1))| ≤ C9|E0|−

3
2 .

(44)

For E0 > C, C sufficiently large, and |E − E0| ≤ C3h
√
|E0| with h small. We write

(39) as

g2,k(E) = 2zl(−1) − 2zr(1) + h ln(
W l

+(zl(−1))

W l
−(zl(−1))

)

+ h ln(1 − e−2
zl(−1)

h
W l

−(zl(−1))

W l
+(zl(−1))

(∂xzr(β) − ∂xzl(β))

(∂xzr(β) + ∂xzl(β))
)

h ln(
W r

+(zr(1))

W r
−(zr(1))

) + h ln(1 − e2 zr(1)
h

W r
−(zr(1))

W r
+(zr(1))

(∂xzr(β) − ∂xzl(β))

(∂xzr(β) + ∂xzl(β))
)

− h ln(1 − (∂xzr(β) − ∂xzl(β))2

(∂xzr(β) + ∂xzl(β))2
− 2ikhπ = 0,

(45)

and write

f2(E) = 2zl(−1) − 2zr(1) − 2 Im(

∫ −1

β

√
V (x) − iδ − E0 dx)

+2 Im(

∫ 1

β

√
V (x) + iδ − E0 dx).

(46)

Let

k0 = ⌊Im(

∫ −1

β

√
V (x) − iδ − E0 dx −

∫ 1

β

√
V (x) + iδ − E0 dx)h−1⌋.

Then

|f2(E) − f2(E0)| ≥
√
|E0|

−1|(E − E0)|,



PERTURBATIONS OF NON SELF-ADJOINT OPERATORS 139

and for |E − E0| ≤ C3h
√
|E0|

|f2(E) − g2,k0(E)| ≤ h(C9|E0|−
3
2 + C8

√
δ + 1).

On the set where |E − E0| = C3h
√
|E0|, we have for C3 = C3(δ) and E0 large

|(f2 − g2,k0)(E)| < |f2(E)|.

All the hypotheses of Rouché’s theorem are now satisfied and we conclude as before.

6. Application to the harmonic oscillator. In this section we are interested
in the Dirichlet eigenvalues of the operator P h on L2([−1, 1]),

(47) P h = −h2 d

dx2
+ ix2,

{
P hu = Eu,
u(−1) = u(1) = 0.

We obtain here only two results. Theorem 10 describes the shape of the set
limh Sp(P h), cf. figure 14. Theorem 12 shows how the spectrum changes near ∞
when P h is change by a specific perturbation of size δ, as illustrated in figure 15 .

For any E ∈ C∗ there are two turning points, α±(E) = ±(−iE)1/2, which are
both simple i.e. of order 1.

Denote by Sx,y(E) =
∫ y

x
(it2 − E)1/2 dt. The function S0,x is even, so to simplify

the computation one can use that S−x,x = 2S0,x. Writing

z(x, y, E) =

∫ y

x

(it2 − E)1/2 dt,

zhar(x, y, E) =

∫ y

x

(u2 − E)1/2 du,

and changing coordinate t = e−
iπ
8 u, we get

z(x, y, E) = ±zhar(xe
iπ
8 , ye

iπ
8 , Ee−

iπ
4 ).

So the Stokes lines of −h2∆+ix2 can be deduced from those of the harmonic oscillator
−h2∆ + x2 by a rotation by −π

8 about the origin, [12]. Using the geometry of the
Stokes lines we find for some E a progressive path from −1 to 1. Combine this with
previous theorems, we obtain a partial description of T c :

Theorem 8. We have
• Suppose E ∈ C∗ is such that Re Sα

−
,α+(E) 6= 0, Re S−1,1(E) 6= 0,

Re Sα+,1(E) 6= 0, Re Sα
−

,1(E) 6= 0, then E ∈ T0

• If E ∈ T0, then for any h small enough, E is not an eigenvalue for P h.
• If E ∈ limh Sp(P h) then E ∈ T c

0

Proof. Using Theorem 1 and Theorem 2, it is enough to find a path γ transversal
to the Stokes lines from −1 to 1. We have Re Sα

−
,α+(E) 6= 0, so the Stokes line issuing

from α+ do not intersect the Stokes lines issuing form α−. Therefore the complex
plane is divided into exactly five region delimited by the Stokes lines issuing from the
turning points. In Figure 1, we have drawn the configuration of the Stokes lines up
to an analytic diffeomorphism.
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α α− +

Fig. 1. Non degenerate Stokes lines

1

α α− +

Fig. 2. Progressive path issuing from 1

We have Re S1,α
±

(E) 6= 0, so that in particular 1, (and by symmetry −1) are not
on any boundary of the Stokes regions.

If 1 and −1 belong to different regions, then there always exists a path γ transver-
sal to the Stokes lines (see the figure 2); if on the other hand 1 and −1 belong to the
same region, but we also have Re S−1,1(E) 6= 0, then they do not belong to the same
Stokes lines and there still exists such a path γ.

If Re Sα
−

,α+(E) = 0, the Stokes configuration is as in Figure 3.

We now picture the evolution of the Stokes lines as E moves in the complex plane.

In fact Theorem 8 can be improved. Choose the segment [α−, α+] as a cut for
x 7→ (V (x) − E)1/2. The pictures 5 and 6 show the branch of the square root for
different values of E.

Denote by

Γ−1,1 = {E ∈ C; ReS−1,1(E) = 0, Re Sα
−

,α+(E) 6= 0}

The next theorem is proved by listing all the situations where there do not exist
progressive paths from −1 to 1 using the geometry of the Stokes lines.
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α
+

−α

Fig. 3. Degenerate Stokes lines

π/4

α +

α +

α+

α +

α +

Fig. 4. Stokes line for different E

Theorem 9. We have
• Suppose E ∈ C∗ belongs to

Γα
−

,α+ = {E ∈ C; Re Sα
−

,α+(E) = 0, ReSα+,1(E) ≤ 0},

then E ∈ T0.
• Suppose E ∈ C∗ belong to

Γα+,1 = {E ∈ C; Re Sα+,1(E) = 0; Im Sα+,1(E) ≤ 0},

then E ∈ T0.
• Suppose E ∈ C∗ belong to

Γα
−

,1 = {E ∈ C; Re Sα
−

,1(E) = 0; ImSα
−

,1(E) ≥ 0},

then E ∈ T0.
• E /∈ Γα+,1 ∪Γα

−
,1 ∪Γα

−
,α+ ∪Γ−1,1 then there is no progressive path form −1

to 1.

Remark 6. If a progressive path enters a Stokes region crossing a Stokes line
issuing from a turning point α, then it cannot leave this region by crossing any others
Stokes lines issuing from the same turning point α.
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R
+

e 
i

I

−IR
+

e 
i π/8

π/8

Fig. 5. branch for E = ei π
4 , the cut is the dashed line and also a Stokes line

R
+

e 
i

I

−IR
+

e 
i π/8

e
i β/2

e
i β/2π/8

Fig. 6. branch for E = ei π
4 eiβ,β > 0 small. The cut is the dashed line

The proof consists in listing the cases where progressive paths do not exist.
Recall first that if 1 and −1 belong to the same region then there exists a pro-
gressive path if and only if Re S−1,1(E) 6= 0. We get Γ−1,1 = {E ∈ C; 1 and −
1 belong to the same region Re S−1,1(E) = 0}. Now assuming 1 and −1 belong to dif-
ferent regions, we get two different figures for the Stokes lines either Re Sα

−
,α+(E) = 0

(Figure3) or Re Sα
−

,α+(E) 6= 0 (Figure 1). In the first case, using Remark 6, we see
that we cannot find a path if and only if 1 belongs to the hatched region ( and −1 by
symmetry to the opposite one)(Figure 7).

+
α α−

Fig. 7. The position of 1 is in one of hatched regions

The condition ReSα
−

,α+(E) = 0, Re Sα+,1(E) > 0 corresponds to this situ-
ation, i.e. Figure 8 shows the sign of the quantity Re Sα+,x(ei π

4 λ) depends on the
position of x for λ ∈ R.

Now assuming 1 and −1 belong to different regions and ReSα
−

,α+(E) 6= 0 (Figure
6). Using Remark 6, we see that we cannot find a path if and only if 1 belong the
dotted curves ( and −1 by symmetry to the opposite one )(Figure 9). The condition
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+

−

−

+

Fig. 8. Sign of the quantity x → Re Sα+,x(ei π
4 )

Re Sα+,1(E) = 0, Im Sα+,1(E) > 0 correspond to Figure 9.

α −
α +

Fig. 9. The position of 1 is in one of the dotted line, that are Stokes lines

The condition Re Sα+,1(E) = 0, Im Sα+,1(E) > 0 corresponds to this case. i.e.
Figure 10 shows the sign of the quantity ImSα

±
,x(ei π

4 eiβλ) with β > 0 and small
depending on x near to α±.

+

−

+

−

+ −

+
−

Fig. 10. Sign of the quantity Im Sα
±

,x(ei π
4 λeiβ)

Now we want to describe the set T c
0 .
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Theorem 10. We have
1. The set T c

0 is the union of three curves Γα+,1, Γα
−

,α+ , Γ−1,1 with only one
of infinite length Γ−1,1.

2. The three curves meet at a common point λ0e
iπ
4 with λ0 ∈ R+.

3. The curve Γ−1,1 goes from λ0e
iπ
4 to R + i

3 .

4. Γα
−

,α+ = {λe
iπ
4 ; λ ∈ R, 0 ≤ λ < λ0}.

5. The curve Γα+,1 goes from i to λ0e
iπ
4 .

Proof. (1) :
Let E = λ2eiβ with β ∈ R and λ ∈ R. We fix β and increase λ. We get

z(x, y, λ2eiβ) = z(x
λ , y

λ , eiβ). The shape of the Stokes lines remains invariant up to
dilation by λ. Let β be such that Re Sα

−
.α+(eiβ) 6= 0 then under symmetry we get

Re S0,α+(eiβ) 6= 0 , and Re Sα
−

.0(e
iβ) 6= 0. So if β is such that there is no Stokes line

issuing from the turning points and going through 0, then there exists a neighborhood
of 0 with no point of any Stokes lines issuing from the turning points. For λ big enough,
we get that −1 and 1 belong to this neighborhood of 0. Then E will belong to T c

0 if
and only if Re S−1,1(E) 6= 0.

If β is such that Re Sα
−

,α+(eiβ) = 0 then β = ±π
4 and Figure 12 and the fact

that the spectrum is included in the set {E ∈ C; E = R+ + ix2, x ∈ [−1, 1]} (i.e. the
pseudo spectrum or the values of the principal symbol) shows that E ∈ T c

0 , E = λei π
4 ,

λ ∈ R, implies E bounded. So we have that if E is big enough and belongs to T c
0 ,

then E ∈ Γ−1,1.
We choose the determination of α± so that the set

Γα
−

,1 = {E ∈ C; Re Sα
−

,1(E) = 0; Im Sα
−

,1(E) ≥ 0}

is empty see Figure 4.
The second statement is proved by the relation

S0,α+(E) + Sα+,1(E) + S1,0(E) = 0,

and illustrated in Figure 11.

Fig. 11. Stokes line for E near λ0e
iπ
4 , the arrows locate the positions of −1 and 1

Point 3 is proved in Theorem 11 below.
Point 4 is deduced from

z(x, y, E) = ±
∫ ye

iπ
8

xe
iπ
8

(u2 − Ee−
iπ
4 )1/2 du
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So for E = {λe
iπ
4 , λ ∈ R} we obtain

Re S0,α+(E) = Re ±
∫ ±

√
λ

0

(u2 − λ)1/2 du = 0.

The existence of λ0 is obvious in Figure 13.

−1 1

α

α
−

+

α

α

−

−1

1

α

α
+

−1

1

−

+

Fig. 12. Stokes line for E = λe
iπ
4

Point 5 is obvious from Figure 13.

E=i

Fig. 13. Evolution of the Stokes line for E ∈ Γα+,1, the arrows locate the position of −1 and 1

The hypothesis (H1) is obviously satisfied by the potential V (x) = ix2. The
hypothesis (H2) (H3) are satisfied by the potential ix2 ( and by any potential edx2

if e
d
2 /∈ R ) but not by the potential x2.
For large energies, we summarize the result of Proposition 2 , Theorem 3 and

Theorem 4 in

Theorem 11. We have

1. Large values of limh SpP h are close to the curve Γ−1,1.
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2. The curve Γ−1,1 = {E ∈ C, Re S−1,1(E) = 0} tends to infinity, and is asymp-
totic to the line R + i/3.

One could compute the set T c
0 with Matlab or Mathematica. In Figure 14 we

have drawn the set T c
0 using Theorems 10 and 11.

1/3

i

π

0

/4

Fig. 14. Limit spectrum of P h

For large energies and perturbation, we summarize the results of Theorem 6 and
Theorem 7 in

Theorem 12. We have

1. Large E ∈ limh SpP h
δ are near to the union of the two curves Γ−1,β, Γβ,1.

2. The curve Γ−1,β = {E ∈ C, Re S−1,β(E) = 0} tends to infinity, and is as-
ymptotic to R + i 1

3 (β2 − β + 1) − iδ.
3. The curve Γβ,1 = {E ∈ C, Re Sβ,1(E) = 0} goes to infinity, and is asymptotic

to R + i 1
3 (β2 + β + 1) + iδ.

We remark that the two curves Γ−1,β Γβ,1 are distinct for β 6= 0.
Figure 15 represents the two Theorems, 11 and 12.

1/3

i

π

0

/4

β  +β
2

β   −β
2

Fig. 15. Spectrum of P h in plain lines and spectrum of P h
δ for δ small near to ∞ as dotted lines.
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7. Pseudo-spectrum. We have defined here the pseudo-spectrum of Hh
0 as the

set

{ξ2 + V (x), x ∈ (−1, 1), ξ ∈ R, Im (ξV ′(x)) 6= 0}.

We remark that for any z is this set, we could construct a function uh in the domain
of Hh

0 such that

‖(Hh
0 − z)uh‖ = O(h∞)‖uh‖.

Let suppose now that we put two jumps in the potential, one at β and one at β′.
i.e Vββ′ = V + iδ1Hβ + iδ2Hβ′ .

Assume that V verifies the hypothesis (H1) and :

(H4) If E is large enough, with small enough imaginary part then 1, −1, β and
β′ belong to the same Stokes region.

Then we obtain just as in Theorems 6 and 7 the next two theorems

Theorem 13. For E0 large, the following two conditions are equivalent

1. Re (
∫ β

−1

√
Vββ′ − E0 dx = 0) or Re (

∫ 1

β′

√
Vββ′ − E0 dx = 0) or

Re (
∫ β′

β

√
Vββ′ − E0 dx = 0) .

2. E0 ∈ limh SpHh
δ .

Theorem 14. For a large enough, the equation

Re Sβ,β′(E)|E=a+ib = Re

∫ β′

β

√
V (x) + iδ1 − a − ib dx = 0

has a unique solution b(a), the solution satisfies

b(a) = i
1

β′ − β
Im (Y (β′) − Y (β)) − iδ1 + O(

1

a
).

We remark that

lim
β′→β

1

β′ − β
Im (Y (β′) − Y (β)) = Im (V (β))

This means, letting β′ → β, and δ → 0 any values of the form {ξ2 + iIm (V (x)); ξ ∈
R, |ξ| >> 1, x ∈ [−1, 1]} is in the spectrum of this kind of perturbation of Hh. Thus
we can reach all the large values of the pseudo-spectrum with this special type of
perturbation.
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[10] Kappeler, T.; Möhr, C., Estimates for periodic and Dirichlet eigenvalues of the Schrödinger

operator with singular potentials, J. Funct. Anal., 186:1 (2001), pp. 62–91.
[11] Marchenko, Vladimir A., Sturm-Liouville operators and applications. Transl. from

the Russian by A. Iacob, Operator Theory: Advances and Applications, Vol. 22.
Basel/Boston/Stuttgart: Birkhuser Verlag. XI, 367 p. DM 148.00 (1986).

[12] Maslov, V. P.; Fedoriuk, M. V., Semiclassical approximation in quantum mechanics, Trans-
lated from the Russian by J. Niederle and J. Tolar. Mathematical Physics and Applied
Mathematics, 7. Contemporary Mathematics, 5. D. Reidel Publishing Co., Dordrecht-
Boston, Mass., 1981. ix+301 pp. ISBN: 90-277-1219-0.

[13] Miller, Peter D., Some remarks on a WKB method for the nonselfadjoint Zakharov-Shabat

eigenvalue problem with analytic potentials and fast phase, Physica D, pp. 152–153, 145–
162 (2001).

[14] Redparth, Paul, Spectral properties of non-self-adjoint operators in the semi-classical regime,
J. Diff. Equations, 177:2 (2001), pp. 307–330.

[15] Shkalikov, A.A., Spectral portraits of the Orr-Sommerfeld operator with large reynolds num-

bers, J. M. sciences, 00 (2000), pp. 110–134.
[16] Shkalikov, A.A., Spectral portraits and the resolvent growth of a model problem associated

with the Orr-Sommerfeld equation, arXiv number 0306342.




