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THE CHEN-RUBIN CONJECTURE IN A CONTINUOUS SETTING∗

CHRISTIAN BERG† AND HENRIK L. PEDERSEN‡

Abstract. We study the median m(x) in the gamma distribution with parameter x and show
that 0 < m′(x) < 1 for all x > 0. This proves a generalization of a conjecture of Chen and Rubin
from 1986: The sequence m(n) − n decreases for n ≥ 1. We also describe the asymptotic behaviour
of m and m′ at zero and at infinity.
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1. Introduction. The gamma distribution with (positive) parameter x has den-
sity with respect to Lebesgue measure on (0,∞) given by e−ttx−1/Γ(x). The median
m(x) of this distribution is defined implicitly as

∫ m(x)

0

e−ttx−1

Γ(x)
dt =

1

2
,

or

∫ m(x)

0

e−ttx−1 dt =
1

2

∫ ∞

0

e−ttx−1 dt. (1)

This is of course equivalent to

∫ ∞

m(x)

e−ttx−1 dt =
1

2

∫ ∞

0

e−ttx−1 dt. (2)

We show that m is continuous and increasing. This is a consequence of a result about
general convolution semigroups of probabilities on the positive half-line, that is given
in Section 2. There we also show that m is real analytic and that m satisfies a certain
differential equation.

We shall mainly study m through the function

ϕ(x) ≡ log
x

m(x)
, x > 0. (3)

This function appears if we make the substitution u = log(x/t) in the relation (2):

∫ ϕ(x)

−∞

e−x(e−u+u) du =
1

2

∫ ∞

−∞

e−x(e−u+u) du. (4)

Chen and Rubin (see [7]) studied the median of the gamma distribution and proved
that x − 1/3 < m(x) < x for x > 0. The relation (4) was also used in [7] to
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64 C. BERG AND H. L. PEDERSEN

establish that ϕ(x) > 0, or equivalently m(x) < x. (It follows by observing that∫ 0

−∞
e−x(e−u+u) du <

∫∞

0 e−x(e−u+u) du, which is true because sinh u > u for u > 0.)
Chen and Rubin furthermore conjectured that the sequence m(n) − n decreases.

This conjecture has recently been verified by Alm [2]. See also Adell and Jodrá
[1], which contains a simpler proof. We also mention Alzer [3], who proved that
m(n + 1)−αn decreases for all n ≥ 0 exactly when α ≥ 1 and increases exactly when
α ≤ m(2) − log 2. (Note that m(1) = log 2.)

In this paper we investigate the properties of m as a function on (0,∞). Chen
and Rubin’s conjecture follows from the relation

m′(x) < 1 for all x > 0 (5)

and it is our main goal to verify this relation. (See Theorem 3.4.)
The graph of m can be found in Figure 1. (The dotted line is given by x − 1/3.)
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Fig. 1. The graph of m

In terms of ϕ the inequality (5) takes the form 1 − xϕ′(x) < eϕ(x). As a crucial
step towards this result we show that xϕ(x) decreases and that

1

3
< xϕ(x) < log 2

for all x > 0 (see Proposition 3.6). In terms of m this relation can be rewritten as

xe− log 2/x < m(x) < xe−1/3x.

If we use that e−a < 1 − a + a2/2 for a > 0 then in fact

m(x) < x

(
1 − 1

3x
+

1

18x2

)
= x − 1

3
+

1

18x
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for all x > 0. This result improves a result of Choi about m(n + 1), see [8, Theorem
1], even though it is there claimed to be best possible.

The asymptotic behaviour of m(x) for x → 0 and for x → ∞ is given in Section
4. From this we can deduce that m(k)(x) > 0 for x close to 0 for each k while
(−1)km(k)(x) > 0 for x sufficiently large and k ≥ 2. It is reasonable to believe that
m′′(x) > 0 for all x > 0, i.e. m is convex, but the higher derivatives of odd order
change sign.

2. Medians of convolution semigroups on the half-line. A family {µx}x>0

of probabilities concentrated on [0,∞) is called a convolution semigroup if it has the
properties

(i) µx([0,∞)) = 1 for all x > 0;
(ii) µx ∗ µy = µx+y for all x, y > 0;
(iii) µx → δ0 for x → 0 in the vague topology (here δ0 denotes the Dirac mass at

zero).
A probability measure µ on [0,∞) has median m if

µ([0, m]) =
1

2
.

Of course a probability measure may not have a median and if it exists it may not be
unique. However, if the measure has density w.r.t. Lebesgue measure on [0,∞) then
the median exists: this follows from the fact that M → µ([0, M ]) is continuous and
increases from 0 to 1. If the density is strictly positive almost everywhere on [0,∞)
then the median is unique.

Proposition 2.1. Let {µx}x>0 be a convolution semigroup of probabilities on
[0,∞) having a.e. strictly positive densities w.r.t. Lebesgue measure on [0,∞). Then
the median m(x) of µx is a continuous and strictly increasing function on (0,∞).
Furthermore, limx→0 m(x) = 0 and limx→∞ m(x) = ∞.

Proof. We write dµx(t) = gx(t) dt. As was noticed above, m exists as a function
on the positive half-line. We now show that m is strictly increasing. Let x > 0 and
h > 0. Then

∫ m(x)

0

gx+h(t) dt =

∫ m(x)

0

gx ∗ gh(t) dt

=

∫ m(x)

0

∫ t

0

gh(t − s)gx(s) ds dt

=

∫ m(x)

0

∫ m(x)

s

gh(t − s) dt gx(s) ds

=

∫ m(x)

0

∫ m(x)−s

0

gh(t) dt gx(s) ds

<

∫ m(x)

0

∫ ∞

0

gh(t) dt gx(s) ds

=

∫ m(x)

0

gx(s) ds =
1

2
.

Since m(x + h) by definition satisfies

∫ m(x+h)

0

gx+h(t) dt =
1

2
,
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it follows that m(x) < m(x + h). Therefore m is strictly increasing.
Concerning the continuity we first notice that for any A > 0,

∫ A

0

gx0+h(t) dt →
∫ A

0

gx0(t) dt

as h → 0. In fact, by the same computation as above,

∫ A

0

gx0+h(t) dt =

∫ A

0

gx0 ∗ gh(t) dt

=

∫ A

0

∫ A−s

0

gh(t) dt gx0(s) ds

→
∫ A

0

∫ A−s

0

dδ0(t) gx0(s) ds

=

∫ A

0

gx0(s) ds,

as h → 0, because of the vague convergence. (All measures in question have the same
total mass, so vague convergence implies weak convergence.) Now let x0 > 0 and let
ǫ > 0 be given. For A = m(x0) + ǫ we have, as h → 0+,

∫ m(x0)+ǫ

0

gx0+h(t) dt →
∫ m(x0)+ǫ

0

gx0(t) dt >
1

2
,

so that m(x0 + h) ≤ m(x0) + ǫ for all sufficiently small and positive h. Similarly,
m(x0 − h) ≥ m(x0) − ǫ, and this shows that m is continuous.

To show that limx→0 m(x) = 0 and limx→∞ m(x) = ∞, it is enough to exclude
that

(a) there is a > 0 such that m(x) ≥ a for x > 0, and
(b) there is A > 0 such that m(x) ≤ A for x > 0,

m being increasing.
If (a) holds then

∫ a

0

gx(t)dt ≤
∫ m(x)

0

gx(t)dt =
1

2

for all x. Since µx converges vaguely to the Dirac mass at 0 for x tending to 0 we get

1 = δ0([0, a)) ≤ lim inf
x→0

µx([0, a)) ≤ 1

2
,

which is a contradiction.
If (b) holds then

1

2
=

∫ m(x)

0

gx(t)dt ≤
∫ A

0

gx(t)dt ≤ eA

∫ A

0

e−tgx(t)dt < eAe−xf(1),

where f is the Bernstein function corresponding to the convolution semigroup (see
[5]). However, f(1) > 0 so that the right-hand side tends to 0 as x → ∞. We have
reached a contradiction.
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The gamma distributions {e−ttx−1/Γ(x) dt}x>0 is an example of such a convolu-
tion semigroup. Other examples can be constructed from the one-sided stable distrib-
ution of order α (0 < α < 1), and the log-normal distribution; see [14]. Both of these
distributions are infinitely divisible and can be embedded in a convolution semigroup.
The median of either of these semigroups has the properties of Proposition 2.1.

We now specialize to consider the median m(x) of the gamma distributions. We
notice

Proposition 2.2. The median m(x) of the gamma distributions is real analytic.

Proof. We consider the C1-function

F (x, y) =

∫ y

0

e−ttx−1 1

Γ(x)
dt, x, y > 0.

The median is implicitly defined as F (x, m(x)) = 1/2. The fact that the continuous
function m is C1 follows from the implicit function theorem, which yields the following
differential equation for m:

e−m(x)m(x)x−1m′(x) =
1

2
Γ′(x) −

∫ m(x)

0

(log t) e−ttx−1 dt, (6)

which shows that m satisfies a differential equation of the form

m′(x) = G(x, m(x)),

with G(x, y) being real analytic for x, y > 0. Therefore m is real analytic.

Remark 2.3. From (6) it seems difficult to deduce monotonicity properties of
m; e.g. it is not at all clear that m′(x) > 0, which follows from Proposition 2.1. For
another derivation of m′(x) > 0 see Proposition 3.6.

3. Uniform results. In this section the generalized version of Chen and Rubin’s
conjecture (Theorem 3.4) is proved.

Proposition 3.3 below is the key to our results. Before stating it we need some
notation.

We consider the function f(x) = e−x +x. It is easily seen that f(x) decreases for
x < 0 and then increases for x > 0. Hence f has an inverse on (−∞, 0], which we call
u, and an inverse on [0,∞), which we call v. The function u is defined for t ≥ 1 as
u(t) ≤ 0 and

e−u(t) + u(t) = t, t ≥ 1;

the function v as v(t) ≥ 0 and

e−v(t) + v(t) = t, t ≥ 1.

The following function ξ plays an important role:

ξ(t) =
1

1 − e−v(t)
+

1

1 − e−u(t)
= u′(t) + v′(t). (7)

Since u(t) → −∞ and v(t) → ∞ for t → ∞ it follows that

ξ(t) → 1 as t → ∞. (8)
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The function ξ(t) is defined for t > 1. For t = 1 the expression (7) yields ∞−∞ and
a closer study is necessary.

Proposition 3.1. The function ξ(t) is holomorphic in a neighbourhood of t = 1
and ξ(1) = 2/3, ξ′(1) = 8/135.

The monotonicity properties of ξ also play an important role in our investigations.
The following result holds.

Proposition 3.2. The function ξ(t) is increasing and concave for t > 1.

These two propositions are proved in Section 5. It is in fact proved that ξ has
a holomorphic extension to the cut plane C \ {x ± 2πi |x ≥ 1} (Corollary 5.5). Fur-
thermore, an integral representation of ξ is obtained (Proposition 5.8) from which
the monotonicity properties are derived. It is shown that ξ(t) is increasing for t ∈ R

and has the limit 0 as t tends to −∞. Hence the function cannot be concave on the
whole real line and this is reflected in the technicalities establishing concavity on the
interval [1,∞).

Proposition 3.3. We have

2

∫ ϕ(x)

0

e−x(e−u+u) du =

∫ ∞

1

ξ(t)e−xt dt, (9)

where the function ξ is defined in (7).

Proof. From (4) it follows

2

∫ ϕ(x)

0

e−x(e−u+u) du =

∫ ∞

0

e−x(e−u+u) du −
∫ 0

−∞

e−x(e−u+u) du.

In the first integral on the right-hand side we make the substitution u = v(t) and in
the second the substitution u = u(t), where u(t) and v(t) denote the functions above.
This leads to

2

∫ ϕ(x)

0

e−x(e−u+u) du =

∫ ∞

1

e−xt

(
1

1 − e−v(t)
+

1

1 − e−u(t)

)
dt

=

∫ ∞

1

ξ(t)e−xt dt.

As mentioned in the introduction the inequality m′(x) < 1 follows from the result
below.

Theorem 3.4. The inequality

1 − xϕ′(x) < eϕ(x)

holds for all x > 0.

Before proving this result, we give the following Lemma.

Lemma 3.5. The relation

2

∫ xϕ(x)

0

e−sex(1−e−s/x) ds =
2

3
+

∫ ∞

1

ξ′(t)e−x(t−1) dt

holds for all x > 0.
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Proof. On the left hand side of the relation in Proposition 3.3 we make the
substitution s = xu and get in this way

2

x

∫ xϕ(x)

0

e−s−xe−s/x

ds =

∫ ∞

1

ξ(t)e−xt dt,

hence by integration by parts

2

∫ xϕ(x)

0

e−s−xe−s/x

ds =

∫ ∞

1

ξ(t)xe−xt dt

= e−xξ(1) +

∫ ∞

1

ξ′(t)e−xt dt.

Here ξ(1) = 2/3 (see Proposition 3.1) and the assertion of the lemma now follows by
multiplication by ex.

Proposition 3.6. The function x → xϕ(x) decreases for x > 0 and

lim
x→0+

xϕ(x) = log 2,

lim
x→∞

xϕ(x) =
1

3
.

In particular ϕ is decreasing from ∞ to 0 (and m is increasing).

Proof. It follows from Lemma 3.5, by differentiation, that

e−x(ϕ(x)−1+e−ϕ(x)) (xϕ(x))′ =

−
∫ xϕ(x)

0

e−sex(1−e−s/x)
(
1 −

(
1 +

s

x

)
e−s/x

)
ds

−1

2

∫ ∞

0

te−xtξ′(t + 1) dt.

Since 1− (1 + a)e−a > 0 for a > 0 and ξ′(t + 1) > 0 for t > 0 (see Proposition 3.2) we
have

A(x) ≡
∫ xϕ(x)

0

e−sex(1−e−s/x)
(
1 −

(
1 +

s

x

)
e−s/x

)
ds > 0

and

B(x) ≡ 1

2

∫ ∞

0

te−xtξ′(t + 1) dt > 0.

Therefore

(xϕ(x))′ = −ex(ϕ(x)−1+e−ϕ(x))(A(x) + B(x)), (10)

which is a negative quantity, so xϕ(x) decreases.

Furthermore, since e−sex(1−e−s/x) ≥ e−s, we get from Lemma 3.5,

2

∫ xϕ(x)

0

e−s ds ≤ 2

3
+

∫ ∞

1

ξ′(t) dt =
2

3
+ lim

x→∞
ξ(x) − ξ(1) = 1,
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since limx→∞ ξ(x) = 1 (see (8)). Therefore xϕ(x) is bounded by log 2 for all x > 0.
Let l = limx→0+ xϕ(x). Then by the dominated convergence theorem we find

2

∫ l

0

e−s ds =
2

3
+

∫ ∞

1

ξ′(t) dt = 1,

so that l = log 2.
Finally, let L = limx→∞ xϕ(x). In the same way, we get

2

∫ L

0

1 ds =
2

3
,

so that L = 1/3.

Proof of Theorem 3.4. With the expressions A(x) and B(x) and the relation (10)
from the proof of Proposition 3.6 we obtain

1 − xϕ′(x) = ex(ϕ(x)−1+e−ϕ(x))(A(x) + B(x)) + ϕ(x) + 1

≤ exϕ(x)(A(x) + B(x)) + ϕ(x) + 1.

Now, using that 1 − e−a < a and 1 − (1 + a)e−a < a2/2 for a > 0, it follows that

A(x) ≤
∫ xϕ(x)

0

e−sex(s/x)

(
s2

2x2

)
ds =

xϕ(x)3

6
.

Furthermore, since ξ′(t + 1) ≤ ξ′(1) = 8/135 for t ≥ 0,

B(x) ≤ 1

2

8

135

∫ ∞

0

te−xt dt =
4

135x2
.

This gives

1 − xϕ′(x) ≤ 1 + ϕ(x) + exϕ(x)

(
xϕ(x)

6
+

4

135(xϕ(x))2

)
ϕ(x)2.

It is easily seen that the function

ρ(u) = eu

(
u

6
+

4

135u2

)

attains its maximum on [1/3, log 2] at u = 1/3 with value

ρ

(
1

3

)
=

29

90
e1/3 <

1

2
.

We obtain from this the relation

1 − xϕ′(x) < 1 + ϕ(x) +
1

2
ϕ(x)2 < eϕ(x).

Remark 3.7. The difference between eϕ(x) and 1 + ϕ(x) + 1
2ϕ(x)2 is O(ϕ(x)3),

that is (by Proposition 3.6) the difference is O(x−3). Hence for large x the difference
is very small, reflecting the fact that m′(x) is very close to 1. For x close to 0, the
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difference is large, reflecting the fact that m′(x) approaches 0 rapidly. See Proposition
4.1.

Remark 3.8. Defining θ(n) for natural numbers n by

en

2
=

n−1∑

k=0

nk

k!
+ θ(n)

nn

n!
,

Ramanujan [13] claimed that 1
3 < θ(n) < 1

2 . This was later proved independently by
Szegő [15] and Watson [16]. Further details about Ramanujan’s problem can be found
in [2], [6], [10] and [8].

Watson obtained the relation

θ(n) = 1 +
n

2

(∫ 1

0

(te1−t)n dt −
∫ ∞

1

(te1−t)n dt

)

and noticed that the right-hand side of this equation makes perfect sence when n is
replaced by a positive real variable x. The substitution t = e−u in the integrals and
some computation lead to

θ(x) =
x

2

∫ ∞

0

e−xtξ(t + 1) dt. (11)

The inequalities 1/3 < θ(x) < 1/2 can now be obtained from the inequalities 2/3 <
ξ(t + 1) < 1.

4. Asymptotic results. Here the behaviour of m and m′ at zero and at infinity
is described. We use f(x) ∼ g(x) for x → 0 to denote that

lim
x→0

f(x)/g(x) = 1.

Proposition 4.1. We have m(x)x → 1/2 as x → 0 and

m(x) ∼ e−γ2−1/x as x → 0.

Furthermore,

m′(x) ∼ (log 2)e−γ 2−1/x

x2
as x → 0.

(The constant γ denotes Euler’s constant.)

Proof. Let l(x) = log(m(x)x) = −xϕ(x)+x log x. From Proposition 3.6 it follows
that l(x) → − log 2 as x → 0. Therefore m(x)x → 1/2 as x → 0.

By the definition of m(x) and by the functional equation of the gamma function
we have

∫ m(x)

0

e−txtx−1 dt =
1

2
Γ(x + 1).

Integration by parts on the integral on the left hand side in this relation yields

m(x)xe−m(x) +

∫ m(x)

0

e−ttx dt =
1

2
Γ(x + 1).
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We next differentiate this relation and get after some manipulation

log m(x) +
x

m(x)
m′(x) = em(x)m(x)−x

(
1

2
Γ′(x + 1) −

∫ m(x)

0

(log t) e−ttx dt

)
.

Since m(x)x → 1/2 as x → 0 it follows that

lim
x→0

(
log m(x) +

x

m(x)
m′(x)

)
= Γ′(1) = −γ. (12)

This is the same as l′(x) = (log(m(x)x))′ → −γ as x → 0. Using l’Hospital’s rule we
get

l(x) + log 2

x
→ −γ

for x → 0. Therefore m(x) ∼ 2−1/xe−γ as x → 0.
From (12) it follows that

x log m(x) +
x2

m(x)
m′(x) → 0

for x → 0 and, since (as used before) x log m(x) → − log 2, we get

m′(x) ∼ log 2

x2
2−1/xe−γ

as x → 0.

Proposition 4.2. The functions m and m′ have asymptotic expansions at in-
finity. We have in particular

m′(x) = 1 − 8

405x2
− 368

25515x3
+ o(x−3) as x → ∞

and

m(x) = x − 1

3
+

8

405x
+

184

25515x2
+ o(x−2) as x → ∞.

Remark 4.3. Choi [8] found the asymptotic expansion of m(n + 1) up to order
o(n−3). Higher order expansions of m(n + 1) were found in [11]. In the appendix we
have included higher order expansions of m(x) and ϕ(x) (and higher order derivatives
of the function ξ at 1). Because of the complexity, the computations behind the expan-
sions in the appendix were made with “Maple 9”, using the same method as described
in Lemma 4.5.

Some properties of ξ are also needed here, namely:

Lemma 4.4. For any n ≥ 1, limt→∞ ξ(n)(t) = 0.

This lemma is proved in the last part of Section 5.

Lemma 4.5. The functions ϕ and ϕ′ have asymptotic expansions at infinity. In
particular

ϕ(x) =
1

3x
+

29

810x2
− 37

25515x3
+ o(x−3)
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as x → ∞.

Proof. We have already seen in Proposition 3.6 that ϕ(x) = O(x−1). Therefore

2

∫ ϕ(x)

0

e−x(u+e−u−1) du = 2

n∑

k=0

(−1)kxk

k!

∫ ϕ(x)

0

(u + e−u − 1)k du + o(x−(n+1)).

On the other hand, by partial integration and Lemma 4.4,

∫ ∞

0

ξ(t + 1)e−xt dt =
n∑

k=0

ξ(k)(1)

xk+1
+ o(x−(n+1)). (13)

From Proposition 3.3 we thus get

ϕ(x) =

n∑

k=0

ξ(k)(1)

2xk+1
−

n∑

k=1

(−1)kxk

k!

∫ ϕ(x)

0

(u + e−u − 1)k du + o(x−(n+1)). (14)

From this relation it is possible to deduce that ϕ(x) has an asymptotic expansion of
the form

ϕ(x) =

n∑

k=1

ck

xk
+ o(x−n) (15)

as x → ∞ and for any n. (See below.)
Let us first find the coefficients c1, c2 and c3 in the expansion. If n = 0 the relation

(14) yields, since ξ(1) = 2/3,

ϕ(x) =
1

3x
+ o(x−1).

(This was already found in Proposition 3.6.) For n = 1 we get, using ξ′(1) = 8/135,

ϕ(x) =
1

3x
+

4

135x2
+ x

∫ ϕ(x)

0

(u + e−u − 1) du + o(x−2).

Now, u + e−u − 1 = u2/2 + o(u2) for u → 0 and therefore

ϕ(x) =
1

3x
+

4

135x2
+ x

(
ϕ(x)3

6
+ o(x−3)

)
+ o(x−2).

Then we use the result for n = 0 to obtain that xϕ(x)3 = 1/(27x2) + o(x−2), and if
we insert this into the relation above it follows that

ϕ(x) =
1

3x
+

(
4

135
+

1

162

)
1

x2
+ o(x−2) =

1

3x
+

29

810x2
+ o(x−2).

The argument is repeated and yields the following for n = 2:

ϕ(x) =
1

3x
+

4

135x2
− 8

2835x3

+x

∫ ϕ(x)

0

(u + e−u − 1) du − x2

2

∫ ϕ(x)

0

(u + e−u − 1)2 du + o(x−3).
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Here we use u + e−u − 1 = u2/2− u3/6+ o(u3) and (u + e−u − 1)2 = u4/4 + o(u4) for
u → 0 and get

ϕ(x) =
1

3x
+

4

135x2
− 8

2835x3

+x

(
ϕ(x)3

6
− ϕ(x)4

24
+ o(x−4)

)

−x2

2

(
ϕ(x)5

20
+ o(x−5)

)
+ o(x−3).

In the term xϕ(x)3/6 the expansion of ϕ(x) for n = 1 is substituted and in the terms
xϕ(x)4/24 and x2ϕ(x)5/40 the expansion of ϕ(x) for n = 0. In this way we get

ϕ(x) =
1

3x
+

29

810x2
+

(
− 8

2835
+

1

18

29

810
− 1

24

1

81
− 1

40

1

243

)
1

x3
+ o(x−3)

=
1

3x
+

29

810x2
− 37

25515x3
+ o(x−3).

These computations also indicate how to show that there is an asymptotic expansion
(15) for every n ≥ 1. One could use an inductive argument based on the relation (14):
First of all, the sum

n∑

k=0

ξ(k)(1)

2xk+1

contains a term of order 1/xn+1. Next the integrand (u + e−u − 1)k is approximated
by its Taylor polynomial of order n + k,

(u + e−u − 1)k =

n+k∑

l=2k

αk,lu
l + o(un+k),

and the expansion ϕ(x) =
∑n

k=1 ck/x−k + o(x−n) is then used in the upper limit of
the integrals in the sum

n∑

k=1

(−1)kxk

k!

∫ ϕ(x)

0

(u + e−u − 1)k du.

Using these approximations it is possible to obtain

ϕ(x) =

n∑

k=0

ξ(k)(1)

2xk+1
−

n∑

k=1

(−1)kxk

k!

n+k∑

l=2k

αk,l

l + 1




n∑

j=1

cj

xj




l+1

+ o(x−(n+1)).

This is an expansion of ϕ(x) of order n + 1.
To see that also ϕ′(x) has an asymptotic expansion we differentiate (9) and get

2ϕ′(x)e−x(ϕ(x)+e−ϕ(x)) − 2

∫ ϕ(x)

0

e−x(u+e−u)(u + e−u) du = −
∫ ∞

1

tξ(t)e−xt dt.

Adding (9) to the relation above we get after multiplication by ex and a change of
variable s = t − 1,

2ϕ′(x)e−x(ϕ(x)+e−ϕ(x)−1)

= 2

∫ ϕ(x)

0

e−x(u+e−u−1)(u + e−u − 1) du −
∫ ∞

0

sξ(1 + s)e−xs ds.
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In the first integral we use again Taylor approximation and in the second integral

integration by parts. Using also the asymptotic expansion of ex(ϕ(x)+e−ϕ(x)−1) it
follows finally that there is an asymptotic expansion of ϕ′(x). The coefficients in
this expansion can be identified by integrating the expansion and using the known
expansion of ϕ(x), cf [4][Appendix C].

Proof of Proposition 4.2. Since ϕ(x) has an asymptotic expansion,

m(x) = xe−ϕ(x) = x

∞∑

k=0

(−1)kϕ(x)k

k!

also has an asymptotic expansion and in particular

m(x) = xe−ϕ(x) = x

(
1 − ϕ(x) +

ϕ(x)2

2
− ϕ(x)3

6
+ o(x−3)

)
.

We insert in this relation the asymptotic expansion of ϕ(x) from the lemma above
and get, after some computation,

m(x) = x

(
1 − 1

3x
+

8

405x2
+

184

25515x3
+ o(x−3)

)

= x − 1

3
+

8

405x
+

184

25515x2
+ o(x−2).

Since ϕ′(x) has an asymptotic expansion, the same is true for m′(x), since m′(x) =
(1−xϕ′(x))e−ϕ(x). The expansion of m(x) can be found by integrating the expansion
of m′(x), and this gives the desired expansion of m′(x). .

Remark 4.6. It is clear that the methods above can be continued so the asymptotic
behaviour of m(k)(x), k ≥ 2 for x → 0 and x → ∞ can be determined by differentiation
of the asymptotic formulas for m′(x).

Remark 4.7. The asymptotic expansion of Ramanujans function θ(x)

θ(x) =

n∑

k=0

ξ(k)(1)

2xk
+ o(x−n)

follows from (13) and (11).

5. Properties of the auxiliary function ξ. In this section the properties of
the function ξ, stated in the propositions 3.1, 3.2 and in Lemma 4.4 are derived. The
monotonicity properties of ξ we found surprisingly difficult to establish. Much of the
difficulty lies in the fact that ξ is given as a sum of two terms, where it is necessary
to control the cancellation between these two terms.

Behaviour of ξ at t = 1.

Proof of Proposition 3.1. We put f(z) = e−z + z and notice that the function
f(z)−1 has a zero of multiplicity 2 at z = 0. Hence there exists a holomorphic function
h in a neighbourhood of 0 such that f(z)−1 = h(z)2 there. Since h′(0)2 = 1/2 6= 0, h
is one-to-one near z = 0. We choose h′(0) = 1/

√
2 and with this choice h is uniquely

determined.
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There is thus a radius r > 0 such that for any w with |w| < r, there are exactly
two solutions to the equation f(z) = w, namely z = h−1(±

√
w − 1). In particular,

for t > 1 and close to 1 we have

u(t) = h−1(−
√

t − 1) and v(t) = h−1(
√

t − 1),

where u and v are the functions appearing in (7). Denoting the Taylor series of h−1(w)
by
∑∞

n=1 anwn it follows that

u(t) + v(t) =

∞∑

k=1

2a2k(t − 1)k.

Since ξ(t) = u′(t) + v′(t), we find ξ(1) = 2a2 and ξ′(1) = 4a4. The numbers a2 and
a4 can be found as follows. If h(z) =

∑∞
n=1 bnzn then

(
∞∑

n=1

bnzn

)2

= e−z + z − 1 =
1

2
z2 − 1

6
z3 +

1

24
z4 + . . .

and this gives after some manipulation b1 = 1/
√

2, b2 = −
√

2/12, b3 =
√

2/72 and
b4 = −

√
2/540. The numbers a2 and a4 can now be identified if we differentiate four

times the relation (h−1)(h(z)) = z and put z = 0 (so that expressions involving e.g.
(h−1)(4)(0) appear). This gives, again after some manipulation, (h−1)(2)(0) = 2/3 and
(h−1)(4)(0) = 16/45, so that ξ(1) = 2a2 = 2/3 and ξ′(1) = 4a4 = 4 · (16/45) · (1/24) =
8/135.

Remark 5.1. One can in principle find any derivative of ξ at 1 in this way.
Higher order derivatives of ξ at 1 can be found in the appendix.

Monotonicity properties of ξ. The monotonicity properties are derived
through an approach using complex analysis and we shall make extensive use of the
theory of the so-called Pick functions, see [9]. A holomorphic function p defined in
the upper half plane is a Pick function if it maps the upper half plane into the closed
upper half plane, or put in another way, if ℑp is a non-negative harmonic function.
A Pick function has an integral representation,

p(z) = az + b +

∫ ∞

−∞

(
1

t − z
− t

t2 + 1

)
dµ(t), (16)

where a ≥ 0, b is real and µ is a positive measure on the real line. Furthermore,

a = lim
y→∞

ℑp(iy)

y
, b = ℜp(i)

and

µ = lim
y→0+

ℑp(x + iy)

π
dx

in the vague topology. Note that a Pick function can be extended to a holomorphic
function in C \ R by (16). If A ⊆ R is closed we recall that p has a holomorphic
extension to C \ A if and only if the support of µ is contained in A.
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The proof of the monotonicity properties of ξ (Proposition 3.2) is based on an
investigation of the conformal properties of the holomorphic function

f(z) = e−z + z. (17)

The key to the proof is an integral representation of ξ that is given in Proposition 5.8.
Some quite technical lemmas are needed, basically to exploit the relation between the
functions f and ξ.

Lemma 5.2. The function f(z) = e−z + z is a conformal mapping of the strip

S2π = {0 < ℑz < 2π}

onto the domain

T = C \ ({ℑw = 2π,ℜw ≥ 1} ∪ {ℑw = 0,ℜw ≥ 1}) .

The image of some horizontal lines in S2π under the function f is shown in
Figure 2.

4-8 0-2-4

8

2-6

12

-4

0

4

Fig. 2. The image of horizontal lines under f(z) = e−z + z.

Proof. We have f(x + iy) = σ + iτ if and only if

e−x cos y + x = σ

−e−x sin y + y = τ.

If y = π then τ = π and σ = x − e−x so f maps the horizontal line R + iπ onto itself
and is one-to-one there.

Note that if 0 < y < π then τ = −e−x sin y + y < y so

f({0 < ℑz < π}) ⊆ {ℑw < π}.
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For τ < π we get ex = (sin y)/(y−τ) and since τ < y this gives x = log(sin y/(y−
τ)). Therefore we shall look for a solution y to the equation

log
sin y

y − τ
+

(y − τ) cos y

sin y
= σ.

For τ < π we put

Fτ (y) = log
sin y

y − τ
+

(y − τ) cos y

sin y
(18)

and claim the following:
1. For 0 < τ < π, Fτ (y) decreases for y ∈ (τ, π) from ∞ to −∞.
2. For τ = 0, Fτ (y) decreases for y ∈ (τ, π) from 1 to −∞.
3. For τ < 0, Fτ (y) decreases for y ∈ (0, π) from ∞ to −∞.

It is easy to see that limy→π
−

Fτ (y) = −∞, limy→τ+ Fτ (y) = ∞ for τ > 0 and
limy→0+ F0(y) = 1. Furthermore, limy→0+ Fτ (y) = ∞ for τ < 0 since the first term
in Fτ (y) has a logarithmic singularity. To verify 1., 2. and 3. we need to show that
F ′

τ (y) < 0. We find, after some computation,

F ′
τ (y) =

1

sin y

(
2 cos y − sin y

y − τ
− y − τ

sin y

)
.

Putting κ = (sin y)/(y − τ) then κ > 0 and hence κ + 1/κ ≥ 2. Since cos y < 1 it
follows that indeed F ′

τ (y) < 0.
From 1. and 3. it follows that for given σ ∈ R and τ < π, τ 6= 0 there is a

unique solution y to the equation Fτ (y) = σ and therefore there is a unique solution
x + iy ∈ S2π to f(x + iy) = σ + iτ . If τ = 0 there is by 2. a unique solution y to the
equation Fτ (y) = σ when σ < 1 and none when σ ≥ 1.

For π < y < 2π we have sin y < 0 so τ > y and therefore

f({π < ℑz < 2π}) ⊆ {π < ℑw}.

For τ > π we put

Fτ (y) = log
− sin y

τ − y
+

(τ − y) cos y

− sin y
.

It follows that Fτ (y) increases with y ∈ (π, min(τ, 2π)), and the conformality follows
in the same way as for the case τ < π.

In the following we let f−1 denote the inverse of the conformal mapping f of
Lemma 5.2, including its obvious continuous extension to both sides of the cuts.

Lemma 5.3. The function w 7→ f−1(1−w) is a Pick function with the represen-
tation

f−1(1 − w) = ℜf−1(1 − i) +

∫ ∞

0

(
1

t − w
− t

t2 + 1

)
η(t) dt,

where

η(t) =
1

π
ℑf−1(1 − t)

is increasing on (0,∞) from 0 to 1.
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Proof. First of all, 1 − w belongs to the lower half plane when w belongs to the
upper half plane. Since f−1 maps all of T , and hence in particular the lower half
plane, into the strip 0 < ℑz < 2π, f−1(1 − w) is certainly a Pick function. We next
derive its integral representation. Since its imaginary part is bounded the number a
in the representation (16) must be zero.

It remains to identify the measure µ. Since the function f−1(1 − t − iy) is con-
tinuous for (t, y) ∈ R × [0, 1] and is real for y = 0 and t < 0 we find

η(t) = lim
y→0+

ℑf−1(1 − t − iy)

π
=

ℑf−1(1 − t)

π

for t > 0 and η(t) = 0 for t < 0.
By definition the function Y (t) = πη(t) satisfies the equation

F0(Y (t)) = log
sin Y (t)

Y (t)
+

Y (t) cosY (t)

sin Y (t)
= 1 − t

(with the notation of Lemma 5.2) and therefore

Y ′(t)F ′
0(Y (t)) = −1.

Since F ′
0 is negative (see again Lemma 5.2), Y (t) and hence η(t) must be increasing.

Since Y (t) tends to π as t tends to ∞ (this is because F0(Y (t)) → −∞), η(t) → 1 as
t → ∞.

Lemma 5.4. The function

g(w) = f−1(w) + f−1(w)

has a holomorphic extension to C \ {ℑw = ±2π,ℜw ≥ 1}. All points on the lines
{ℑw = ±2π,ℜw ≥ 1} are singular points for g.

Proof. Since f−1 is a conformal mapping of the region

C \ ({ℑw = 2π,ℜw ≥ 1} ∪ {ℑw = 0,ℜw ≥ 1}) ,

the function g is holomorphic in

C \ ({ℑw = ±2π,ℜw ≥ 1} ∪ {ℑw = 0,ℜw ≥ 1}) .

However, g has a continuous extension to {ℑw = 0,ℜw ≥ 1} with boundary values
u + v (see the beginning of Section 3), so from Moreras theorem we conclude that g
is holomorphic across this half-line. Concerning the boundary values on the half-lines
{ℑw = ±2π,ℜw ≥ 1} we have (σ ≥ 1)

lim
τ→2π

−

g(σ + iτ) = lim
τ→2π

−

f−1(σ + iτ) + f−1(σ − 2πi)

= v(σ) + 2πi + f−1(σ − 2πi)

and similarly

lim
τ→2π+

g(σ + iτ) = u(σ) + 2πi + f−1(σ − 2πi).

Therefore g is not continuous across any segment of the half-line

{ℑw = 2π,ℜw ≥ 1}
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and so all these points are singular points. Since g(w) = g(w) the same conclusion
holds for the points on the other half-line.

The next result relates g from the lemma above with u, v (defined by (7)) and ξ.

Corollary 5.5. The function

g(w) = f−1(w) + f−1(w)

is a holomorphic extension of u + v to C \ {ℑw = ±2π,ℜw ≥ 1}. The function g′ is
thus a holomorphic extension of ξ.

Proposition 5.6. The Taylor series for ξ(z) centered at 1 has radius of conver-
gence equal to 2π and the asymptotic series

∞∑

k=0

ξ(k)(1)

zk

diverges for any z in C.

Proof. We have ξ = g′, where g is the function in Lemma 5.4. If the radius
of convergence of ξ at 1 were larger than 2π then the primitive g would also have
a holomorhic extension to this larger disk, and this contradicts the fact that g has
singular points in that disk.

Concerning the divergence of the asymptotic series we use that the radius of
convergence of the Taylor series is finite. It means that

lim sup
k→∞

( |ξ(k)(1)|
k!

)1/k

> 0,

and hence that for some ǫ > 0, |ξ(k)(1)|1/k/(k!)1/k > ǫ for infinitely many k. Stirlings
formula yields (k!)1/k ∼ k/e and therefore

lim sup
k→∞

|ξ(k)(1)|1/k = ∞.

This shows on the other hand that the asymptotic series diverges for any complex
number z.

In the following log denotes the principal logarithm defined in the cut plane
C \ (−∞, 0].

Lemma 5.7. The function

Ψ(w) = f−1(log w) + f−1(log w)

is a Pick function. It has the representation

Ψ(w) = ℜΨ(i) −
∫ ∞

0

(
1

t + w
− t

t2 + 1

)
h(t)dt,

where the function h is given as

h(t) = 1 − ℑ f−1(log t − iπ)

π
.
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Furthermore, h increases on (0,∞) from 0 to 1.

Proof. We consider the holomorphic function g from Lemma 5.4 in the strip
S = {0 < ℑw < π}. Hence the function V (w) = ℑg(w) is a harmonic function in S.
Furthermore, since f−1 maps all of {ℑw < π} \ {x |x ≥ 1} into S, V is also bounded
there, with the apriori bound −π < V (w) < π. We claim that indeed 0 < V (w) < π
for all w ∈ S.

We consider the boundary values of V . The horizontal line {t + iπ, | t ∈ R} is
mapped by f−1 to itself, whereas {t − iπ, | t ∈ R} is mapped by f−1 to some curve
inside the strip S. Therefore f−1(t − iπ) has imaginary part greater than −π and
hence the boundary values V (t + iπ), t ∈ R, are all non negative. Since g(w) = g(w),
the boundary values V (t), t ∈ R, are all zero. Therefore V has non-negative boundary
values. Since it is bounded, the maximum principle in an unbounded region (see e.g.
[12]) yields that V (w) > 0 for all w ∈ S.

Since log maps the upper half plane onto the strip S, the function Ψ(w) = g(log w)
maps the upper half plane into itself, and is hence a Pick function. Since ℑΨ is
bounded, Ψ has an integral representation of the form

Ψ(w) = ℜΨ(i) +

∫ ∞

−∞

(
1

t − w
− t

t2 + 1

)
dµ(t),

for some positive measure µ. Here ℑΨ(t) = 0 for t > 0 since V is zero on the real line.
We thus find the measure µ to be supported on the negative half-line with density

1 − ℑ f−1(log(−t) − iπ)

π
, t < 0.

After making a change of variable (t 7→ −t) in the integral it follows that

Ψ(w) = ℜΨ(i) −
∫ ∞

0

(
1

t + w
− t

t2 + 1

)
h(t)dt, (19)

where h is the function in the statement of the lemma.
By definition of h, π(1−h(t)) = ℑf−1(log t− iπ), so h is increasing if the solution

Y (t) to the equation F−π(Y (t)) = log t is decreasing. This is indeed the case, since

F ′
−π(Y (t))Y ′(t) =

1

t
> 0,

and F ′
−π < 0.

Proposition 5.8. The function ξ(log w) is holomorphic in the cut plane C \
(−∞, 0] with the representation

ξ(log w) = 1 −
∫ ∞

0

t

t + w
h′(t) dt,

where h(t) is given in Lemma 5.7.

Proof. From Corollary 5.5 it follows that Ψ(w) = u(log w) + v(log w), for w ≥ e ,
where Ψ is the function in Lemma 5.7. Hence ξ(log w) = wΨ′(w) and so we get from
(19),

ξ(log w) =

∫ ∞

0

wh(t)

(t + w)2
dt.
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Integration by parts on the right-hand side of this relation yields

ξ(log w) =

∫ ∞

0

w

t + w
h′(t) dt,

or

ξ(log w) = 1 −
∫ ∞

0

t

t + w
h′(t) dt.

Proof of Proposition 3.2.
ξ(t) increases from 0 to 1 for t ∈ R (this is more than is stated in the proposition).

From (8), limt→∞ ξ(t) = 1. Letting w → 0+ in the integral in Proposition 5.8 then

ξ(log w) → 1 −
∫ ∞

0

h′(t) dt = 1 − lim
t→∞

h(t) + h(0) = 0.

Hence ξ(t) → 0 as t → −∞. Differentiation of the formula in Proposition 5.8 gives us

ξ′(log w)

w
=

∫ ∞

0

t

(t + w)2
h′(t) dt,

and since h′(t) > 0 for all t ∈ R, we see that ξ′(t) > 0 for all t ∈ R.
ξ(t) is concave for t ≥ 1. Differentiation of both sides of the relation above yields

ξ′′(log w) − ξ′(log w) = −2w2

∫ ∞

0

t

(t + w)3
h′(t) dt,

so that, again using the integral representation of ξ′(log w),

ξ′′(log w) =

∫ ∞

0

( −2w2

(t + w)3
+

w

(t + w)2

)
th′(t) dt

=

∫ ∞

0

t − w

(t + w)3
wth′(t) dt

= w

∫ ∞

0

s − 1

(s + 1)3
sh′(sw) ds.

This last integral we split into two, one for s < 1 and another for s > 1. We thus get,
after making the substitution s → 1/s in the latter one,

ξ′′(log w)

w
=

∫ 1

0

1 − s

(1 + s)3

(
1

s
h′
(w

s

)
− sh′(sw)

)
ds.

From this relation we see that ξ is concave on [log w0,∞) if

1

s
h′
(w

s

)
− sh′(sw) ≤ 0 for s ∈ (0, 1) and w ≥ w0. (20)

Now, as noted in the proof of Lemma 5.7, h(s) = 1 − Y−π(log s)/π, where Y−π(t) ∈
(0, π) is the solution to the equation F−π(Y−π(t)) = t, see (18). Therefore h′(s) =
−Y ′

−π(log s)/(πs) and hence

1

s
h′
(w

s

)
= −Y ′

−π(log w − log s)

πw
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and

sh′(sw) = −Y ′
−π(log w + log s)

πw
.

The relation (20) holds provided

Y ′
−π(log w − log s) ≥ Y ′

−π(log w + log s).

Since log s runs through (−∞, 0) when s ∈ (0, 1), this condition is the same as

Y ′
−π(log w + t) ≥ Y ′

−π(log w − t)

for all t ≥ 0 and all w ≥ w0. We aim at proving this for w0 = e, so what we really
should prove is the following:

Y ′
−π(α + t) ≥ Y ′

−π(α − t) (21)

for all t ≥ 0 and all α ≥ 1. This inequality is verified by using Lemma 5.3. According
to that lemma, with w = 1 − α − t + iπ, we have

Y−π(α + t) = ℑf−1(α + t − iπ))

= ℑf−1(1 − (1 − α − t + iπ))

=

∫ ∞

0

π

(s + t + α − 1)2 + π2
η(s) ds

so that

Y ′
−π(α + t) =

∫ ∞

0

(
∂

∂t

π

(s + t + α − 1)2 + π2

)
η(s) ds

=

∫ ∞

0

(
∂

∂s

π

(s + t + α − 1)2 + π2

)
η(s) ds

=

[
π

(s + t + α − 1)2 + π2
η(s)

]∞

0

−
∫ ∞

0

π

(s + t + α − 1)2 + π2
η′(s) ds

= −
∫ ∞

0

π

(s + t + α − 1)2 + π2
η′(s) ds.

Replacing t by −t in this formula we get

Y ′
−π(α − t) = −

∫ ∞

0

π

(s − t + α − 1)2 + π2
η′(s) ds,

so that

Y ′
−π(α + t) − Y ′

−π(α − t)

= 4πt

∫ ∞

0

s + α − 1

((s + t + α − 1)2 + π2)((s − t + α − 1)2 + π2)
η′(s) ds.

Since η′(s) > 0 it follows that Y ′
−π(α+ t)−Y ′

−π(α− t) has the same sign as t for α ≥ 1
and hence is positive for t > 0.
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Behaviour of ξ at ∞. The behaviour of ξ and its derivatives at infinity can be
investigated through the theory of completely monotonic functions. The investigation
is based on a simple lemma of independent interest.

We recall that a C∞-function ν(t) defined on the positive half-line is called com-
pletely monotonic if

(−1)pν(p)(t) ≥ 0, for all integers p ≥ 0.

It is called a Bernstein function if

ν(t) ≥ 0 and (−1)pν(p)(t) ≤ 0, for all integers p ≥ 1.

The last conditions can also be expressed that ν′(t) is completely monotonic. For
details about these classes of functions see e.g. [5].

Lemma 5.9. Let F be completely monotonic, let ς(t) be a positive C∞-function
for t > 0 and assume that ς ′(t) = F (ς(t)). Then:

For each n ≥ 1 there exists a completely monotonic function Fn such that

(−1)n−1ς(n)(t) = Fn(ς(t)).

In particular ς is a Bernstein function.

Proof. For n = 1, F1 = F can be used. If (−1)n−1ς(n)(t) = Fn(ς(t)) for some
completely monotonic function Fn then

(−1)nς(n+1)(t) = −F ′
n(ς(t))ς ′(t) = −F ′

n(ς(t))F (ς(t)).

Here Fn+1 ≡ −F ′
nF is completely monotonic as a product of two completely

monotonic fuctions.
Furthermore we have

(−1)nς(n)(t) = −Fn(ς(t)) ≤ 0,

so ς is a Bernstein function.

Proposition 5.10. The functions −u(t+1) and v(t+1) are Bernstein functions
and

lim
t→∞

v(t)/t = 1, lim
t→∞

u(t)/t = 0.

Proof. We have v′(t) = F (v(t)) where

F (x) =
1

1 − e−x
=

∞∑

k=0

e−kx

is completely monotonic. Since v(t) → ∞ as t → ∞ we have e−v(t) → 0 and hence
v(t)/t = 1 − e−v(t)/t → 1 as t → ∞.

If w ≡ −u then w′(t) = G(w(t)) where

G(x) =
1

ex − 1
=

∞∑

k=1

e−kx
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is completely monotonic. Furthermore, t = e−u(t)+u(t) > 1+u(t)2/2 (since u(t) < 0)
so that −u(t) <

√
2(t − 1) and thus u(t)/t → 0 as t → ∞.

Bernstein functions admit integral representations (see e.g. [5, p. 64]) and thus
we have

v(t + 1) = t +

∫ ∞

0

(1 − e−xt) dλ(x)

and

−u(t + 1) =

∫ ∞

0

(1 − e−xt) dσ(x),

for some positive measures λ and σ on (0,∞). Since t + 1 − v(t + 1) = e−v(t+1) → 0
for t → ∞ we conclude that λ((0,∞)) = 1 and hence

v(t + 1) = t + 1 −
∫ ∞

0

e−xt dλ(x).

The measure σ has infinite total mass because u(t) → −∞ for t → ∞.

From these representations we rediscover the relation ξ(t) (= u′(t)+ v′(t)) → 1 as
t → ∞ (see (8)). Furthermore, u(n+1)(t) and v(n+1)(t) both tend to zero as t tends
to infinity for any n ≥ 1. Consequently, ξ(n)(t) → 0 as t → ∞ (for any n ≥ 1) and
Lemma 4.4 is proved.

One could hope to deduce the monotonicity properties of ξ by using these integral
representations. We have not succeeded in doing this, since much cancellation between
u and v takes place and we do not know λ and σ explicitly. Furthermore, it is not even
true that ξ(t + 1) is a Bernstein function even though it is increasing and concave.

6. Appendix: Higher order expansions. In this section the asymptotic ex-
pansion of m(x) up to o(x−9) can be found. We have also included the expansion
of the auxiliary function ϕ(x) and the numbers ξ(k)(1) for k up to 10. These results
were found using the Maple 9 program. The Maple code and a short description can
be found at

www.math.ku.dk/~berg/

The asymptotic expansion of m(x) is

m(x) = x − 1

3
+

9∑

k=1

mk

xk
+ o(x−9),
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where

m1 =
23

34 · 5

m2 =
23

· 23

36 · 5 · 7

m3 =
23

· 281

39 · 52 · 7

m4 = −
23

· 17 · 139753

313 · 53 · 7 · 11

m5 = −
23

· 708494947

315 · 53 · 72 · 11 · 13

m6 =
23

· 140814348739

318 · 54 · 72 · 11 · 13

m7 =
23

· 7663181003289047

321 · 56 · 73 · 11 · 13 · 17

m8 = −
23

· 653 · 1359581 · 759929 · 3307

323 · 56 · 73 · 11 · 13 · 17 · 19

m9 = −
23

· 29 · 1376560394479059407

327 · 57 · 73 · 112 · 17
.

The asymptotic expansion of ϕ(x) is

ϕ(x) =
10∑

k=1

ck

xk
+ o(x−10),

where

c1 =
1

3

c2 =
29

34 · 5 · 2

c3 = −
37

36 · 5 · 7

c4 = −
3877

39 · 52 · 22

c5 =
8957413

313 · 53 · 7 · 11

c6 =
401 · 8842279

2 · 315 · 52 · 72 · 11 · 13

c7 = −
356146891 · 2039

318 · 54 · 72 · 11 · 13

c8 = −
216607304027 · 3077479

23 · 321 · 56 · 73 · 11 · 13 · 17

c9 =
31 · 743 · 4569027042343

323 · 53 · 73 · 11 · 13 · 17 · 19

c10 =
71 · 282699240672481 · 1949 · 5113

2 · 327 · 57 · 73 · 112 · 13 · 17 · 19
.
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The derivatives of ξ are:

ξ(1) =
2

3

ξ
′(1) =

23

33 · 5

ξ
(2)(1) = −

24

34 · 5 · 7

ξ
(3)(1) = −

25

35 · 5 · 7

ξ
(4)(1) =

26
· 281

38 · 52 · 7 · 11

ξ
(5)(1) =

27
· 23 · 227

39 · 52 · 7 · 11 · 13

ξ
(6)(1) = −

28
· 53 · 103

310 · 52 · 7 · 11 · 13

ξ
(7)(1) = −

29
· 373 · 4439 · 557

312 · 54 · 72 · 11 · 13 · 17

ξ
(8)(1) =

210
· 2650986803

313 · 54 · 72 · 11 · 13 · 17 · 19

ξ
(9)(1) =

211
· 6171801683

314 · 54 · 72 · 11 · 13 · 17 · 19

ξ
(10)(1) = −

212
· 1117 · 3835213201

316 · 52 · 72 · 11 · 13 · 17 · 19 · 23
.

Added in Proof. The conjecture m′′(x) > 0 mentioned at the end of Section 1 has
been proved by the authors.
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