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THE EXACT PHOTONIC BAND STRUCTURE FOR A CLASS OF

MEDIA WITH PERIODIC COMPLEX MODULI∗

GRAEME W. MILTON†

Abstract. An exact formula for the photonic band structure (and hence the dispersion relation)
is found for a certain class of periodic media. These media have the special property that the spatially
fluctuating part of their complex electrical permittivity and magnetic permeability, when Fourier
transformed, vanishes in half of Fourier space. As a result the band structure is proved to be exactly
the same as for a lossy homogeneous medium, at least when the frequency is not too high.
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1. Introduction. It is a pleasure to contribute this article in honor of George
Papanicolaou’s 60th birthday. George’s work has had a lasting and profound influence
on many areas of applied mathematics. In particular his work has greatly impacted
our understanding of wave propagation in inhomogeneous media, which has many
applications, especially in geophysics. The following paper treats wave propagation
in a special class of periodic media.

There is an enormous literature on the subject of photonic and sonic
band-gap materials and many computers codes are available for calculating
the photonic band structure of periodic materials (see http://phys.lsu.edu/

~jdowling/pbgbib.html). In this paper we show that there is a large class of periodic
media for which the photonic band structure can be exactly determined. These media
have the special property that the spatially fluctuating part of their complex electrical
permittivity and magnetic permeability, when Fourier transformed, vanishes in half of
Fourier space. It has already been established that the effective electrical permittivity
and effective magnetic permeability of such materials can be exactly determined in
the quasi-static limit when the wavelength and attenuation lengths are much larger
than the microstructure [1]. Here we show that the analysis extends beyond the
quasi-static limit to the full Maxwell equations. Curiously the band structure is the
same as for a lossy homogeneous medium, at least when the frequency is not too high.
Elsewhere we have established the result for the scalar wave equation [2].

A related result, based on similar analysis, is due to Sarnak [3] who constructed
solutions to the Schrödinger equation with a quasi-periodic potential having Fourier
coefficients lying in a cone (with angle less than π) in Fourier space. Sarnak used these
solutions to show that the spectrum of the Schrödinger operator covers the entire non-
negative real axis, i.e. there are no gaps in the spectrum. In a separate development,
Caflisch [4] considered the 3D incompressible Euler equations and looked for complex
valued velocity solutions with Fourier coefficients vanishing in half of Fourier space
(the motivation for doing so comes from Moore’s approximation in which the interac-
tion between positive and negative wavenumbers is neglected). Caflisch showed that
for axisymmetric flow with swirl, the original equations in one time and three space
variables could be reduced to equations in one space variable one wavenumber which
in turn could be solved recursively for the Fourier coefficients without truncation error
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(because the equation for a given Fourier coefficient depends upon the lower order,
but not the higher order, Fourier coefficients). What distinguishes our work is that it
applies to a physically realistic medium: one that could conceivably be constructed
by suitably doping a material. Besides the intrinsic appeal of an exact result in a
research area where few exact results are known, the formula for the dispersion re-
lation could be used as a benchmark for testing computer programs which calculate
dispersion relations in lossy periodic media.

2. Insight from the one-dimensional scalar wave equation. I am grateful
to an anonymous referee for the following argument which gives some insight into why
there should be an exact formula for the spectrum when the spatially fluctuating part
of the modulus, when Fourier transformed, vanishes in half of Fourier space. Consider
the one dimensional scalar wave equation

− ∂

∂x
a(x)

∂

∂x
u(x) = λu(x)(2.1)

where the complex modulus a(x) is periodic, say with period 2π, and has the form

a(x) = a0 +
∑

k>0

â(k)eikx(2.2)

where the sum is over all positive integers k. In other words, the fluctuating part of
the modulus, a(x)−a0, has the property that it vanishes in half of Fourier space when
Fourier transformed: the coefficients â(k) are zero when k ≤ 0.

As is well known, the solution u(x) to the wave equation (2.1) is not necessarily
periodic. Instead one seeks quasi-periodic Floquet-Bloch wave solutions

u(x) = eik0xv(x),(2.3)

where v(x) is periodic, and the Bloch wave vector k0 is possibly complex. When u(x)
has this form the wave equation will only have a solution if for a given k0 the constant
λ takes one of a discrete set of values, i.e. λ = λℓ(k0), where the integer superscript
ℓ indexes the possible solution branches. This set of functions is known as the band
structure.

Substitution of (2.3) back in (2.1) gives the equation

Lv = λv,(2.4)

in which L is the operator L = −BAB and A and B are the operators

A = a(x), B = (
∂

∂x
+ ik0).(2.5)

If we take the Fourier basis of functions

fk(x) =
1√
2π

eikx,(2.6)

where k runs over all integers, then in this basis A is represented by a lower triangular
matrix with elements

Ajk =

∫ 2π

0

[fj(x)]∗a(x)fk(x)dx

= â(j − k) if j > k

= a0 if j = k

= 0 if j < k,(2.7)
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while B is represented by a diagonal matrix with elements

Bjk =

∫ 2π

0

[fj(x)]∗(
∂

∂x
+ ik0)fk(x)dx

= i(k + k0) if j = k

= 0 if j 6= k.(2.8)

So L = −BAB is represented by a lower triangular matrix with diagonal elements

Lkk = a0(k + k0)
2.(2.9)

If we truncated the high order frequency components and only considered wavevec-
tors k with |k| ≤ kmax, then L would be represented by a finite dimensional lower
triangular matrix, and its eigenvalues λ would then be the diagonal elements (2.9).
In other words the band structure should be exactly the same as that of a homoge-
neous medium with modulus a0. We see that the result stems from the fact that the
eigenvalues of a lower triangular matrix are its diagonal elements.

This argument generalizes in the obvious way to the multidimensional scalar wave
equation, and to Maxwell’s equations. It should be possible to make the argument
rigorous by showing that the eigenvalues are only perturbed slightly when the high
order frequency components are truncated at sufficiently high frequency. In the re-
mainder of the paper we present an alternative and rigorous approach based on an
analysis of series expansions. It generalizes the approach developed in [2] for the
multidimensional scalar wave equation.

3. Analysis for Maxwell’s equations. In a locally isotropic periodic medium
where the fields vary harmonically in time t, with frequency ω, Maxwell’s equations
reduce to

ωε(x)E(x) + i∇× H(x) = 0,

−i∇× E(x) + ωµ(x)H(x) = 0(3.10)

where the real part of e−iωtE(x) is the electric field, the real part of e−iωtH(x) is the
magnetic field intensity, and the (possibly complex valued) electric permittivity tensor
ε(x) and the (possibly complex valued) magnetic permeability µ(x) of the periodic
medium depend upon the frequency. The imaginary parts of the electric permittivity
and magnetic permeability are associated with absorption in the medium.

If the medium was a homogeneous medium, i.e. ε = ε0 and µ = µ0, where ε0 and
µ0 are fixed complex constants, these equations have a plane wave solution

(

E(x)
H(x)

)

= eik
T

0
x
(

E0

H0

)

.(3.11)

Substituting this expression back in (3.10) gives the equation

Mk0

(

E0

H0

)

= 0(3.12)

where Mk is the 6 × 6 symmetric matrix with the block structure

Mk =

(

ωε0I −k×
k× ωµ0I

)

(3.13)



416 G. W. MILTON

in which I is the 3 × 3 identity matrix and k× is the antisymmetric matrix that
acts on a vector b to produce the cross product k × b, and which has the well-known
property that

(k×)2 = kk
T − k

2
I where k

2 ≡ k
T
k.(3.14)

in which the superscript T denotes the transpose, not the Hermitian conjugate. Elim-
inating H0 from the equations (3.12) gives the well-known condition

[(ω2µ0ε0 − k2

0)I + k0k
T
0 ]E0 = 0.(3.15)

Assuming ω2µ0ε0 6= 0 this has a non-trivial solution for E0 if and only if

k
2

0 = ω2µ0ε0.(3.16)

If either µ0 or ε0 is complex (with a positive imaginary part) and ω is real and non-
zero, then necessarily k0 is complex, corresponding to a wave which is exponentially
damped as it propagates into the medium.

More generally, if ε or µ is not constant one seeks a Bloch wave solution of the
form

(

E(x)
H(x)

)

= eikT

0
x
(

V (x)
W (x)

)

(3.17)

in which V (x) and W (x) are periodic vector valued functions of x.
Let us assume ε(x) and µ(x) take the form

ε(x) = ε0 + δp(x), µ(x) = µ0 + δq(x),(3.18)

with ε0 and µ0 constants at least one of which is complex, with δ a real constant, and
with p(x) and q(x) having the Fourier expansions

p(x) =
∑

k

p̂(k)eikT x, q(x) =
∑

k

q̂(k)eikT x,(3.19)

where the Fourier coefficients p̂(k) and q̂(k) are such that that they vanish in half of
Fourier space:

p̂(k) = 0 and q̂(k) = 0 whenever kT n ≤ 0,(3.20)

in which n is a fixed vector. For example, we could take

ε(x) = ε0 + [cos(x1) + i sin(x1)]r(x2 , x3), µ(x) = µ0,(3.21)

where µ0 is real and positive and r(x1, x2) is an arbitrary, possibly complex valued,
bounded function of x1 and x2. To ensure that the medium is physically realistic, the
imaginary part of ε0 is chosen sufficiently large so that the imaginary part of ε(x) does
not change sign as x is varied. In this example (3.20) is satisfied with n = (1, 0, 0).
More generally ε(x) could be any function which as a function of x1 (keeping x2 and
x3 fixed) is analytic and bounded in the upper half plane Imag(x1) > 0 and such that
it’s average over x1 is independent of x2 and x3.

Guided by the solution in the quasi-static case where ω is small, let us see if there
is a Bloch wave solution, with the same relation between k0, ω, ε0, and µ0 as (3.16),
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i.e. the same dispersion relation as for a homogeneous medium with permittivity ε0

and permeability µ0.
Substituting (3.17) and (3.18) back in the wave equation (3.10) gives

(

ωε0I i∇×
−i∇× ωµ0I

)

(

eikT

0
xV (x)

eikT

0
xW (x)

)

= δ

(

−ωp(x)eik
T

0
xV (x)

−ωq(x)eikT

0
xW (x)

)

.(3.22)

We look for a solution which is a power series in δ:

(

V (x)
W (x)

)

=

∞
∑

j=0

δj

(

V j(x)
W j(x)

)

.(3.23)

Setting δ = 0 corresponds to a homogeneous medium with permittivity ε0 and per-
meability µ0 and thus the first term in this expansion is a constant vector pair

(

V 0(x)
W 0(x)

)

=

(

E0

H0

)

,(3.24)

where E0 and H0 solve (3.12) (implying that E0, H0, and k0 are mutually orthogonal
vectors). Guided by the analysis for the scalar wave equation [2], let us look for a
solution such that the volume averages of V (x) and W (x) are independent of δ. This
implies

〈V j(x)〉 = 0, 〈W j(x)〉 = 0 for j ≥ 1,(3.25)

where the angular brackets denote volume averages. If we substitute (3.23) back in
(3.22) and equate coefficients of δj+1 we obtain the hierarchy of equations,

(

ωε0I i∇×
−i∇× ωµ0I

)

(

eikT

0
xV j+1(x)

eik
T

0
xW j+1(x)

)

=

(

−ωp(x)eikT

0
xV j(x)

−ωq(x)eikT

0
xW j(x)

)

,(3.26)

which hold for j = 0, 1, 2, . . .. Expanding the functions V j and W j as Fourier series,

V j(x) =
∑

k

V̂ j(k)eikT x, W j(x) =
∑

k

Ŵ j(k)eikT x,(3.27)

substituting this and (3.19) back in (3.26), and equating Fourier expansion coefficients
gives the set of equations

Mk0+m

(

V̂ j+1(m)

Ŵ j+1(m)

)

=
∑

h

(

−ωp̂(m − h)V̂ j(h)

−ωq̂(m − h)Ŵ j(h)

)

(3.28)

where Mk is defined by (3.13). For m 6= 0 (3.28) can solved for the Fourier coefficients

V̂ j+1(m) and Ŵ j+1(m):
(

V̂ j+1(m)

Ŵ j+1(m)

)

= M−1

k0+m

∑

h

(

−ωp̂(m − h)V̂ j(h)

−ωq̂(m − h)Ŵ j(h)

)

(3.29)
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in which M−1

k
is the inverse of the matrix Mk given by

M−1

k
=

(

Sk 0
0 Sk

)(

ωµ0I +k×
−k× ωε0I

)

(3.30)

where, using (3.14),

Sk = [(ω2µ0ε0 − k2)I + kkT ]−1 =
[I + kkT /(ω2µ0ε0)]

(ω2µ0ε0 − k
2)

.(3.31)

Assuming ω2µ0ε0 6= 0 the inverse of the matrix Mk, clearly exists provided ω2µ0ε0−
k2 6= 0. In particular for k = k0 + m, where k0 satisfies (3.16), this expression has
the value

ω2µ0ε0 − (k0 + m)2 = −2kT
0 m − m2(3.32)

which is non-zero because k0 is complex, while m is real and non-zero. Hence the
inverse of Mk0+m exists for all real values of m 6= 0. For m = 0 we have from (3.25)
that

V̂ j+1(0) = 0, Ŵ j+1(0) = 0.(3.33)

These identities together with the recursion relations (3.29) allow us to determine the
fields V j(x) and W j(x) given V 0(x) = E0 and W 0(x) = H0

We now prove by induction that for ℓ ≥ 1

V̂ ℓ(k) = 0 and Ŵ ℓ(k) = 0 whenever kT n ≤ 0.(3.34)

Let us assume this holds for ℓ = j. Then from (3.20) the products p̂(m − h)V̂ j(h)

and q̂(m − h)Ŵ j(h) appearing in (3.29) will be non-zero only when both factors in

each product are non-zero, i.e. only when (m − h)T n > 0 and hT n > 0. By adding
these two equations we see that this can only happen when mT n > 0. Thus the
expression on the right hand side of (3.29) is zero when mT n ≤ 0. Since V̂ j+1(0) = 0

and Ŵ j+1(0) = 0 we conclude that (3.34) holds for ℓ = j + 1. Finally, by setting

j = 0 in (3.29), and recalling from (3.24) that V̂ 0(h) and Ŵ 0(h) is non-zero only
when h = 0, we see that for m 6= 0

(

V̂ 1(m)

Ŵ 1(m)

)

= M−1

k0+m

(

−ωp̂(m)E0

−ωq̂(m)H0

)

,(3.35)

and this is zero when mT n ≤ 0 because p̂(m) and q̂(m), by assumption, have this
property. This establishes that (3.34) holds for all integers ℓ ≥ 1.

We still need to check that (3.28) is satisfied when m = 0, i.e. that

0 =
∑

h

(

−ωp̂(−h)V̂ j(h)

−ωq̂(−h)Ŵ j(h)

)

.(3.36)

This holds because the products p̂(−h)V̂ j(h) and q̂(−h)Ŵ j(h) will be zero for all

h; if V̂ j(h) 6= 0, i.e. hT n > 0 or j = 0 and h = 0, then, from (3.20), p̂(−h) will

be zero; and similarly, if Ŵ j(h) 6= 0, i.e. hT n > 0 or j = 0 and h = 0, then, from
(3.20), q̂(−h) will be zero.
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4. Convergence of the expansions. To complete the proof we need to estab-
lish that the series expansion (3.23) converges. To do this we follow the approach of
Fokin [5] and Bruno [6] who established the convergence of related series expansions
in the quasi-static limit. It is helpful to introduce the 6 component vector fields

F j(x) =

(

V j(x)
W j(x)

)

, Gj(x) =

(

p(x)V j(x)
q(x)V j(x)

)

,(4.37)

which have Fourier components

F̂ j(m) =

(

V̂ j(m)

Ŵ j(m)

)

,

Ĝj(m) =
∑

h

(

p̂(m − h)V̂ j(h)

q̂(m − h)Ŵ j(h)

)

,(4.38)

that, from (3.29) satisfy

F̂ j+1(m) = −ωM−1

k0+m
Ĝj(m) for m 6= 0,

F̂ j+1(0) = 0,(4.39)

for j = 0, 1, 2, . . .. We can rewrite the relation between the functions F j+1 and Gj

and F j in the form

F j+1 = −Γk0
Gj , Gj = RF j(4.40)

where the operator Γk0
acts locally in Fourier space, while the operator Q acts locally

in real space:

Γk0
(m) = ωM−1

k0+m
for m 6= 0, Γk0

(0) = 0,

R(x) =

(

p(x)I 0
0 q(x)I

)

.(4.41)

In the Hilbert space H of square integrable complex valued 6-component vector fields
the norm |P | of a field P and the norm ‖A‖ of an operator A are defined by

|P | = 〈P HP 〉1/2, ‖A‖ = sup
P ∈ H
|P | = 1

|AP |(4.42)

in which the superscript H denotes the Hermitian conjugate. Thus, assuming that
p(x) and q(x) are sufficiently smooth, the operator R has norm

‖R‖ = max

{

sup
x

|p(x)|, sup
x

|q(x)|
}

.(4.43)

and the operator Γk0
has norm equal to the supremum over all non-zero vectors m

in the reciprocal lattice of the inverse of the absolute value of the smallest eigenvalue
of ω−1Mk0+m. The matrix ω−1Mk has eigenvalues of ε0, µ0, λ1

k
and λ2

k
, where

λ1

k
and λ2

k
are the two roots of the quadratic

(λ − ε0)(λ − µ0)ω
2 = k2.(4.44)
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Hence the operator Γk0
has norm

‖Γk0
‖ = sup

m 6=0

{

1

|ε0|
,

1

|µ0|
,

1

|λ1

k0+m
| ,

1

|λ2

k0+m
|

}

(4.45)

where the supremum over m is over all non-zero vectors in the reciprocal lattice, and
from (4.44),

1

|λi
k0+m

| =
|ω||ω(ε0 + µ0) + (−1)i∆|

2|2kT
0 m + m2|

(4.46)

where

∆ =
√

ω2(ε0 − µ0)2 + 4(k0 + m)2.(4.47)

Since k0 is complex while m is real the values of 1/|λ1

k0+m
| and 1/|λ2

k0+m
| are finite

for each non-zero vector m in the reciprocal lattice and approach zero as |m| → ∞.
Therefore the norm of Γk0

is finite. From the definition (4.42) it is easy to check that
the norm of the product of two operators is at most the product of the two norms of
the operators (i.e. that ‖AB‖ ≤ ‖A‖‖B‖). It follows that

|F j | = |(−Γk0
R)jF 0|

≤ ‖Γk0
‖j‖Q‖j |EH

0 E0 + HH
0 H0|1/2.(4.48)

Consequently, the sequence of functions obtained by truncating the infinite series
(3.23), which we reexpress as

F (x) =

∞
∑

j=0

δjF j(x) where F (x) =

(

V (x)
W (x)

)

,(4.49)

at successively higher values of j will be a Cauchy sequence provided

δ < [‖Γk0
‖‖Q‖]−1.(4.50)

Hence the series expansion for F (x) will be convergent when δ is sufficiently small.
However for a fixed medium (with fixed values of δ ε0, µ0, p(x) and q(x)) the series
may not converge if the frequency ω is sufficiently large. Indeed, from (3.16) we see
that k0 will also be large, with |k0| of the order of ω, and the expressions on the right
hand of (4.46) will be of the order of ω for fixed values of m. It then follows from
(4.45) that the norm of Γk0

will be of the order of ω, and consequently the condition

(4.50) will be violated at sufficiently large frequencies. Presumably some alternative
argument should allow one to prove that (3.22) has a solution for V (x) and W (x) for
even larger values of δ, although it remains unclear if a solution exists for any fixed
δ 6= 0 when the frequency is sufficiently large. In other words, we have not ruled out
the possibility that the bands at the highest frequencies have a different structure.

Of course in equation (3.22) we are free to add any vector g in the reciprocal lattice

to k0 and correspondingly multiply V (x) and W (x) by e−igT x, thereby preserving
their periodicity. Thus the Bloch equations will have a solution when k0 is such that
there is some vector g in the reciprocal lattice with

(k0 + g)2 = ω2µ0ε0.(4.51)

If k0 does not have this property we suspect that the Bloch equations have no solution
(at least not for moderate values of the frequency when δ is small) although this
remains to be established.
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