METHODS AND APPLICATIONS OF ANALYSIS. (© 2004 International Press
Vol. 11, No. 3, pp. 345-352, September 2004 004

APPLICATION OF OPTIMAL BASIS FUNCTIONS IN FULL
WAVEFORM INVERSION*

PING SHENG', GANG SUNT! AND QIANSHUN CHANGTS

Abstract. In full waveform inversion, the lack of low frequency information in the inversion
results has been a long standing problem. In this work, we show that by using mixed basis functions
this problem can be resolved satisfactorily. Examples of full waveform inversion on layered systems,
using surface reflection data from point sources, have shown excellent results nearly indistinguishable
from the target model. Our method is robust against additive white noise (up to 20% of the signal)
and can resolve layers that are comparable to or smaller than a wavelength in thickness. Physical
reason for the success of our approach is illustrated through a simple example.
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Personal statement by P. S. [ wish to give tribute to Prof. George Papani-
colaou on the occasion of his 60" birthday. George is a great mathematician and a
good friend. His generosity, strong sense of right and wrong and a deeply-felt sense of
humanity have affected positively all those around him. It is especially appropriate for
me to choose the topic of layered media inversion for this volume, since I have learned
about the mathematics of layered media from George. I wish him a happy birthday
and many productive years to come.

Wave inversion means the recovery of the coefficients/parameters of the wave
equation from its solution(s). Except for some cases of linear inversions (e.g., in 1D
inversion) [1, 2, 3, 4], however, most nonlinear inversions still present considerable
difficulties. A simplest example of nonlinear inversion, with geophysical relevance,
is that of layered media, with point sources and receivers on the surface. In such
(seismic) inversions the aim is to obtain the interface (reflector) positions as well as
the layer velocities. Together they define Earth’s subsurface structures.

The layered inversion is intrinsically ill-posed for deep layers. In addition, there is
the problem of so-called “low frequency lacuna”, i.e., a lack of low (spatial) frequency
information in the inversion results. This problem is understandable physically be-
cause wave is a differential detector (reflection only from sharp changes in material
properties, i.e., interfaces), implying no or very little information on the slow spatial
variations (low frequency information) from the reflection data. In this paper, we
show that the use of mixed basis functions in full waveform inversion can effectively
solve the low frequency lacuna problem, and lead to accurate inversion results starting
from a uniform background. In what follows we present our approach based on the
framework proposed by Tarantola [5] and Gauthier et al. [6].

Full waveform inversion for a 2D layered acoustic system, with point sources and
receivers, perhaps constitutes the simplest test case for nonlinear inversion and a first-
order approximation to the structure of the Earth’s subsurface. By using the optimal
basis functions alternately in the inversion process, we show that not only the low
frequency lacuna problem can be resolved, but also robust and accurate results were
obtained [7]. Physical reason for this success is elucidated by comparing 1D analytic
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solutions at a single interface, for both the step function basis and the block function
basis.
The pressure field P*(Z) of our model satisfies the equation
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where & and ¢ denote position and time, respectively, and s(&,t) is the source. The
model is characterized by bulk modulus (%) and density p(Z) , with velocity v(Z) =
VE(Z)/p(Z). We limit ourselves to uniform density (p = 1), thus there is only one
model parameter in the system, i.e., the bulk modulus or the velocity, varying from
layer to layer as a function of depth y, i.e., ¥(Z) = v(y). The nonlinearity of the
inversion problem remains under this restriction [8, 9, 10], so this simplified problem
still retains the most interesting difficulties.
We use the misfit function
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where P*(Z,,t|vm(y)) is the measured pressure at receiver position #, (with the
source on the surface, denoted by superscript s), v, (y) is the target velocity profile,
P#(Z,,t|lv(y)) is the calculated pressure at Z, for the current model, characterized by
v(y) , and 0P denotes the residual between the measured and calculated pressures.
In Eq. (2) the summation indices r,s,t stand for receivers, sources, and time, re-
spectively. Inversion in this case is equivalent to minimizing the misfit function with
respect to v(y).

One of the most generally used methods in minimizing the misfit function is
the damped least square approach, in which the correction to the velocity, dv(y), is
evaluated according to the equation (AT A+~1)§ii = AT6P, with dv(y) = > du;b; (y).

K3

Here b;(y) denotes the ith basis function, A is a mxn matrix, AT is its transpose, 7 is a
damping coefficient, n is the number of model parameters and m = n,. xnsxn; denotes
the product of the numbers of receivers, source and time steps. The matrix elements
of A in the (r, s,t) th row and ¢ th column are given by A({r, s,t},i) = 0P*(Z,,t)/0us,
defined below. In this work we are concerned mainly with three sets of basis functions:
the step function basis b;(y) = b(y;,y) = H(y — yi) , where H = 1 if the argument is
positive, and H = 0 otherwise; the quasi-§ function (block function) basis, given by
bi(y) = b(yi,y) = H(y — yi)H(y; + dy — y); and the linear basis b;(y), defined to be
bi(y) = b(yi,y) =y — yi if y > y; , and 0 otherwise.

In all the prior full waveform inversions, the partial derivatives were calculated
with respect to the usual block function basis [1, 11, 12, 13, 14, 15], i.e., the delta
function in the continuum case. Here we want to generalize the calculation of partial
derivatives with other basis functions as well. That is, for an arbitrary basis function,
if v(y) is changed to v(y) + du;b;(y), then the partial derivative with respect to the
basis function b;(y) is given by [4]
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For completeness, the derivation of Eq. (3) is given in the Appendix. Here we observe
that only P*(&,t) for all sources, and G(Z,t — t'; Z,) for all receivers are needed to
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obtain all the matrix elements of A. Thus the calculation of the matrix elements can
be very efficient.

Steepest descent is a special case of the damped least square method when ~ >
|AT A|. In that limit we have du(y;) < > [OP%(Z\,t)/0u(y;)]0 Py st , where du(y;) =

r,8,t

du;. We now use an exactly solvable 1D model [16, 17, 18] (that is, use normally
incident plane wave as the source instead of point sources) to elucidate the rationale
for optimal basis selection. Consider an interface at y = a > 0, where v(y) = vy for
y < a,and v(y) = vy for y > a. A single pulse, in the form of [cos(27(y —vot)/d) +1]*
in the region of —1/2 < (y—vpt)/d < 1/2 and 0 otherwise, is incident on the interface
at y = a. From the reflected signal retrieved at the receiver located at y = 0, the
aim is to recover the model profile, starting from a uniform initial model with vy.
If the pressure signal of the incident wave at the receiver is denoted by ps(t), then
the difference between the measured and calculated pressures is simply the reflected
signal, 0P (t) = vps(t — 2a/vy), where v = (v1 — 1)/ (v1 + o). The partial derivative
in the block function (quasi-d function) basis is

0P _ L -2y p— 2 By, (4)
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The resulting du(y’), for the case v; > vy, is plotted in Fig. 1(a) by the dashed line.
It is seen that the correction is oscillatory in the neighborhood of y = a, with a
net integrated area of zero. The corresponding velocity correction, given by dv(y) =
J 6u(y)b(y',y)dy’, shown by the dashed line in Fig. 1(b), bears no resemblance to
a step function. Thus it would be difficult, if not impossible, to recover the true
velocity profile by using the block function basis. This is the underlying cause of the
low frequency lacuna problem encountered before.

(a)

du

(b)

ov

Fi1G. 1. The velocity correction calculated with respect to the block function (quasi- 6 function)
basis (dash line) and the step basis function (solid line) basis for the 1D system. The amplitudes
odu(yi) are shown in (a); the corresponding velocity corrections dv(y) are shown in (b) [7].

The reason for the oscillatory correction is easily traced to the interference of
waves scattered by 3’ and 3y’ + dy. To suppress the interference, we switch to the
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step-function basis in the calculation of the derivatives as stipulated by Eq. (3). Then
the partial derivative is given by

oPW) _ 1, %,
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The resulting du(y’) is also shown in Fig. 1(a) (solid line). It leads to the corresponding
velocity correction shown by solid line in Fig. 1(b), seen to be close to a step function
at y = a. The step function basis is thus more efficient in recovering the target.

In real systems, a point source generally generates an oscillatory waveform, and
a more complex form of Ju(y) than that shown in Fig. 1 would result. In these cases
we identify the relevant du(y) (calculated from the step function basis) to be only
those part(s) which are greater in magnitude than 80% the maximum of |§u(y)|. The
rest of du(y) was set to zero. In other words, we used only the largest part(s) of the
correction.

To avoid biasing the inversion process, we alternately use block function basis
and the step function basis. While the block function basis has its deficiency as
demonstrated above, yet it can recover the positions of the interfaces efficiently. Thus
an inversion process involving the alternate use of both basis functions (plus the linear
basis as well if the model has piecewise linear regions) would be optimal in recovering
the interface positions as well as the layer velocities.

Figure 2 shows a layered 2D acoustic model with a velocity versus depth (defined
as y > 0) profile given by the dotted line. Point sources and receivers were used.
Forward calculations used sixth-order finite difference on a 80 x 80 grid to generate
the data. The pressure release boundary condition was used on the upper surface
y = 0. For the other boundaries wave reflection was minimized by adding an additional
damping layer. The Ricker wavelet was used as the source pulse: s(t) oc [1 — 272 (t —
ts)?/t2] exp(—2m(t — ts)?/t2), with ¢, = 12.0 and t, = 20.0 in our time unit. Ten
source positions and ten receiver positions were interlaced and evenly distributed on
the surface.

The initial model is a constant profile with the velocity equal to that at the
surface. It was first updated by the damped least square method using the step
function basis, iterated ten times. The result is shown in Fig. 2(a) (dash-dotted line).
The convergence was found to be much faster than that by using the block function
basis. To obtain the positions of the deeper interfaces, we further updated the current
model by using ten iterations using the block function basis. The new result is shown
in Fig. 2(a) by the dashed line. It is seen that there are small “incorrect” variations.
We introduced a threshold, small compared to interfacial velocity jumps, to further
update the model. That is, only those velocity jumps larger than the threshold were
retained. This re-configuration process led to the result shown by the solid line in
Fig. 2(a). The previous three processes constitute an “inversion unit.” The results
after two, four, and ten iterations of the inversion unit are shown by dash-dotted,
dashed, and solid lines in Fig. 2(b), respectively. The convergence to the target
configuration is observed to be from the surface downward, as expected from intuition.
The final result is almost indistinguishable from the target model, and our inversion
has resolved layers with thicknesses comparable to or smaller than the wavelength. We
have confirmed the robustness of our method for several target models. In Fig. 3(a),
we show the results for a model with a high bump in the middle. The final inversion
result is also excellent.

The above inversion approach is slightly modified for a model shown in Fig. 3(b),
consisting of a piecewise linear region mixed with piecewise constant regions. Now in




LAYERED MEDIA INVERSION 349

- target model

2 .24 -——— after 10 ilerations
---=-- after 20 iterations
alter 1 inversion unit

1.8

2.2 -——- after 2 inversion units
------- after 4 inversion units
after 20 inversion units

velocity (arb. units)

1.8

1.4

1.0 , ‘ ‘

0 20 40 60 80
depth y (arb. units)

F1G. 2. Results at different stages of the inversion process for a 2D layered model. The target
model is shown by the dotted line in both (a) and (b). In (a), the result after first 10 iterations of the
damped least square with the step basis function is shown by the dash-dotted line. The result after 10
further iterations by using the block function basis is shown by the dashed line. The solid line shows
the result after a whole inversion unit. In (b), the results after two, four, and ten inversion units
are shown by the dash-dotted, dashed, and the solid lines, respectively. Definition of an inversion
unit is described in the text. Convergence to the target model is seen to initiate at the surface and
proceed downward [7].

our inversion unit ten iterations of the linear basis function precedes the rest of the
steps in the inversion unit defined above. Otherwise the process remains the same.
It is seen that even in this case, the model can still be accurately recovered starting
from a uniform background. Our inversion is also robust with respect to additive
white noise. Appreciable deviations from the target model appear only with white
noise amplitude greater than ~20% of the signal.

In order to relate our models to the geophysical context, we note that the p-wave
velocity in sandstone and shale ranges from 0.8-3.4 km/sec. If we take the value of 3
km/sec as the mean value and frequency ~50 Hz, then in Fig. 2 the depth is only about
0.45 km, or 0.3 sec in terms of 2-way travel time. Typical seismic sections can be 3
seconds or more in terms of the 2-way travel time. Hence for realistic applications the
efficiency of the present approach must be further optimized. One potential avenue
that might enhance the inversion efficiency is by exploiting the causal nature of the
reflected signals. In fact, from the convergence pattern of our model calculations,
i.e., from top layer proceeding downward, it is already clear that inverting the layer
parameters successively could be fruitful.

Appendix. If we write P*(Z,t|lv(y) + dv(y)) = P*(&,tlv(y)) + 0P*(#,t), then
under the Born approximation, § P*(Z, t) satisfies the equation
_026P%(,t)
=—am -
This equation can be solved by using the Green function, i.e., by defining G(Z,t—
t'; @) as the solution of SG(Z,t —t/; &) = 6(& — &')d(t — ') so that

S0P (Z,t) VA (y)ASPS (Z,t) = 2v(y)ov(y) AP (Z,tlv(y)). (A1)

t
5P (F,1) = 2 / / Gt — 1 Wy )ov(y ) AP, £)dFdt,  (A2)
0 1%
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Fic. 3. Results at different stages of the inversion process for another 2D layered target model
(a), where there is a bump in the middle, and a mized 2D piecewise linear and piecewise constant
target model (b). The initial model for both is the constant profile [7].

where &' = (2/,y’,2’). For real G(Z,t —t'; '), it is a property of the Green function

that G(&,t — ') = G(&',t —

t
speia =2 [ [
0o Jv

t'; ¥). Thus we have

G@ t -t 7. vy )ov(y ) AP (7, ¢')dz' dt’. (A3)

If we restrict ov(Zs) = 0, i.e., no velocity correction at the source position, then

t su(y') 92Ps (&, t)
S(7 _ AT ) = 34!
IP*(Z,t) = 2/0 /VG(:E =t %) ) 507 dz’dt (A4)
t (2 o4 4l 2 N\ DS (R 4!
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Here the over dot denotes
the desired Eq. (3).

time derivative. Noting ov(y) = du;b;(y) then yields
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